Please refer to README.md for installation and dataset preparation instructions.
name | Pretrained Model | Method | Crop Size | Lr Schd | mIoU | mIoU (ms+flip) | #params | FLOPs | Fine-tuned Model |
---|---|---|---|---|---|---|---|---|---|
HorNet-T (7x7) | Tsinghua Cloud | UPerNet | 512x512 | 160K | 48.1 | 48.9 | 52M | 926G | Tsinghua Cloud |
HorNet-T (GF) | Tsinghua Cloud | UPerNet | 512x512 | 160K | 49.2 | 49.3 | 55M | 924G | Tsinghua Cloud |
HorNet-S (7x7) | Tsinghua Cloud | UPerNet | 512x512 | 160K | 49.2 | 49.8 | 81M | 1030G | Tsinghua Cloud |
HorNet-S (GF) | Tsinghua Cloud | UPerNet | 512x512 | 160K | 50.0 | 50.5 | 85M | 1027G | Tsinghua Cloud |
HorNet-B (7x7) | Tsinghua Cloud | UPerNet | 512x512 | 160K | 50.0 | 50.5 | 121M | 1174G | Tsinghua Cloud |
HorNet-B (GF) | Tsinghua Cloud | UPerNet | 640x640 | 160K | 50.5 | 50.9 | 126M | 1171G | Tsinghua Cloud |
HorNet-L (7x7) | Tsinghua Cloud | UPerNet | 640x640 | 160K | 54.1 | 54.5 | 232M | 2473G | Tsinghua Cloud |
HorNet-L (GF) | Tsinghua Cloud | UPerNet | 640x640 | 160K | 55.0 | 55.2 | 239M | 2465G | Tsinghua Cloud |
bash dist_train.sh <CONFIG_PATH> <NUM_GPUS> --work-dir <SAVE_PATH> --options model.pretrained=<PRETRAIN_MODEL>
For example, using a HorNet-T (GF)
backbone with UperNet:
bash dist_train.sh \
configs/hornet/upernet_hornet_tiny_gf_512_160k_ade20k.py 8 \
--work-dir /path/to/save \
--options model.pretrained=/path/to/pretrained/weight
More config files can be found at configs/hornet
.
Command format for multi-scale testing:
bash dist_test.sh <CONFIG_PATH> <CHECKPOINT_PATH> <NUM_GPUS> --eval mIoU --aug-test
For example, evaluate a HorNet-T (GF)
backbone with UperNet:
bash dist_test.sh configs/hornet/upernet_hornet_tiny_gf_512_160k_ade20k.py \
/path/to/checkpoint 8 --eval mIoU --aug-test
Command format for single-scale testing:
bash dist_test.sh <CONFIG_PATH> <CHECKPOINT_PATH> <NUM_GPUS> --eval mIoU
For example, evaluate a HorNet-T (GF)
backbone with UperNet:
bash dist_test.sh configs/hornet/upernet_hornet_tiny_gf_512_160k_ade20k.py \
/path/to/checkpoint 8 --eval mIoU
This code is built using mmsegmentation, timm libraries, and ConvNeXt