-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsimple_cb.py
70 lines (49 loc) · 2.04 KB
/
simple_cb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# modified from https://gist.github.com/DavidYKay/9dad6c4ab0d8d7dbf3dc
# Ported from: http://www.morethantechnical.com/2015/01/14/simplest-color-balance-with-opencv-wcode/
import math
import sys
import cv2
import numpy as np
def apply_mask(matrix, mask, fill_value):
masked = np.ma.array(matrix, mask=mask, fill_value=fill_value)
return masked.filled()
def apply_threshold(matrix, low_value, high_value):
low_mask = matrix < low_value
matrix = apply_mask(matrix, low_mask, low_value)
high_mask = matrix > high_value
matrix = apply_mask(matrix, high_mask, high_value)
return matrix
def simplest_cb(image, percent, verbose=False):
assert image.shape[2] == 3
assert percent > 0 and percent < 100
half_percent = percent / 200.0
channels = cv2.split(image)
out_channels = []
for channel in channels:
assert len(channel.shape) == 2
# find the low and high percentile values (based on the input percentile)
height, width = channel.shape
vec_size = width * height
flat = channel.reshape(vec_size)
assert len(flat.shape) == 1
flat = np.sort(flat)
n_cols = flat.shape[0]
low_val = flat[math.floor(n_cols * half_percent)]
high_val = flat[math.ceil(n_cols * (1.0 - half_percent))]
if verbose:
print("Lowval: " + str(low_val))
print("Highval: " + str(high_val))
# saturate below the low percentile and above the high percentile
thresholded = apply_threshold(channel, low_val, high_val)
# scale the channel
normalized = cv2.normalize(thresholded, thresholded.copy(), 0, 255, cv2.NORM_MINMAX)
out_channels.append(normalized)
return cv2.merge(out_channels)
if __name__ == '__main__':
img = cv2.imread(sys.argv[1])
#img = cv2.imread('../Data/PP_test/CSt_No-Porous/sq_77_10X PP 3.jpg')
#img = cv2.imread('../Data/PP_test/CSt_No-Porous/sq_44_10X PP 2.jpg')
out = simplest_cb(img, 1)
cv2.imshow("before", img)
cv2.imshow("after", out)
cv2.waitKey(0)