-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprelude.scm
3356 lines (2739 loc) · 87.6 KB
/
prelude.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
; Libraries
(define-library (stak base)
(export
syntax-rules
define-syntax
_
...
define
lambda
let-syntax
letrec-syntax
begin
quasiquote
unquote
unquote-splicing
quote
set!
cond-expand
let
let*
letrec
letrec*
define-values
let-values
let*-values
if
cond
case
else
=>
and
or
boolean-or
when
unless
do
base
library
r7rs
scheme
stak
pair-type
procedure-type
primitive
rib
cons
close
rib?
rib-car
rib-cdr
rib-tag
rib-set-car!
rib-set-cdr!
eq?
apply
data-rib
eqv?
equal?
procedure?
boolean?
not
integer?
rational?
real?
complex?
number?
exact?
inexact?
zero?
positive?
negative?
even?
odd?
+
-
*
/
remainder
quotient
truncate-remainder
truncate-quotient
modulo
floor-remainder
truncate
floor
ceiling
round
exact
inexact
abs
exp
expt
log
=
<
>
<=
>=
min
max
char?
integer->char
char->integer
char=?
char<?
char<=?
char>?
char>=?
null?
pair?
list?
car
cdr
set-car!
set-cdr!
caar
cadr
cdar
cddr
list
make-list
length
map
for-each
filter
list-ref
list-set!
list-head
list-tail
member
memq
memv
assoc
assq
assv
append
reverse
fold-left
fold-right
reduce-right
member-position
memv-position
list-copy
bytevector?
bytevector-length
bytevector-u8-ref
list->bytevector
bytevector->list
vector?
vector
make-vector
vector-length
vector-ref
vector-set!
list->vector
vector->list
string?
list->string
string->code-points
code-points->string
string->list
string-append
string-length
string-ref
number->string
string->number
string-copy
substring
string=?
string<?
string>?
symbol?
symbol->string
string->uninterned-symbol
define-record-type
record?
values
call-with-values)
(begin
; Syntax
;
; Those syntax definitions are mostly ported from https://small.r7rs.org/attachment/r7rs.pdf.
;; Base
($$define-syntax syntax-rules
($$syntax-rules $$... ()
((_ (literal $$...) (pattern body) $$...)
($$syntax-rules ... (literal $$...) (pattern body) $$...))))
($$define-syntax define-syntax
(syntax-rules ()
((_ name value)
($$define-syntax name value))))
(define-syntax define-optimizer
(syntax-rules ()
((_ name value)
($$define-optimizer name value))))
(define-syntax define
(syntax-rules ()
((_ (name argument ... . rest) body1 body2 ...)
(define name (lambda (argument ... . rest) body1 body2 ...)))
((_ name value)
($$define name value))))
(define-syntax lambda
(syntax-rules (define define-values define-syntax)
; Optimize a case where there is only a body of a expression.
((_ arguments body)
($$lambda arguments body))
((_ arguments (define content ...) body1 body2 ...)
(lambda "value" arguments () (define content ...) body1 body2 ...))
((_ "value" arguments ((name value) ...)
(define (new-name argument ... . rest) body1 body2 ...)
body3
body4
...)
(lambda "value" arguments ((name value) ... (new-name (lambda (argument ... . rest) body1 body2 ...)))
body3
body4
...))
((_ "value" arguments ((name value) ...) (define new-name new-value) body1 body2 ...)
(lambda "value" arguments ((name value) ... (new-name new-value)) body1 body2 ...))
((_ "value" arguments ((name value) ...) body1 body2 ...)
(lambda arguments (letrec* ((name value) ...) body1 body2 ...)))
((_ arguments (define-values names value) body1 body2 ...)
(lambda arguments (let-values ((names value)) body1 body2 ...)))
((_ arguments (define-syntax name value) body1 body2 ...)
(lambda "syntax" arguments ((name value)) body1 body2 ...))
((_ "syntax" arguments ((name value) ...) (define-syntax new-name new-value) body1 body2 ...)
(lambda "syntax" arguments ((name value) ... (new-name new-value)) body1 body2 ...))
((_ "syntax" arguments ((name value) ...) body1 body2 ...)
(lambda arguments (letrec-syntax ((name value) ...) body1 body2 ...)))
((_ arguments body1 body2 ...)
($$lambda arguments (begin body1 body2 ...)))))
(define-syntax let-syntax
(syntax-rules ()
((_ ((name value) ...) body1 body2 ...)
($$let-syntax ((name value) ...) (let () body1 body2 ...)))))
(define-syntax letrec-syntax
(syntax-rules ()
((_ ((name value) ...) body1 body2 ...)
($$letrec-syntax ((name value) ...) (let () body1 body2 ...)))))
(define-syntax begin
(syntax-rules ()
((_ value)
value)
((_ value1 value2 ...)
($$begin value1 value2 ...))))
(define-syntax relaxed-begin
(syntax-rules ()
((_)
#f)
((_ body ...)
(begin body ...))))
(define-syntax quasiquote
(syntax-rules (unquote unquote-splicing)
((_ (unquote value))
value)
((_ ((unquote-splicing value1) value2 ...))
(append value1 (quasiquote (value2 ...))))
((_ (value1 value2 ...))
(cons
(quasiquote value1)
(quasiquote (value2 ...))))
((_ value)
(quote value))))
(define-syntax quote
(syntax-rules ()
((_ value)
($$quote value))))
(define-syntax set!
(syntax-rules ()
((_ name value)
($$set! name value))))
(define-syntax cond-expand
(syntax-rules (and or not else r7rs library scheme base stak)
((_ (else body ...))
(relaxed-begin body ...))
((_ ((and) body ...) clause ...)
(relaxed-begin body ...))
((_ ((and requirement1 requirement2 ...) body ...) clause ...)
(cond-expand
(requirement1
(cond-expand
((and requirement2 ...) body ...)
clause
...))
clause
...))
((_ ((or) body ...) clause ...)
(cond-expand clause ...))
((_ ((or requirement1 requirement2 ...) body ...) clause ...)
(cond-expand
(requirement1 body ...)
((or requirement2 ...) body ...)
clause
...))
((_ ((not requirement) body ...) clause ...)
(cond-expand
(requirement
(cond-expand
clause
...))
(else body ...)))
((_ ((library (scheme base)) body ...) clause ...)
(relaxed-begin body ...))
((_ ((library (name ...)) body ...) clause ...)
(cond-expand clause ...))
((_ (r7rs body ...) clause ...)
(relaxed-begin body ...))
((_ (stak body ...) clause ...)
(relaxed-begin body ...))
((_ (feature body ...) clause ...)
(cond-expand clause ...))))
;; Binding
(define-syntax let
(syntax-rules (define define-syntax)
((_ () (define content ...) body1 body2 ...)
((lambda () (define content ...) body1 body2 ...)))
((_ () (define-values content ...) body1 body2 ...)
((lambda () (define-values content ...) body1 body2 ...)))
((_ () (define-syntax content ...) body1 body2 ...)
((lambda () (define-syntax content ...) body1 body2 ...)))
; Optimize a case where no definition is in a body.
((_ () body1 body2 ...)
(begin body1 body2 ...))
((_ ((name value) ...) body1 body2 ...)
((lambda (name ...) body1 body2 ...) value ...))
((_ tag ((name value) ...) body1 body2 ...)
(letrec ((tag (lambda (name ...) body1 body2 ...)))
(tag value ...)))))
(define-syntax let*
(syntax-rules ()
((_ () body1 body2 ...)
(let () body1 body2 ...))
((_ ((name1 value1) (name2 value2) ...)
body1
body2
...)
(let ((name1 value1))
(let* ((name2 value2) ...)
body1
body2
...)))))
(define-syntax letrec
(syntax-rules ()
((_ ((name value) ...) body1 body2 ...)
(letrec* ((name value) ...) body1 body2 ...))))
(define-syntax letrec*
(syntax-rules ()
((_ ((name value) ...) body1 body2 ...)
(let ((name #f) ...)
(set! name value)
...
body1
body2
...))))
;; Conditional
(define-syntax if
(syntax-rules ()
((_ test clause1 clause2)
($$if test clause1 clause2))
((_ test clause)
(if test clause #f))))
(define-syntax cond
(syntax-rules (else =>)
((_ (else result1 result2 ...))
(begin result1 result2 ...))
((_ (test => result) clause ...)
(let ((temp test))
(if temp
(result temp)
(cond clause ...))))
((_ (test) clause ...)
(or
test
(cond clause ...)))
((_ (test result1 result2 ...) clause ...)
(if test
(begin result1 result2 ...)
(cond clause ...)))
((_)
#f)))
(define-syntax case
(syntax-rules (else =>)
((_ (key ...) clause ...)
(let ((value (key ...)))
(case value clause ...)))
((_ key (else => result))
(result key))
((_ key (else result1 result2 ...))
(begin result1 result2 ...))
((_ key ((atom ...) => result) clause ...)
(if (case-match key (atom ...))
(result key)
(case key clause ...)))
((_ key ((atom ...) result1 result2 ...) clause ...)
(if (case-match key (atom ...))
(begin result1 result2 ...)
(case key clause ...)))
((_ key)
#f)))
(define-syntax case-match
(syntax-rules ()
((_ key (atom))
(eqv? key 'atom))
((_ key (atom ...))
(memv key '(atom ...)))))
(define-syntax and
(syntax-rules ()
((_)
#t)
((_ test)
test)
((_ test1 test2 ...)
(if test1 (and test2 ...) #f))))
(define-syntax or
(syntax-rules ()
((_)
#f)
((_ test)
test)
((_ test1 test2 ...)
(let ((x test1))
(if x x (or test2 ...))))))
(define-syntax boolean-or
(syntax-rules ()
((_)
#f)
((_ test)
test)
((_ test1 test2 ...)
(if test1 #t (boolean-or test2 ...)))))
(define-syntax when
(syntax-rules ()
((_ test result1 result2 ...)
(if test
(begin result1 result2 ...)))))
(define-syntax unless
(syntax-rules ()
((_ test result1 result2 ...)
(when (not test) result1 result2 ...))))
(define-syntax do
(syntax-rules ()
((_ ((name initial step ...) ...)
(test expression ...)
command
...)
(let loop ((name initial) ...)
(if test
(begin #f expression ...)
(begin
command
...
(loop (do "step" name step ...) ...)))))
((_ "step" x)
x)
((_ "step" x y)
y)))
; Type IDs
(define pair-type 0)
(define null-type 1)
(define boolean-type 2)
(define procedure-type 3)
(define symbol-type 4)
(define string-type 5)
(define char-type 6)
(define vector-type 7)
(define bytevector-type 8)
(define record-type 9)
; Primitives
(define (primitive id)
($$rib id '() procedure-type))
(define rib $$rib)
(define close (primitive 1))
(define rib? (primitive 2))
(define rib-car (primitive 3))
(define rib-cdr (primitive 4))
(define rib-tag (primitive 5))
(define rib-set-car! (primitive 6))
(define rib-set-cdr! (primitive 7))
(define eq? (primitive 8))
(define $< (primitive 9))
(define $+ (primitive 10))
(define $- (primitive 11))
(define $* (primitive 12))
(define $/ (primitive 13))
(define remainder (primitive 14))
(define exp (primitive 15))
(define $log (primitive 16))
(define null? (primitive 50))
(define pair? (primitive 51))
(define assq (primitive 60))
(define cons (primitive 61))
(define memq (primitive 62))
(define (data-rib type car cdr)
(rib car cdr type))
(define (apply f x . xs)
($$apply
f
(let loop ((x x) (xs xs))
(if (null? xs)
x
(cons x (loop (car xs) (cdr xs)))))))
; Basic types
(define (instance? type)
(lambda (x)
(and
(rib? x)
(eq? (rib-tag x) type))))
(define (eqv? x y)
(boolean-or
(eq? x y)
(and
(char? x)
(char? y)
(eq? (char->integer x) (char->integer y)))))
(define (equal? x y)
(boolean-or
(eq? x y)
(and
(rib? x)
(rib? y)
(eq? (rib-tag x) (rib-tag y))
; Avoid checking values in global variables.
(not (eq? (rib-tag x) symbol-type))
; Optimize for the cases of strings and vectors where `car`s are integers.
(boolean-or
(rib? (rib-car x))
(eq? (rib-car x) (rib-car y)))
(equal? (rib-car x) (rib-car y))
(equal? (rib-cdr x) (rib-cdr y)))))
;; Procedure
(define procedure? (instance? procedure-type))
;; Boolean
(define boolean? (instance? boolean-type))
(define (not x)
(eq? x #f))
(define-optimizer not
(syntax-rules ()
((_ x)
(eq? x #f))))
;; Number
(define (number? x)
(not (rib? x)))
(define complex? number?)
(define real? complex?)
(define rational? real?)
(define (integer? x)
(and
(number? x)
(zero? (remainder x 1))))
(define exact? integer?)
(define (inexact? x)
(not (exact? x)))
(define (zero? x) (eq? x 0))
(define (positive? x) (> x 0))
(define (negative? x) (< x 0))
(define (even? x) (zero? (modulo x 2)))
(define (odd? x) (not (even? x)))
(define-optimizer zero?
(syntax-rules ()
((_ x)
(eq? x 0))))
(define (arithmetic-operator f y)
(lambda xs (fold-left f y xs)))
(define (inverse-arithmetic-operator f y)
(lambda (x . xs)
(if (null? xs)
(f y x)
(fold-left f x xs))))
(define + (arithmetic-operator $+ 0))
(define - (inverse-arithmetic-operator $- 0))
(define * (arithmetic-operator $* 1))
(define / (inverse-arithmetic-operator $/ 1))
(define-optimizer +
(syntax-rules ()
((_ x y)
($+ x y))))
(define-optimizer -
(syntax-rules ()
((_ x y)
($- x y))))
(define-optimizer *
(syntax-rules ()
((_ x y)
($* x y))))
(define-optimizer /
(syntax-rules ()
((_ x y)
($/ x y))))
(define (quotient x y)
(/ (- x (remainder x y)) y))
(define truncate-remainder remainder)
(define truncate-quotient quotient)
(define (modulo x y)
(let ((r (remainder x y)))
(if (or (zero? r) (eq? (negative? x) (negative? y)))
r
(+ r y))))
(define floor-remainder modulo)
(define (truncate x)
(quotient x 1))
(define (floor x)
(let ((y (quotient x 1)))
(if (negative? (remainder x 1))
(- y 1)
y)))
(define (ceiling x)
(- (floor (- x))))
(define (round x)
(let* ((x (* x 2))
(y (floor (/ (+ x 1) 2))))
(if (= (modulo x 2) 1)
(- y (modulo y 2))
y)))
(define exact round)
(define (inexact x)
x)
(define (abs x)
(if (negative? x)
(- x)
x))
(define (log x . xs)
(if (null? xs)
($log x)
(/ ($log x) ($log (car xs)))))
(define (expt x y)
(exp (* (log x) y)))
(define (comparison-operator f)
(lambda xs
(boolean-or
(null? xs)
(let loop ((x (car xs))
(xs (cdr xs)))
(boolean-or
(null? xs)
(let ((y (car xs)))
(and (f x y) (loop y (cdr xs)))))))))
(define = (comparison-operator eq?))
(define < (comparison-operator $<))
(define > (comparison-operator (lambda (x y) ($< y x))))
(define <= (comparison-operator (lambda (x y) (not ($< y x)))))
(define >= (comparison-operator (lambda (x y) (not ($< x y)))))
(define-optimizer =
(syntax-rules ()
((_ x y)
(eq? x y))))
(define-optimizer <
(syntax-rules ()
((_ x y)
($< x y))))
(define-optimizer >
(syntax-rules ()
((_ x y)
($< y x))))
(define (extremum f)
(lambda (x . xs)
(fold-left (lambda (x y) (if (f x y) x y)) x xs)))
(define min (extremum $<))
(define max (extremum (lambda (x y) ($< y x))))
; TODO Set a true machine epsilon.
;
; Currently, we have a precision limitation due to compression of floating point number in a compiler.
(define epsilon
; Variadic arguments to arithmetic operators are not available at this point.
(let ((x (/ 1000000000)))
(if (zero? x) 1 x)))
;; Character
(define char? (instance? char-type))
(define (integer->char x)
(data-rib char-type x '()))
(define char->integer rib-car)
(define (char-compare compare)
(lambda xs (apply compare (map char->integer xs))))
(define char=? (char-compare =))
(define char<? (char-compare <))
(define char<=? (char-compare <=))
(define char>? (char-compare >))
(define char>=? (char-compare >=))
;; List
(define (list? x)
(boolean-or
(null? x)
(and
(pair? x)
(list? (cdr x)))))
(define car rib-car)
(define cdr rib-cdr)
(define set-car! rib-set-car!)
(define set-cdr! rib-set-cdr!)
(define (caar x) (car (car x)))
(define (cadr x) (car (cdr x)))
(define (cdar x) (cdr (car x)))
(define (cddr x) (cdr (cdr x)))
(define (list . xs) xs)
(define (make-list length . rest)
(define fill (if (null? rest) #f (car rest)))
(let loop ((length length))
(if (zero? length)
'()
(cons fill (loop (- length 1))))))
(define (length xs)
(do ((xs xs (cdr xs)) (y 0 (+ y 1)))
((null? xs)
y)))
(define (map* f xs)
(if (null? xs)
xs
(cons
(f (car xs))
(map* f (cdr xs)))))
(define (map f x . xs)
(if (null? xs)
(map* f x)
(let loop ((xs (cons x xs)))
(if (memq #t (map* null? xs))
'()
(cons
(apply f (map* car xs))
(loop (map* cdr xs)))))))
(define (for-each f x . xs)
(let ((xs (cons x xs)))
(if (memq #t (map* null? xs))
#f
(begin
(apply f (map* car xs))
(apply for-each f (map* cdr xs))))))
(define (filter f xs)
(if (null? xs)
'()
(let ((x (car xs))
(xs (filter f (cdr xs))))
(if (f x)
(cons x xs)
xs))))
(define (list-ref xs index)
(car (list-tail xs index)))
(define (list-set! xs index value)
(set-car! (list-tail xs index) value))
(define (list-head xs index)
(if (zero? index)
'()
(cons
(car xs)
(list-head (cdr xs) (- index 1)))))
(define (list-tail xs index)
(if (boolean-or (zero? index) (not (pair? xs)))
xs
(list-tail (cdr xs) (- index 1))))
(define (member x xs . rest)
(define eq?
(if (null? rest)
equal?
(car rest)))
(let loop ((xs xs))
(cond
((null? xs)
#f)
((eq? x (car xs))
xs)
(else
(loop (cdr xs))))))
(define (memv x xs) (member x xs eqv?))
(define (assoc x xs . rest)
(define eq?
(if (null? rest)
equal?
(car rest)))
(let loop ((xs xs))
(if (null? xs)
#f
(let ((pair (car xs)))
(if (eq? x (car pair))
pair
(loop (cdr xs)))))))
(define (assv x xs) (assoc x xs eqv?))
(define (append . lists)
(reduce-right append-lists '() lists))
(define (append-lists ys xs)
(if (null? xs)
ys
(cons (car xs) (append-lists ys (cdr xs)))))
(define (reverse xs)
(do ((xs xs (cdr xs)) (ys '() (cons (car xs) ys)))
((null? xs)
ys)))
(define (fold-left f y xs)
(if (null? xs)
y
(fold-left
f
(f y (car xs))
(cdr xs))))
(define (fold-right f y xs)
(if (null? xs)
y
(f (fold-right f y (cdr xs)) (car xs))))
(define (reduce-right f y xs)
(if (null? xs)
y
(let loop ((xs xs))
(if (null? (cdr xs))
(car xs)
(f (loop (cdr xs)) (car xs))))))
(define (member-position x xs . rest)
(define eq?
(if (null? rest)
equal?
(car rest)))
(let loop ((xs xs) (index 0))
(cond
((null? xs)
#f)
((eq? x (car xs))
index)
(else