forked from pythonprofilers/memory_profiler
-
Notifications
You must be signed in to change notification settings - Fork 0
/
memory_profiler.py
992 lines (831 loc) · 33.5 KB
/
memory_profiler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
"""Profile the memory usage of a Python program"""
# .. we'll use this to pass it to the child script ..
_CLEAN_GLOBALS = globals().copy()
__version__ = '0.41'
_CMD_USAGE = "python -m memory_profiler script_file.py"
import time
import sys
import os
import pdb
import warnings
import linecache
import inspect
import subprocess
import logging
# TODO: provide alternative when multiprocessing is not available
try:
from multiprocessing import Process, Pipe
except ImportError:
from multiprocessing.dummy import Process, Pipe
try:
from IPython.core.magic import Magics, line_cell_magic, magics_class
except ImportError:
# ipython_version < '0.13'
Magics = object
line_cell_magic = lambda func: func
magics_class = lambda cls: cls
PY2 = sys.version_info[0] == 2
_TWO_20 = float(2 ** 20)
if PY2:
import __builtin__ as builtins
else:
import builtins
def unicode(x): return str(x)
# .. get available packages ..
try:
import psutil
has_psutil = True
except ImportError:
has_psutil = False
def _get_memory(pid, timestamps=False, include_children=False):
# .. only for current process and only on unix..
if pid == -1:
pid = os.getpid()
# .. cross-platform but but requires psutil ..
if has_psutil:
process = psutil.Process(pid)
try:
# avoid useing get_memory_info since it does not exists
# in psutil > 2.0 and accessing it will cause exception.
meminfo_attr = 'memory_info' if hasattr(process, 'memory_info') else 'get_memory_info'
mem = getattr(process, meminfo_attr)()[0] / _TWO_20
if include_children:
try:
for p in process.get_children(recursive=True):
mem += getattr(p, meminfo_attr)()[0] / _TWO_20
except AttributeError:
# fix for newer psutil
for p in process.children(recursive=True):
mem += getattr(p, meminfo_attr)()[0] / _TWO_20
if timestamps:
return (mem, time.time())
else:
return mem
except psutil.AccessDenied:
pass
# continue and try to get this from ps
# .. scary stuff ..
if os.name == 'posix':
if include_children:
raise NotImplementedError('The psutil module is required when to'
' monitor memory usage of children'
' processes')
warnings.warn("psutil module not found. memory_profiler will be slow")
# ..
# .. memory usage in MiB ..
# .. this should work on both Mac and Linux ..
# .. subprocess.check_output appeared in 2.7, using Popen ..
# .. for backwards compatibility ..
out = subprocess.Popen(['ps', 'v', '-p', str(pid)],
stdout=subprocess.PIPE
).communicate()[0].split(b'\n')
try:
vsz_index = out[0].split().index(b'RSS')
mem = float(out[1].split()[vsz_index]) / 1024
if timestamps:
return(mem, time.time())
else:
return mem
except:
if timestamps:
return (-1, time.time())
else:
return -1
else:
raise NotImplementedError('The psutil module is required for non-unix '
'platforms')
class MemTimer(Process):
"""
Fetch memory consumption from over a time interval
"""
def __init__(self, monitor_pid, interval, pipe, max_usage=False,
*args, **kw):
self.monitor_pid = monitor_pid
self.interval = interval
self.pipe = pipe
self.cont = True
self.max_usage = max_usage
self.n_measurements = 1
self.timestamps = kw.pop("timestamps", False)
self.include_children = kw.pop("include_children", False)
# get baseline memory usage
self.mem_usage = [
_get_memory(self.monitor_pid, timestamps=self.timestamps,
include_children=self.include_children)]
super(MemTimer, self).__init__(*args, **kw)
def run(self):
self.pipe.send(0) # we're ready
stop = False
while True:
cur_mem = _get_memory(self.monitor_pid, timestamps=self.timestamps,
include_children=self.include_children)
if not self.max_usage:
self.mem_usage.append(cur_mem)
else:
self.mem_usage[0] = max(cur_mem, self.mem_usage[0])
self.n_measurements += 1
if stop:
break
stop = self.pipe.poll(self.interval)
# do one more iteration
self.pipe.send(self.mem_usage)
self.pipe.send(self.n_measurements)
def memory_usage(proc=-1, interval=.1, timeout=None, timestamps=False,
include_children=False, max_usage=False, retval=False,
stream=None):
"""
Return the memory usage of a process or piece of code
Parameters
----------
proc : {int, string, tuple, subprocess.Popen}, optional
The process to monitor. Can be given by an integer/string
representing a PID, by a Popen object or by a tuple
representing a Python function. The tuple contains three
values (f, args, kw) and specifies to run the function
f(*args, **kw).
Set to -1 (default) for current process.
interval : float, optional
Interval at which measurements are collected.
timeout : float, optional
Maximum amount of time (in seconds) to wait before returning.
max_usage : bool, optional
Only return the maximum memory usage (default False)
retval : bool, optional
For profiling python functions. Save the return value of the profiled
function. Return value of memory_usage becomes a tuple:
(mem_usage, retval)
timestamps : bool, optional
if True, timestamps of memory usage measurement are collected as well.
stream : File
if stream is a File opened with write access, then results are written
to this file instead of stored in memory and returned at the end of
the subprocess. Useful for long-running processes.
Implies timestamps=True.
Returns
-------
mem_usage : list of floating-poing values
memory usage, in MiB. It's length is always < timeout / interval
if max_usage is given, returns the two elements maximum memory and
number of measurements effectuated
ret : return value of the profiled function
Only returned if retval is set to True
"""
if stream is not None:
timestamps = True
if not max_usage:
ret = []
else:
ret = -1
if timeout is not None:
max_iter = int(timeout / interval)
elif isinstance(proc, int):
# external process and no timeout
max_iter = 1
else:
# for a Python function wait until it finishes
max_iter = float('inf')
if callable(proc):
proc = (proc, (), {})
if isinstance(proc, (list, tuple)):
if len(proc) == 1:
f, args, kw = (proc[0], (), {})
elif len(proc) == 2:
f, args, kw = (proc[0], proc[1], {})
elif len(proc) == 3:
f, args, kw = (proc[0], proc[1], proc[2])
else:
raise ValueError
while True:
child_conn, parent_conn = Pipe() # this will store MemTimer's results
p = MemTimer(os.getpid(), interval, child_conn, timestamps=timestamps,
max_usage=max_usage, include_children=include_children)
p.start()
parent_conn.recv() # wait until we start getting memory
returned = f(*args, **kw)
parent_conn.send(0) # finish timing
ret = parent_conn.recv()
n_measurements = parent_conn.recv()
if retval:
ret = ret, returned
p.join(5 * interval)
if n_measurements > 4 or interval < 1e-6:
break
interval /= 10.
elif isinstance(proc, subprocess.Popen):
# external process, launched from Python
line_count = 0
while True:
if not max_usage:
mem_usage = _get_memory(proc.pid, timestamps=timestamps,
include_children=include_children)
if stream is not None:
stream.write("MEM {0:.6f} {1:.4f}\n".format(*mem_usage))
else:
ret.append(mem_usage)
else:
ret = max(ret,
_get_memory(proc.pid,
include_children=include_children))
time.sleep(interval)
line_count += 1
# flush every 50 lines. Make 'tail -f' usable on profile file
if line_count > 50:
line_count = 0
if stream is not None:
stream.flush()
if timeout is not None:
max_iter -= 1
if max_iter == 0:
break
if proc.poll() is not None:
break
else:
# external process
if max_iter == -1:
max_iter = 1
counter = 0
while counter < max_iter:
counter += 1
if not max_usage:
mem_usage = _get_memory(proc, timestamps=timestamps,
include_children=include_children)
if stream is not None:
stream.write("MEM {0:.6f} {1:.4f}\n".format(*mem_usage))
else:
ret.append(mem_usage)
else:
ret = max([ret,
_get_memory(proc, include_children=include_children)
])
time.sleep(interval)
# Flush every 50 lines.
if counter % 50 == 0 and stream is not None:
stream.flush()
if stream:
return None
return ret
# ..
# .. utility functions for line-by-line ..
def _find_script(script_name):
""" Find the script.
If the input is not a file, then $PATH will be searched.
"""
if os.path.isfile(script_name):
return script_name
path = os.getenv('PATH', os.defpath).split(os.pathsep)
for folder in path:
if not folder:
continue
fn = os.path.join(folder, script_name)
if os.path.isfile(fn):
return fn
sys.stderr.write('Could not find script {0}\n'.format(script_name))
raise SystemExit(1)
class _TimeStamperCM(object):
"""Time-stamping context manager."""
def __init__(self, timestamps):
self._timestamps = timestamps
def __enter__(self):
self._timestamps.append(_get_memory(os.getpid(), timestamps=True))
def __exit__(self, *args):
self._timestamps.append(_get_memory(os.getpid(), timestamps=True))
class TimeStamper:
""" A profiler that just records start and end execution times for
any decorated function.
"""
def __init__(self):
self.functions = {}
def __call__(self, func=None, precision=None):
if func is not None:
if not callable(func):
raise ValueError("Value must be callable")
self.add_function(func)
f = self.wrap_function(func)
f.__module__ = func.__module__
f.__name__ = func.__name__
f.__doc__ = func.__doc__
f.__dict__.update(getattr(func, '__dict__', {}))
return f
else:
def inner_partial(f):
return self.__call__(f, precision=precision)
return inner_partial
def timestamp(self, name="<block>"):
"""Returns a context manager for timestamping a block of code."""
# Make a fake function
func = lambda x: x
func.__module__ = ""
func.__name__ = name
self.add_function(func)
timestamps = []
self.functions[func].append(timestamps)
# A new object is required each time, since there can be several
# nested context managers.
return _TimeStamperCM(timestamps)
def add_function(self, func):
if func not in self.functions:
self.functions[func] = []
def wrap_function(self, func):
""" Wrap a function to timestamp it.
"""
def f(*args, **kwds):
# Start time
timestamps = [_get_memory(os.getpid(), timestamps=True)]
self.functions[func].append(timestamps)
try:
return func(*args, **kwds)
finally:
# end time
timestamps.append(_get_memory(os.getpid(), timestamps=True))
return f
def show_results(self, stream=None):
if stream is None:
stream = sys.stdout
for func, timestamps in self.functions.items():
function_name = "%s.%s" % (func.__module__, func.__name__)
for ts in timestamps:
stream.write("FUNC %s %.4f %.4f %.4f %.4f\n" % (
(function_name,) + ts[0] + ts[1]))
class CodeMap(dict):
def __init__(self, include_children):
self.include_children = include_children
self._toplevel = []
def add(self, code, toplevel_code=None):
if code in self:
return
if toplevel_code is None:
filename = code.co_filename
if filename.endswith((".pyc", ".pyo")):
filename = filename[:-1]
if not os.path.exists(filename):
print('ERROR: Could not find file ' + filename)
if filename.startswith(("ipython-input", "<ipython-input")):
print("NOTE: %mprun can only be used on functions defined in "
"physical files, and not in the IPython environment.")
return
toplevel_code = code
(sub_lines, start_line) = inspect.getsourcelines(code)
linenos = range(start_line,
start_line + len(sub_lines))
self._toplevel.append((filename, code, linenos))
self[code] = {}
else:
self[code] = self[toplevel_code]
for subcode in filter(inspect.iscode, code.co_consts):
self.add(subcode, toplevel_code=toplevel_code)
def trace(self, code, lineno):
memory = _get_memory(-1, include_children=self.include_children)
# if there is already a measurement for that line get the max
previous_memory = self[code].get(lineno, 0)
self[code][lineno] = max(memory, previous_memory)
def items(self):
"""Iterate on the toplevel code blocks."""
for (filename, code, linenos) in self._toplevel:
measures = self[code]
if not measures:
continue # skip if no measurement
line_iterator = ((line, measures.get(line)) for line in linenos)
yield (filename, line_iterator)
class LineProfiler(object):
""" A profiler that records the amount of memory for each line """
def __init__(self, **kw):
include_children = kw.get('include_children', False)
self.code_map = CodeMap(include_children=include_children)
self.enable_count = 0
self.max_mem = kw.get('max_mem', None)
self.prevlines = []
def __call__(self, func=None, precision=1):
if func is not None:
self.add_function(func)
f = self.wrap_function(func)
f.__module__ = func.__module__
f.__name__ = func.__name__
f.__doc__ = func.__doc__
f.__dict__.update(getattr(func, '__dict__', {}))
return f
else:
def inner_partial(f):
return self.__call__(f, precision=precision)
return inner_partial
def add_function(self, func):
""" Record line profiling information for the given Python function.
"""
try:
# func_code does not exist in Python3
code = func.__code__
except AttributeError:
warnings.warn("Could not extract a code object for the object %r"
% func)
else:
self.code_map.add(code)
def wrap_function(self, func):
""" Wrap a function to profile it.
"""
def f(*args, **kwds):
self.enable_by_count()
try:
return func(*args, **kwds)
finally:
self.disable_by_count()
return f
def run(self, cmd):
""" Profile a single executable statement in the main namespace.
"""
# TODO: can this be removed ?
import __main__
main_dict = __main__.__dict__
return self.runctx(cmd, main_dict, main_dict)
def runctx(self, cmd, globals, locals):
""" Profile a single executable statement in the given namespaces.
"""
self.enable_by_count()
try:
exec(cmd, globals, locals)
finally:
self.disable_by_count()
return self
def enable_by_count(self):
""" Enable the profiler if it hasn't been enabled before.
"""
if self.enable_count == 0:
self.enable()
self.enable_count += 1
def disable_by_count(self):
""" Disable the profiler if the number of disable requests matches the
number of enable requests.
"""
if self.enable_count > 0:
self.enable_count -= 1
if self.enable_count == 0:
self.disable()
def trace_memory_usage(self, frame, event, arg):
"""Callback for sys.settrace"""
if frame.f_code in self.code_map:
if event == 'call':
# "call" event just saves the lineno but not the memory
self.prevlines.append(frame.f_lineno)
elif event == 'line':
self.code_map.trace(frame.f_code, self.prevlines[-1])
self.prevlines[-1] = frame.f_lineno
elif event == 'return':
self.code_map.trace(frame.f_code, self.prevlines.pop())
if self._original_trace_function is not None:
(self._original_trace_function)(frame, event, arg)
return self.trace_memory_usage
def trace_max_mem(self, frame, event, arg):
# run into PDB as soon as memory is higher than MAX_MEM
if event in ('line', 'return') and frame.f_code in self.code_map:
c = _get_memory(-1)
if c >= self.max_mem:
t = ('Current memory {0:.2f} MiB exceeded the '
'maximum of {1:.2f} MiB\n'.format(c, self.max_mem))
sys.stdout.write(t)
sys.stdout.write('Stepping into the debugger \n')
frame.f_lineno -= 2
p = pdb.Pdb()
p.quitting = False
p.stopframe = frame
p.returnframe = None
p.stoplineno = frame.f_lineno - 3
p.botframe = None
return p.trace_dispatch
if self._original_trace_function is not None:
(self._original_trace_function)(frame, event, arg)
return self.trace_max_mem
def __enter__(self):
self.enable_by_count()
def __exit__(self, exc_type, exc_val, exc_tb):
self.disable_by_count()
def enable(self):
self._original_trace_function = sys.gettrace()
if self.max_mem is not None:
sys.settrace(self.trace_max_mem)
else:
sys.settrace(self.trace_memory_usage)
def disable(self):
sys.settrace(self._original_trace_function)
def show_results(prof, stream=None, precision=1):
if stream is None:
stream = sys.stdout
template = '{0:>6} {1:>12} {2:>12} {3:<}'
for (filename, lines) in prof.code_map.items():
header = template.format('Line #', 'Mem usage', 'Increment',
'Line Contents')
stream.write(u'Filename: ' + filename + '\n\n')
stream.write(header + u'\n')
stream.write(u'=' * len(header) + '\n')
all_lines = linecache.getlines(filename)
mem_old = None
float_format = u'{0}.{1}f'.format(precision + 4, precision)
template_mem = u'{0:' + float_format + '} MiB'
for (lineno, mem) in lines:
if mem:
inc = (mem - mem_old) if mem_old else 0
mem_old = mem
mem = template_mem.format(mem)
inc = template_mem.format(inc)
else:
mem = u''
inc = u''
tmp = template.format(lineno, mem, inc, all_lines[lineno - 1])
stream.write(unicode(tmp))
stream.write(u'\n\n')
def _func_exec(stmt, ns):
# helper for magic_memit, just a function proxy for the exec
# statement
exec(stmt, ns)
@magics_class
class MemoryProfilerMagics(Magics):
# A lprun-style %mprun magic for IPython.
@line_cell_magic
def mprun(self, parameter_s='', cell=None):
""" Execute a statement under the line-by-line memory profiler from the
memory_profiler module.
Usage, in line mode:
%mprun -f func1 -f func2 <statement>
Usage, in cell mode:
%%mprun -f func1 -f func2 [statement]
code...
code...
In cell mode, the additional code lines are appended to the (possibly
empty) statement in the first line. Cell mode allows you to easily
profile multiline blocks without having to put them in a separate
function.
The given statement (which doesn't require quote marks) is run via the
LineProfiler. Profiling is enabled for the functions specified by the -f
options. The statistics will be shown side-by-side with the code through
the pager once the statement has completed.
Options:
-f <function>: LineProfiler only profiles functions and methods it is told
to profile. This option tells the profiler about these functions. Multiple
-f options may be used. The argument may be any expression that gives
a Python function or method object. However, one must be careful to avoid
spaces that may confuse the option parser. Additionally, functions defined
in the interpreter at the In[] prompt or via %run currently cannot be
displayed. Write these functions out to a separate file and import them.
One or more -f options are required to get any useful results.
-T <filename>: dump the text-formatted statistics with the code
side-by-side out to a text file.
-r: return the LineProfiler object after it has completed profiling.
-c: If present, add the memory usage of any children process to the report.
"""
from io import StringIO
from memory_profiler import show_results, LineProfiler
# Local imports to avoid hard dependency.
from distutils.version import LooseVersion
import IPython
ipython_version = LooseVersion(IPython.__version__)
if ipython_version < '0.11':
from IPython.genutils import page
from IPython.ipstruct import Struct
from IPython.ipapi import UsageError
else:
from IPython.core.page import page
from IPython.utils.ipstruct import Struct
from IPython.core.error import UsageError
# Escape quote markers.
opts_def = Struct(T=[''], f=[])
parameter_s = parameter_s.replace('"', r'\"').replace("'", r"\'")
opts, arg_str = self.parse_options(parameter_s, 'rf:T:c', list_all=True)
opts.merge(opts_def)
global_ns = self.shell.user_global_ns
local_ns = self.shell.user_ns
if cell is not None:
arg_str += '\n' + cell
# Get the requested functions.
funcs = []
for name in opts.f:
try:
funcs.append(eval(name, global_ns, local_ns))
except Exception as e:
raise UsageError('Could not find function %r.\n%s: %s' % (name,
e.__class__.__name__, e))
include_children = 'c' in opts
profile = LineProfiler(include_children=include_children)
for func in funcs:
profile(func)
# Add the profiler to the builtins for @profile.
if 'profile' in builtins.__dict__:
had_profile = True
old_profile = builtins.__dict__['profile']
else:
had_profile = False
old_profile = None
builtins.__dict__['profile'] = profile
try:
profile.runctx(arg_str, global_ns, local_ns)
message = ''
except SystemExit:
message = "*** SystemExit exception caught in code being profiled."
except KeyboardInterrupt:
message = ("*** KeyboardInterrupt exception caught in code being "
"profiled.")
finally:
if had_profile:
builtins.__dict__['profile'] = old_profile
# Trap text output.
stdout_trap = StringIO()
show_results(profile, stdout_trap)
output = stdout_trap.getvalue()
output = output.rstrip()
if ipython_version < '0.11':
page(output, screen_lines=self.shell.rc.screen_length)
else:
page(output)
print(message,)
text_file = opts.T[0]
if text_file:
with open(text_file, 'w') as pfile:
pfile.write(output)
print('\n*** Profile printout saved to text file %s. %s' % (text_file,
message))
return_value = None
if 'r' in opts:
return_value = profile
return return_value
# a timeit-style %memit magic for IPython
@line_cell_magic
def memit(self, line='', cell=None):
"""Measure memory usage of a Python statement
Usage, in line mode:
%memit [-r<R>t<T>i<I>] statement
Usage, in cell mode:
%%memit [-r<R>t<T>i<I>] setup_code
code...
code...
This function can be used both as a line and cell magic:
- In line mode you can measure a single-line statement (though multiple
ones can be chained with using semicolons).
- In cell mode, the statement in the first line is used as setup code
(executed but not measured) and the body of the cell is measured.
The cell body has access to any variables created in the setup code.
Options:
-r<R>: repeat the loop iteration <R> times and take the best result.
Default: 1
-t<T>: timeout after <T> seconds. Default: None
-i<I>: Get time information at an interval of I times per second.
Defaults to 0.1 so that there is ten measurements per second.
-c: If present, add the memory usage of any children process to the report.
Examples
--------
::
In [1]: %memit range(10000)
peak memory: 21.42 MiB, increment: 0.41 MiB
In [2]: %memit range(1000000)
peak memory: 52.10 MiB, increment: 31.08 MiB
In [3]: %%memit l=range(1000000)
...: len(l)
...:
peak memory: 52.14 MiB, increment: 0.08 MiB
"""
from memory_profiler import memory_usage, _func_exec
opts, stmt = self.parse_options(line, 'r:t:i:c', posix=False, strict=False)
if cell is None:
setup = 'pass'
else:
setup = stmt
stmt = cell
repeat = int(getattr(opts, 'r', 1))
if repeat < 1:
repeat == 1
timeout = int(getattr(opts, 't', 0))
if timeout <= 0:
timeout = None
interval = float(getattr(opts, 'i', 0.1))
include_children = 'c' in opts
# I've noticed we get less noisier measurements if we run
# a garbage collection first
import gc
gc.collect()
_func_exec(setup, self.shell.user_ns)
mem_usage = 0
counter = 0
baseline = memory_usage()[0]
while counter < repeat:
counter += 1
tmp = memory_usage((_func_exec, (stmt, self.shell.user_ns)),
timeout=timeout, interval=interval, max_usage=True,
include_children=include_children)
mem_usage = max(mem_usage, tmp[0])
if mem_usage:
print('peak memory: %.02f MiB, increment: %.02f MiB' %
(mem_usage, mem_usage - baseline))
else:
print('ERROR: could not read memory usage, try with a lower interval '
'or more iterations')
@classmethod
def register_magics(cls, ip):
from distutils.version import LooseVersion
import IPython
ipython_version = LooseVersion(IPython.__version__)
if ipython_version < '0.13':
try:
_register_magic = ip.define_magic
except AttributeError: # ipython 0.10
_register_magic = ip.expose_magic
_register_magic('mprun', cls.mprun.__func__)
_register_magic('memit', cls.memit.__func__)
else:
ip.register_magics(cls)
# commenting out due to failures with some versions of IPython
# see https://github.com/fabianp/memory_profiler/issues/106
# # Ensuring old interface of magics expose for IPython 0.10
# magic_mprun = MemoryProfilerMagics().mprun.__func__
# magic_memit = MemoryProfilerMagics().memit.__func__
def load_ipython_extension(ip):
"""This is called to load the module as an IPython extension."""
MemoryProfilerMagics.register_magics(ip)
def profile(func=None, stream=None, precision=1):
"""
Decorator that will run the function and print a line-by-line profile
"""
if func is not None:
def wrapper(*args, **kwargs):
prof = LineProfiler()
val = prof(func)(*args, **kwargs)
show_results(prof, stream=stream, precision=precision)
return val
return wrapper
else:
def inner_wrapper(f):
return profile(f, stream=stream, precision=precision)
return inner_wrapper
# Insert in the built-ins to have profile
# globally defined (global variables is not enough
# for all cases, e.g. a script that imports another
# script where @profile is used)
if PY2:
def exec_with_profiler(filename, profiler):
builtins.__dict__['profile'] = profiler
ns = dict(_CLEAN_GLOBALS, profile=profiler)
execfile(filename, ns, ns)
else:
def exec_with_profiler(filename, profiler):
builtins.__dict__['profile'] = profiler
# shadow the profile decorator defined above
ns = dict(_CLEAN_GLOBALS, profile=profiler)
with open(filename) as f:
exec(compile(f.read(), filename, 'exec'), ns, ns)
class LogFile(object):
"""File-like object to log text using the `logging` module and the log report can be customised."""
def __init__(self, name=None, reportIncrementFlag=False):
"""
:param name: name of the logger module
reportIncrementFlag: This must be set to True if only the steps with memory increments are to be reported
:type self: object
name: string
reportIncrementFlag: bool
"""
self.logger = logging.getLogger(name)
self.reportIncrementFlag = reportIncrementFlag
def write(self, msg, level=logging.INFO):
if self.reportIncrementFlag:
if "MiB" in msg and float(msg.split("MiB")[1].strip()) > 0:
self.logger.log(level, msg)
elif msg.__contains__("Filename:") or msg.__contains__("Line Contents"):
self.logger.log(level, msg)
else:
self.logger.log(level, msg)
def flush(self):
for handler in self.logger.handlers:
handler.flush()
if __name__ == '__main__':
from optparse import OptionParser
parser = OptionParser(usage=_CMD_USAGE, version=__version__)
parser.disable_interspersed_args()
parser.add_option(
"--pdb-mmem", dest="max_mem", metavar="MAXMEM",
type="float", action="store",
help="step into the debugger when memory exceeds MAXMEM")
parser.add_option(
'--precision', dest="precision", type="int",
action="store", default=3,
help="precision of memory output in number of significant digits")
parser.add_option("-o", dest="out_filename", type="str",
action="store", default=None,
help="path to a file where results will be written")
parser.add_option("--timestamp", dest="timestamp", default=False,
action="store_true",
help="""print timestamp instead of memory measurement for
decorated functions""")
if not sys.argv[1:]:
parser.print_help()
sys.exit(2)
(options, args) = parser.parse_args()
sys.argv[:] = args # Remove every memory_profiler arguments
if options.timestamp:
prof = TimeStamper()
else:
prof = LineProfiler(max_mem=options.max_mem)
script_filename = _find_script(args[0])
try:
exec_with_profiler(script_filename, prof)
finally:
if options.out_filename is not None:
out_file = open(options.out_filename, "a")
else:
out_file = sys.stdout
if options.timestamp:
prof.show_results(stream=out_file)
else:
show_results(prof, precision=options.precision, stream=out_file)