forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_pretrain.py
156 lines (136 loc) · 6.1 KB
/
run_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""XLNet classification finetuning runner in tf2.0."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import functools
import os
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf
# pylint: disable=unused-import
from official.nlp.xlnet import common_flags
from official.nlp.xlnet import data_utils
from official.nlp.xlnet import optimization
from official.nlp.xlnet import training_utils
from official.nlp.xlnet import xlnet_config
from official.nlp.xlnet import xlnet_modeling as modeling
from official.utils.misc import tpu_lib
flags.DEFINE_integer(
"num_predict",
default=None,
help="Number of tokens to predict in partial prediction.")
# FLAGS for pretrain input preprocessing
flags.DEFINE_integer("perm_size", 0, help="Window size of permutation.")
flags.DEFINE_float("leak_ratio", default=0.1,
help="Percent of masked tokens that are leaked.")
flags.DEFINE_enum("sample_strategy", default="token_span",
enum_values=["single_token", "whole_word", "token_span",
"word_span"],
help="Stragey used to sample prediction targets.")
flags.DEFINE_integer("max_num_tokens", default=5,
help="Maximum number of tokens to sample in a span."
"Effective when token_span strategy is used.")
flags.DEFINE_integer("min_num_tokens", default=1,
help="Minimum number of tokens to sample in a span."
"Effective when token_span strategy is used.")
flags.DEFINE_integer("max_num_words", default=5,
help="Maximum number of whole words to sample in a span."
"Effective when word_span strategy is used.")
flags.DEFINE_integer("min_num_words", default=1,
help="Minimum number of whole words to sample in a span."
"Effective when word_span strategy is used.")
FLAGS = flags.FLAGS
def get_pretrainxlnet_model(model_config, run_config):
return modeling.PretrainingXLNetModel(
use_proj=True,
xlnet_config=model_config,
run_config=run_config,
name="model")
def main(unused_argv):
del unused_argv
num_hosts = 1
if FLAGS.strategy_type == "mirror":
strategy = tf.distribute.MirroredStrategy()
elif FLAGS.strategy_type == "tpu":
cluster_resolver = tpu_lib.tpu_initialize(FLAGS.tpu)
strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)
topology = FLAGS.tpu_topology.split("x")
total_num_core = 2 * int(topology[0]) * int(topology[1])
num_hosts = total_num_core // FLAGS.num_core_per_host
else:
raise ValueError("The distribution strategy type is not supported: %s" %
FLAGS.strategy_type)
if strategy:
logging.info("***** Number of cores used : %d",
strategy.num_replicas_in_sync)
logging.info("***** Number of hosts used : %d", num_hosts)
online_masking_config = data_utils.OnlineMaskingConfig(
sample_strategy=FLAGS.sample_strategy,
max_num_tokens=FLAGS.max_num_tokens,
min_num_tokens=FLAGS.min_num_tokens,
max_num_words=FLAGS.max_num_words,
min_num_words=FLAGS.min_num_words)
train_input_fn = functools.partial(
data_utils.get_pretrain_input_data, FLAGS.train_batch_size, FLAGS.seq_len,
strategy, FLAGS.train_tfrecord_path, FLAGS.reuse_len, FLAGS.perm_size,
FLAGS.leak_ratio, FLAGS.num_predict, FLAGS.uncased, online_masking_config,
num_hosts)
total_training_steps = FLAGS.train_steps
steps_per_loop = FLAGS.iterations
optimizer, learning_rate_fn = optimization.create_optimizer(
init_lr=FLAGS.learning_rate,
num_train_steps=total_training_steps,
num_warmup_steps=FLAGS.warmup_steps,
min_lr_ratio=FLAGS.min_lr_ratio,
adam_epsilon=FLAGS.adam_epsilon,
weight_decay_rate=FLAGS.weight_decay_rate)
model_config = xlnet_config.XLNetConfig(FLAGS)
run_config = xlnet_config.create_run_config(True, False, FLAGS)
input_meta_data = {}
input_meta_data["d_model"] = FLAGS.d_model
input_meta_data["mem_len"] = FLAGS.mem_len
input_meta_data["batch_size_per_core"] = int(FLAGS.train_batch_size /
strategy.num_replicas_in_sync)
input_meta_data["n_layer"] = FLAGS.n_layer
input_meta_data["lr_layer_decay_rate"] = FLAGS.lr_layer_decay_rate
model_fn = functools.partial(get_pretrainxlnet_model, model_config,
run_config)
model = training_utils.train(
strategy=strategy,
model_fn=model_fn,
input_meta_data=input_meta_data,
eval_fn=None,
metric_fn=None,
train_input_fn=train_input_fn,
init_checkpoint=FLAGS.init_checkpoint,
init_from_transformerxl=FLAGS.init_from_transformerxl,
total_training_steps=total_training_steps,
steps_per_loop=steps_per_loop,
optimizer=optimizer,
learning_rate_fn=learning_rate_fn,
model_dir=FLAGS.model_dir,
save_steps=FLAGS.save_steps)
# Export transformer-xl model checkpoint to be used in finetuning.
checkpoint = tf.train.Checkpoint(transformer_xl=model.transformerxl_model)
saved_path = checkpoint.save(
os.path.join(FLAGS.model_dir, "pretrained/transformer_xl.ckpt"))
logging.info("Exporting the transformer-xl model as a new TF checkpoint: %s",
saved_path)
if __name__ == "__main__":
app.run(main)