-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_kernel.py
646 lines (541 loc) · 23.9 KB
/
graph_kernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
import argparse
import numpy as np
from tqdm import tqdm
from typing import Tuple, Optional, Union
from pathlib import Path
from timeit import default_timer
from collections import defaultdict
from scipy.spatial import distance_matrix
from scipy.sparse import coo_matrix
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import random_split, Dataset, DataLoader, Subset
from torch_geometric.data import DataLoader
from torch_geometric.loader import DataListLoader
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.nn.inits import reset, uniform
from torch_geometric.nn import DataParallel
import wandb
import os
import imageio
import pdb
import pickle
from dataset import ContactMapDataset, PairData
from mdlearn.utils import log_latent_visualization
EPS = 1e-15
PathLike = Union[str, Path]
def train_valid_split(
dataset: Dataset, split_pct: float = 0.8, method: str = "random", **kwargs
) -> Tuple[DataListLoader, DataListLoader]:
"""Creates training and validation DataLoaders from :obj:`dataset`.
Parameters
----------
dataset : Dataset
A PyTorch dataset class derived from :obj:`torch.utils.data.Dataset`.
split_pct : float
Percentage of data to be used as training data after a split.
method : str, default="random"
Method to split the data. For random split use "random", for a simple
partition, use "partition".
**kwargs
Keyword arguments to :obj:`torch.utils.data.DataLoader`. Includes,
:obj:`batch_size`, :obj:`drop_last`, etc (see `PyTorch Docs
<https://pytorch.org/docs/stable/data.html>`_).
Raises
------
ValueError
If :obj:`method` is not "random" or "partition".
"""
train_length = int(len(dataset) * split_pct)
if method == "random":
lengths = [train_length, len(dataset) - train_length]
train_dataset, valid_dataset = random_split(dataset, lengths)
elif method == "partition":
indices = list(range(len(dataset)))
train_dataset = Subset(dataset, indices[:train_length])
valid_dataset = Subset(dataset, indices[train_length:])
else:
raise ValueError(f"Invalid method: {method}.")
train_loader = DataListLoader(train_dataset, **kwargs)
valid_loader = DataListLoader(valid_dataset, **kwargs)
return train_loader, valid_loader, train_dataset, valid_dataset
class LpLoss(object):
def __init__(self, d=2, p=2, size_average=True, reduction=True):
super(LpLoss, self).__init__()
# Dimension and Lp-norm type are postive
assert d > 0 and p > 0
self.d = d
self.p = p
self.reduction = reduction
self.size_average = size_average
def abs(self, x, y):
num_examples = x.size()[0]
# Assume uniform mesh
h = 1.0 / (x.size()[1] - 1.0)
all_norms = (h ** (self.d / self.p)) * torch.norm(
x.view(num_examples, -1) - y.view(num_examples, -1), self.p, 1
)
if self.reduction:
if self.size_average:
return torch.mean(all_norms)
else:
return torch.sum(all_norms)
return all_norms
def rel(self, x, y):
num_examples = x.size()[0]
diff_norms = torch.norm(
x.view(num_examples, -1) - y.view(num_examples, -1), self.p, 1
)
y_norms = torch.norm(y.view(num_examples, -1), self.p, 1)
if self.reduction:
if self.size_average:
return torch.mean(diff_norms / y_norms)
else:
return torch.sum(diff_norms / y_norms)
return diff_norms / y_norms
def __call__(self, x, y):
return self.rel(x, y)
class NNConv_old(MessagePassing):
r"""The continuous kernel-based convolutional operator from the
`"Neural Message Passing for Quantum Chemistry"
<https://arxiv.org/abs/1704.01212>`_ paper.
This convolution is also known as the edge-conditioned convolution from the
`"Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on
Graphs" <https://arxiv.org/abs/1704.02901>`_ paper (see
:class:`torch_geometric.nn.conv.ECConv` for an alias):
.. math::
\mathbf{x}^{\prime}_i = \mathbf{\Theta} \mathbf{x}_i +
\sum_{j \in \mathcal{N}(i)} \mathbf{x}_j \cdot
h_{\mathbf{\Theta}}(\mathbf{e}_{i,j}),
where :math:`h_{\mathbf{\Theta}}` denotes a neural network, *.i.e.*
a MLP.
Args:
in_channels (int): Size of each input sample.
out_channels (int): Size of each output sample.
nn (torch.nn.Module): A neural network :math:`h_{\mathbf{\Theta}}` that
maps edge features :obj:`edge_attr` of shape :obj:`[-1,
num_edge_features]` to shape
:obj:`[-1, in_channels * out_channels]`, *e.g.*, defined by
:class:`torch.nn.Sequential`.
aggr (string, optional): The aggregation scheme to use
(:obj:`"add"`, :obj:`"mean"`, :obj:`"max"`).
(default: :obj:`"add"`)
root_weight (bool, optional): If set to :obj:`False`, the layer will
not add the transformed root node features to the output.
(default: :obj:`True`)
bias (bool, optional): If set to :obj:`False`, the layer will not learn
an additive bias. (default: :obj:`True`)
**kwargs (optional): Additional arguments of
:class:`torch_geometric.nn.conv.MessagePassing`.
"""
def __init__(
self,
in_channels,
out_channels,
net,
aggr="add",
root_weight=True,
bias=True,
**kwargs,
):
super(NNConv_old, self).__init__(aggr=aggr, **kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.net = net
self.aggr = aggr
if root_weight:
self.root = nn.Parameter(torch.Tensor(in_channels, out_channels))
else:
self.register_parameter("root", None)
if bias:
self.bias = nn.Parameter(torch.Tensor(out_channels))
else:
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self):
reset(self.net)
size = self.in_channels
uniform(size, self.root)
uniform(size, self.bias)
def forward(self, x, edge_index, edge_attr):
""""""
x = x.unsqueeze(-1) if x.dim() == 1 else x
pseudo = edge_attr.unsqueeze(-1) if edge_attr.dim() == 1 else edge_attr
return self.propagate(edge_index, x=x, pseudo=pseudo)
def message(self, x_j, pseudo):
weight = self.net(pseudo).view(-1, self.in_channels, self.out_channels)
return torch.matmul(x_j.unsqueeze(1), weight).squeeze(1)
def update(self, aggr_out, x):
if self.root is not None:
aggr_out = aggr_out + torch.mm(x, self.root)
if self.bias is not None:
aggr_out = aggr_out + self.bias
return aggr_out
def __repr__(self):
return "{}({}, {})".format(
self.__class__.__name__, self.in_channels, self.out_channels
)
class DenseNet(torch.nn.Module):
def __init__(self, layers, nonlinearity, out_nonlinearity=None, normalize=False):
super(DenseNet, self).__init__()
self.n_layers = len(layers) - 1
assert self.n_layers >= 1
self.layers = nn.ModuleList()
for j in range(self.n_layers):
self.layers.append(nn.Linear(layers[j], layers[j + 1]))
if j != self.n_layers - 1:
if normalize:
self.layers.append(nn.BatchNorm1d(layers[j + 1]))
self.layers.append(nonlinearity())
if out_nonlinearity is not None:
self.layers.append(out_nonlinearity())
def forward(self, x):
for _, layer in enumerate(self.layers):
x = layer(x)
return x
class KernelNN(torch.nn.Module):
def __init__(
self,
width: int,
ker_width: int,
depth: int,
ker_in: int,
in_width: int = 1,
out_width: int = 1,
num_embeddings: int = 20,
embedding_dim: int = 4,
x_position_dim: int = 3
) -> None:
super(KernelNN, self).__init__()
self.depth = depth
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
self.x_position_dim = x_position_dim
self.lstm = nn.LSTM(x_position_dim, x_position_dim)
self.lstm_fc = torch.nn.Linear(x_position_dim, x_position_dim)
self.emb = nn.Embedding(num_embeddings, embedding_dim)
self.fc1 = torch.nn.Linear(in_width, width)
kernel = DenseNet([ker_in, ker_width, ker_width, width ** 2], torch.nn.ReLU)
self.conv1 = NNConv_old(width, width, kernel, aggr="mean")
self.conv2 = NNConv_old(width, width, kernel, aggr="mean")
self.fc2 = torch.nn.Linear(width, out_width)
def forward(self, data: PairData, return_latent: bool = False, single_example: bool = False) -> [torch.Tensor, Optional[torch.tensor]]:
edge_index, edge_attr = data.edge_index, data.edge_attr
x = data.x_position.reshape(-1, args.window_size, args.num_residues, 3)
x = torch.swapaxes(x, 0, 1)
hidden = (torch.zeros(1, args.num_residues, 3).cuda(),
torch.zeros(1, args.num_residues, 3).cuda())
for i in x:
x, hidden = self.lstm(i, hidden)
# x, hidden = self.lstm(x)
# take the last time slice, we don't want all of them
# x = x[-args.batch_size:]
x = self.lstm_fc(x)
# Use an embedding layer to map the onehot aminoacid vector to
# a dense vector and then concatenate the result with the positions
# emb = self.emb(data.x_aminoacid.view(args.batch_size, -1, self.num_embeddings))
emb = self.emb(data.x_aminoacid)
x = x.reshape(emb.shape[0], -1)
# print("data.x_aminoacid", data.x_aminoacid.shape)
# print("data.x_position:", data.x_position.shape)
x = torch.cat((emb, x), dim=1)
# print("x:", x.shape)
x = F.relu(self.fc1(x))
for k in range(self.depth):
x = F.relu(self.conv1(x, edge_index, edge_attr))
for k in range(self.depth):
x = F.relu(self.conv2(x, edge_index, edge_attr))
if return_latent:
latent_dim = torch.clone(x)
x = self.fc2(x)
if return_latent:
return [x, latent_dim]
else:
return x
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--data_path", type=Path, required=True)
parser.add_argument("--run_path", type=Path, required=True)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--epochs", type=int, default=200)
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--lr", type=float, default=0.01)
parser.add_argument("--weight_decay", type=float, default=5e-4)
parser.add_argument("--scheduler_step", type=int, default=50)
parser.add_argument("--scheduler_gamma", type=float, default=0.8)
parser.add_argument("--width", type=int, default=64)
parser.add_argument("--out_width", type=int, default=3)
parser.add_argument("--kernel_width", type=int, default=1024)
parser.add_argument("--depth", type=int, default=6)
parser.add_argument("--node_features", type=int, default=7)
parser.add_argument("--edge_features", type=int, default=6)
parser.add_argument("--num_embeddings", type=int, default=20)
parser.add_argument("--embedding_dim", type=int, default=4)
parser.add_argument("--split_pct", type=float, default=0.8)
parser.add_argument("--num_data_workers", type=int, default=0)
parser.add_argument("--prefetch_factor", type=int, default=2)
parser.add_argument("--persistent_workers", type=str, default="False")
parser.add_argument("--non_blocking", type=str, default="False")
parser.add_argument("--generate_movie", type=bool, default=True)
parser.add_argument("--num_movie_frames", type=int, default=5)
parser.add_argument("--plot_latent", type=bool, default=True)
parser.add_argument("--plot_per_epochs", type=int, default=1)
parser.add_argument("--window_size", type=int, default=10, help="Size of window to feed into network")
parser.add_argument("--num_residues", type=int, default=28)
# parser.add_argument("--latent_space_starting_frame", type=int, default=133000)
# parser.add_argument("--latent_space_num_frames", type=int, default=10000)
parser.add_argument("--node_features_path", type=Path, default=None)
args = parser.parse_args()
# Validation of arguments
if not args.data_path.exists():
raise ValueError(f"data_path does not exist: {args.data_path}")
args.persistent_workers = args.persistent_workers == "True"
args.non_blocking = args.non_blocking == "True"
# use the weights and biases trial name to store output
args.run_path = args.run_path / wandb.run.name
# Make output directory
args.run_path.mkdir()
return args
def construct_pairdata(x_position, x_aminoacid, threshold: float = 8.0) -> PairData:
contact_map = (distance_matrix(x_position[-1], x_position[-1]) < threshold).astype("int8")
sparse_contact_map = coo_matrix(contact_map)
# print(sparse_contact_map.row)
# print(sparse_contact_map.col)
# Get adjacency list
edge_index = np.array([sparse_contact_map.row, sparse_contact_map.col])
# Get edge attributes with shape (num_edges, num_edge_features)
# Each edge attribute is the positions of both atoms A,B
# And looks like [Ax, Ay, Az, Bx, By, Bz]
edge_attr = np.array(
[
np.concatenate(
(x_position[-1, i, :], x_position[-1, j, :])
).flatten()
for i, j in zip(edge_index[0], edge_index[1])
]
)
x_position = torch.from_numpy(x_position).to(torch.float32)
edge_index = torch.from_numpy(edge_index).to(torch.long)
edge_attr = torch.from_numpy(edge_attr).to(torch.float32)
# Construct torch_geometric data object
data = PairData(
x_aminoacid=x_aminoacid,
x_position=x_position,
edge_attr=edge_attr,
edge_index=edge_index,
)
return data
def recursive_propagation(model, dataset, device, num_steps: int, starting_points: list, threshold: float = 8.0):
forecasts = []
model.eval()
with torch.no_grad():
for start in starting_points:
input_ = dataset[start].to(device)
for i in range(start, start+num_steps):
input_ = input_.to(device)
output = model.module(input_, single_example=True)
# generate new x positions
last_window = input_.x_position.cpu().numpy()[1:, :, :]
out_x_position = output.detach().cpu().numpy()
out_x_position = np.expand_dims(out_x_position, 0)
new_x_position = np.vstack([last_window, out_x_position])
input_ = construct_pairdata(new_x_position, input_.x_aminoacid, threshold=threshold)
forecasts.append(input_.to("cpu"))
return forecasts
def get_contact_map(pair_data):
row = pair_data.edge_index.cpu().numpy()[0]
col = pair_data.edge_index.cpu().numpy()[1]
val = np.ones(len(row))
dense_contact_map = coo_matrix((val, (row, col)), shape=(args.num_residues, args.num_residues)).toarray()
return dense_contact_map
def make_propagation_movie(model, dataset, device, epoch, num_steps=5, starting_points=[0, 25, 50]):
forecast = recursive_propagation(model, dataset, device, num_steps=num_steps, starting_points=starting_points)
filenames = []
for starting_point in starting_points:
for i in range(starting_point, starting_point+num_steps):
forecast_cm = get_contact_map(forecast.pop(0))
real_cm = get_contact_map(dataset[i + 1])
fig, ax = plt.subplots(ncols=2, figsize=(10, 4))
ax[0].imshow(forecast_cm, cmap="cividis")
ax[1].imshow(real_cm, cmap="cividis")
fig.suptitle("Time Step {}".format(i + 1))
ax[0].set_title("Forecast")
ax[1].set_title("Real")
filename = args.run_path / 'epoch{}_gno_movie_frame{}.png'.format(epoch, i + 1)
filenames.append(filename)
plt.savefig(filename, dpi=150)
images = []
for filename in filenames:
images.append(imageio.imread(filename))
imageio.mimsave(args.run_path / 'epoch{}_gno_movie.mp4'.format(epoch), images)
def train(model, train_loader, optimizer, loss_fn, device):
model.train()
avg_loss = 0.0
avg_mse = 0.0
mse_fn = torch.nn.MSELoss()
for batch in tqdm(train_loader):
# batch = batch.to(device, non_blocking=args.non_blocking)
optimizer.zero_grad()
out = model(batch)
# mse = F.mse_loss(out.view(-1, 1), batch.y.view(-1, 1))
# mse.backward()
# loss = torch.norm(out.view(-1) - batch.y.view(-1), 1)
# loss.backward()
concat_y = torch.cat([data.y for data in batch]).to(out.device)
l2 = loss_fn(out.view(args.batch_size, -1), concat_y.view(args.batch_size, -1))
l2.backward()
mse_loss = mse_fn(out, concat_y)
optimizer.step()
avg_loss += l2.item()
avg_mse += mse_loss.item()
avg_loss /= len(train_loader)
avg_mse /= len(train_loader)
return avg_loss, avg_mse
def validate(model, valid_loader, loss_fn, device):
model.eval()
avg_loss = 0.0
avg_mse = 0.0
mse_fn = torch.nn.MSELoss()
with torch.no_grad():
for batch in valid_loader:
# data = batch.to(device, non_blocking=args.non_blocking)
out = model(batch)
concat_y = torch.cat([data.y for data in batch]).to(out.device)
avg_loss += loss_fn(
out.view(args.batch_size, -1), concat_y.view(args.batch_size, -1)
).item()
avg_mse += mse_fn(out, concat_y)
avg_loss /= len(valid_loader)
avg_mse /= len(valid_loader)
return avg_loss, avg_mse
def main():
torch.manual_seed(args.seed)
np.random.seed(args.seed)
# Set available number of cores
torch.set_num_threads(1 if args.num_data_workers == 0 else args.num_data_workers)
# Setup training and validation datasets
dataset = ContactMapDataset(args.data_path, window_size=args.window_size,
node_feature_dset_path=args.node_features_path)
print("Created dataset")
train_loader, valid_loader, train_dataset, valid_dataset = train_valid_split(
dataset,
args.split_pct,
method="partition",
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
pin_memory=False,
num_workers=args.num_data_workers,
prefetch_factor=args.prefetch_factor,
persistent_workers=args.persistent_workers,
)
print("Split training and validation sets")
# Setup device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Setup model, optimizer, loss function and scheduler
model = DataParallel(KernelNN(
args.width,
args.kernel_width,
args.depth,
args.edge_features,
args.node_features,
args.out_width,
args.num_embeddings,
args.embedding_dim,
)).to(device)
print("Initialized model")
optimizer = torch.optim.Adam(
model.parameters(), lr=args.lr, weight_decay=args.weight_decay
)
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=args.scheduler_step, gamma=args.scheduler_gamma
)
loss_fn = LpLoss(size_average=False)
print("Started training")
# calculate the starting points for the prediction propagation movie
if args.generate_movie:
total_steps = len(valid_dataset) - 10
potential_starts = list(range(0, total_steps, args.window_size))
if len(potential_starts) < 3:
starting_points = potential_starts
else:
starting_points = []
# first window
starting_points.append(0)
# middle window
starting_points.append(potential_starts[(len(potential_starts)//2)])
# last window
starting_points.append(potential_starts[-1])
# pdb.set_trace()
# Start training
best_loss = float("inf")
# save rmsd paints
# np.save(args.run_path / 'rmsd.npy', valid_dataset.rmsd_values[
# args.latent_space_starting_frame:args.latent_space_starting_frame + args.latent_space_num_frames])
# calculate frames to plot for latent space
if args.plot_latent:
latent_start_frame = len(train_dataset)
color_dict = {'RMSD': dataset.rmsd_values[latent_start_frame:latent_start_frame+10000]}
# color_dict = {'RMSD': dataset.rmsd_values[latent_start_frame:latent_start_frame + 10]}
b = pickle.dumps(color_dict)
with open(args.run_path/'latent_color_dict.pkl', 'wb') as f:
f.write(b)
for epoch in range(args.epochs):
time = default_timer()
avg_train_loss, avg_train_mse = train(model, train_loader, optimizer, loss_fn, device)
avg_valid_loss, avg_valid_mse = validate(model, valid_loader, loss_fn, device)
video = None
if args.generate_movie and (epoch % args.plot_per_epochs == 0):
make_propagation_movie(model, valid_dataset, device, num_steps=args.num_movie_frames, starting_points=starting_points, epoch=epoch)
video = wandb.Video(str(args.run_path / 'epoch{}_gno_movie.mp4'.format(epoch)), fps=2, format="mp4")
if args.plot_latent and (epoch % args.plot_per_epochs == 0):
with torch.no_grad():
latent_spaces = []
inference_step = latent_start_frame
for _ in range(10000):
# for _ in range(10):
out, latent = model.module.forward(dataset[inference_step].cuda(), return_latent=True, single_example=True)
latent = latent.detach().cpu().numpy().flatten()
latent_spaces.append(latent)
inference_step += 1
latent_spaces = np.array(latent_spaces)
# save in directory
np.save(args.run_path/'latent_space_epoch{}.npy'.format(epoch), latent_spaces)
print(len(color_dict['RMSD']))
print(len(latent_spaces))
out_html = log_latent_visualization(latent_spaces, color_dict, args.run_path, epoch=epoch, method="PCA")
html_plot = wandb.Html(out_html['RMSD'], inject=False)
out_html = log_latent_visualization(latent_spaces, color_dict, args.run_path, epoch=epoch,
method="TSNE")
html_plot2 = wandb.Html(out_html['RMSD'], inject=False)
else:
html_plot = None
html_plot2 = None
wandb.log({'avg_train_loss': avg_train_loss, 'avg_valid_loss': avg_valid_loss,
'avg_train_mse': avg_train_mse, 'avg_valid_mse': avg_valid_mse,
'valid_prediction_video': video, 'PCA_RMSD_latent_plot': html_plot,
'TSNE_RMSD_latent_plot': html_plot2})
scheduler.step()
print(
f"Epoch: {epoch}"
f"\tTime: {default_timer() - time}"
f"\ttrain_loss: {avg_train_loss}"
f"\tvalid_loss: {avg_valid_loss}"
)
# Save the model with the best validation loss
if avg_valid_loss < best_loss:
best_loss = avg_valid_loss
checkpoint = {
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"scheduler_state_dict": scheduler.state_dict(),
}
torch.save(checkpoint, args.run_path / "best.pt")
if __name__ == "__main__":
wandb.init(project="bba_gno")
args = parse_args()
wandb.config.update(args)
main()