forked from PingoLH/FCHarDNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
119 lines (95 loc) · 3.37 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
import argparse
import os
import numpy as np
from ptsemseg.models import get_model
from ptsemseg.loader import get_loader
from ptsemseg.utils import convert_state_dict
torch.backends.cudnn.benchmark = True
import cv2
def init_model(args):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
data_loader = get_loader("icboard")
loader = data_loader(
root=None,
is_transform=True,
img_size=eval(args.size),
test_mode=True
)
n_classes = loader.n_classes
# Setup Model
model = get_model({"arch": "hardnet"}, n_classes)
state = convert_state_dict(torch.load(args.model_path, map_location=device)["model_state"])
model.load_state_dict(state)
model.eval()
model.to(device)
return device, model, loader
def test(args):
device, model, loader = init_model(args)
proc_size = eval(args.size)
if os.path.isfile(args.input):
img_raw, decoded = process_img(args.input, proc_size, device, model, loader)
blend = np.concatenate((img_raw, decoded), axis=1)
out_path = os.path.join(args.output, os.path.basename(args.input))
cv2.imwrite("test.png", decoded)
cv2.imwrite(out_path, blend)
elif os.path.isdir(args.input):
print("Process all image inside : {}".format(args.input))
for img_file in os.listdir(args.input):
_, ext = os.path.splitext(os.path.basename((img_file)))
if ext not in [".png", ".jpg"]:
continue
img_path = os.path.join(args.input, img_file)
img, decoded = process_img(img_path, proc_size, device, model, loader)
blend = np.concatenate((img, decoded), axis=1)
out_path = os.path.join(args.output, os.path.basename(img_file))
cv2.imwrite(out_path, blend)
def process_img(img_path, size, device, model, loader):
print("Read Input Image from : {}".format(img_path))
img = cv2.imread(img_path)
img_resized = cv2.resize(img, (size[1], size[0])) # uint8 with RGB mode
img = img_resized.astype(np.float16)
# norm
value_scale = 255
mean = [0.406, 0.456, 0.485]
mean = [item * value_scale for item in mean]
std = [0.225, 0.224, 0.229]
std = [item * value_scale for item in std]
img = (img - mean) / std
# NHWC -> NCHW
img = img.transpose(2, 0, 1)
img = np.expand_dims(img, 0)
img = torch.from_numpy(img).float()
images = img.to(device)
outputs = model(images)
pred = np.squeeze(outputs.data.max(1)[1].cpu().numpy(), axis=0)
decoded = loader.decode_segmap(pred)
return img_resized, decoded
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Params")
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the saved model",
)
parser.add_argument(
"--dataset",
type=str,
default="icboard",
help="Path to the saved model",
)
parser.add_argument(
"--size",
type=str,
default="540,960",
help="Inference size",
)
parser.add_argument(
"--input", nargs="?", type=str, default=None, help="Path of the input image/ directory"
)
parser.add_argument(
"--output", nargs="?", type=str, default="./", help="Path of the output directory"
)
args = parser.parse_args()
test(args)