Skip to content

Commit da59d52

Browse files
committed
update data
1 parent 72b628d commit da59d52

File tree

3 files changed

+91
-2
lines changed

3 files changed

+91
-2
lines changed

database/database.json

+17
Original file line numberDiff line numberDiff line change
@@ -40518,5 +40518,22 @@
4051840518
"tags": [
4051940519
"python"
4052040520
]
40521+
},
40522+
"http://arxiv.org/abs/1705.08039": {
40523+
"extra-tags": [
40524+
"embeddings",
40525+
"learning",
40526+
"data"
40527+
],
40528+
"title": "Poincar\u00e9 Embeddings for Learning Hierarchical Representations",
40529+
"summary": "Representation learning has become an invaluable approach for learning from symbolic data such as text and graphs. However, while complex symbolic datasets often exhibit a latent hierarchical structure, state-of-the-art methods typically learn embeddings in Euclidean vector spaces, which do not account for this property. For this purpose, we introduce a new approach for learning hierarchical representations of symbolic data by embedding them into hyperbolic space -- or more precisely into an n-dimensional Poincar\\'e ball. Due to the underlying hyperbolic geometry, this allows us to learn parsimonious representations of symbolic data by simultaneously capturing hierarchy and similarity. We introduce an efficient algorithm to learn the embeddings based on Riemannian optimization and show experimentally that Poincar\\'e embeddings outperform Euclidean embeddings significantly on data with latent hierarchies, both in terms of representation capacity and in terms of generalization ability.",
40530+
"date": "2024-11-28",
40531+
"tags": [
40532+
"computer science - artificial intelligence",
40533+
"computer science - machine learning",
40534+
"statistics - machine learning",
40535+
"hierarchical",
40536+
"poincare"
40537+
]
4052140538
}
4052240539
}

database/pipeline.pkl

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,3 @@
11
version https://git-lfs.github.com/spec/v1
2-
oid sha256:171a936c8be58fb4bdc11c24456fdfeb2db61893204adaa94d559b355f4498ff
3-
size 142812328
2+
oid sha256:82952e409023d65572b00dc11a2843fea56bb5eb27216b3218dc9a59f0b8bf97
3+
size 142912635

database/triples.json

+72
Original file line numberDiff line numberDiff line change
@@ -186714,5 +186714,77 @@
186714186714
{
186715186715
"head": "adam-optimizer",
186716186716
"tail": "optimization"
186717+
},
186718+
{
186719+
"head": "computer science - artificial intelligence",
186720+
"tail": "statistics - machine learning"
186721+
},
186722+
{
186723+
"head": "computer science - artificial intelligence",
186724+
"tail": "poincare"
186725+
},
186726+
{
186727+
"head": "computer science - artificial intelligence",
186728+
"tail": "learning"
186729+
},
186730+
{
186731+
"head": "computer science - machine learning",
186732+
"tail": "hierarchical"
186733+
},
186734+
{
186735+
"head": "computer science - machine learning",
186736+
"tail": "poincare"
186737+
},
186738+
{
186739+
"head": "statistics - machine learning",
186740+
"tail": "hierarchical"
186741+
},
186742+
{
186743+
"head": "statistics - machine learning",
186744+
"tail": "poincare"
186745+
},
186746+
{
186747+
"head": "statistics - machine learning",
186748+
"tail": "embeddings"
186749+
},
186750+
{
186751+
"head": "statistics - machine learning",
186752+
"tail": "learning"
186753+
},
186754+
{
186755+
"head": "hierarchical",
186756+
"tail": "poincare"
186757+
},
186758+
{
186759+
"head": "hierarchical",
186760+
"tail": "embeddings"
186761+
},
186762+
{
186763+
"head": "hierarchical",
186764+
"tail": "learning"
186765+
},
186766+
{
186767+
"head": "hierarchical",
186768+
"tail": "data"
186769+
},
186770+
{
186771+
"head": "poincare",
186772+
"tail": "embeddings"
186773+
},
186774+
{
186775+
"head": "poincare",
186776+
"tail": "learning"
186777+
},
186778+
{
186779+
"head": "poincare",
186780+
"tail": "data"
186781+
},
186782+
{
186783+
"head": "embeddings",
186784+
"tail": "learning"
186785+
},
186786+
{
186787+
"head": "embeddings",
186788+
"tail": "data"
186717186789
}
186718186790
]

0 commit comments

Comments
 (0)