This repository was archived by the owner on Oct 10, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrequirements.txt
126 lines (126 loc) · 3.12 KB
/
requirements.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# This file may be used to create an environment using:
# $ conda create --name <env> --file <this file>
# platform: win-64
_tflow_select=2.1.0=gpu
absl-py=0.7.1=py36_0
astor=0.7.1=py_0
attrs=19.1.0=py_0
backcall=0.1.0=py_0
blas=1.0=mkl
bleach=3.1.0=py_0
ca-certificates=2019.6.16=hecc5488_0
certifi=2019.6.16=py36_1
colorama=0.4.1=py_0
cudatoolkit=10.0.130=0
cudnn=7.6.0=cuda10.0_0
cycler=0.10.0=py_1
decorator=4.4.0=py_0
defusedxml=0.5.0=py_1
entrypoints=0.3=py36_1000
freetype=2.10.0=h563cfd7_1
gast=0.2.2=py_0
graphviz=2.38.0=h6538335_1011
grpcio=1.22.0=py36h3db2c7e_0
h5py=2.9.0=nompi_py36h422b98e_1104
hdf5=1.10.5=nompi_ha405e13_1103
icc_rt=2019.0.0=h0cc432a_1
icu=64.2=he025d50_0
intel-openmp=2019.4=245
ipykernel=5.1.2=py36h5ca1d4c_0
ipython=7.7.0=py36h5ca1d4c_0
ipython_genutils=0.2.0=py_1
jedi=0.15.1=py36_0
jinja2=2.10.1=py_0
joblib=0.13.2=py_0
jpeg=9c=hfa6e2cd_1001
json5=0.8.5=py_0
jsonschema=3.0.2=py36_0
jupyter_client=5.3.1=py_0
jupyter_core=4.4.0=py_0
jupyterlab=1.0.9=py36_0
jupyterlab_server=1.0.6=py_0
keras-applications=1.0.7=py_1
keras-base=2.2.4=py36_0
keras-gpu=2.2.4=0
keras-preprocessing=1.0.9=py_1
kiwisolver=1.1.0=py36he980bc4_0
libblas=3.8.0=12_mkl
libcblas=3.8.0=12_mkl
liblapack=3.8.0=12_mkl
libpng=1.6.37=h7602738_0
libprotobuf=3.9.1=h1a1b453_0
libsodium=1.0.17=h2fa13f4_0
m2w64-gcc-libgfortran=5.3.0=6
m2w64-gcc-libs=5.3.0=7
m2w64-gcc-libs-core=5.3.0=7
m2w64-gmp=6.1.0=2
m2w64-libwinpthread-git=5.0.0.4634.697f757=2
markdown=3.1.1=py_0
markupsafe=1.1.1=py36hfa6e2cd_0
matplotlib=3.1.1=py36_1
matplotlib-base=3.1.1=py36h2852a4a_1
mistune=0.8.4=py36hfa6e2cd_1000
mkl=2019.4=245
mkl-service=2.2.0=py36hfa6e2cd_0
msys2-conda-epoch=20160418=1
nbconvert=5.6.0=py_0
nbformat=4.4.0=py_1
notebook=6.0.1=py36_0
numpy=1.17.0=py36hc71023c_0
openssl=1.1.1c=hfa6e2cd_0
pandas=0.25.1=py36he350917_0
pandoc=2.7.3=0
pandocfilters=1.4.2=py_1
parso=0.5.1=py_0
patsy=0.5.1=py_0
pickleshare=0.7.5=py36_1000
pip=19.2.2=py36_0
prometheus_client=0.7.1=py_0
prompt_toolkit=2.0.9=py_0
protobuf=3.9.1=py36he025d50_0
pydot=1.4.1=py36_1001
pydotplus=2.0.2=py_2
pygments=2.4.2=py_0
pyparsing=2.4.2=py_0
pyqt=5.9.2=py36h6538335_2
pyreadline=2.1=py36_1000
pyrsistent=0.15.4=py36hfa6e2cd_0
python=3.6.7=he025d50_1005
python-dateutil=2.8.0=py_0
pytz=2019.2=py_0
pywinpty=0.5.5=py36_1000
pyyaml=5.1.2=py36hfa6e2cd_0
pyzmq=18.0.2=py36h16f9016_2
qt=5.9.7=h506e8af_3
scikit-learn=0.21.3=py36h7208079_0
scikit-plot=0.3.7=py_1
scipy=1.3.1=py36h29ff71c_0
seaborn=0.9.0=py_1
send2trash=1.5.0=py_0
setuptools=41.2.0=py36_0
sip=4.19.8=py36h6538335_1000
six=1.12.0=py36_1000
sqlite=3.29.0=hfa6e2cd_0
statsmodels=0.10.1=py36hfa6e2cd_0
tensorboard=1.14.0=py36_0
tensorflow=1.14.0=gpu_py36h305fd99_0
tensorflow-base=1.14.0=gpu_py36h55fc52a_0
tensorflow-estimator=1.14.0=py36h5ca1d4c_0
tensorflow-gpu=1.14.0=h0d30ee6_0
termcolor=1.1.0=py_2
terminado=0.8.2=py36_0
testpath=0.4.2=py_1001
tornado=6.0.3=py36hfa6e2cd_0
traitlets=4.3.2=py36_1000
vc=14.1=h21ff451_3
vs2015_runtime=15.5.2=3
wcwidth=0.1.7=py_1
webencodings=0.5.1=py_1
werkzeug=0.15.5=py_0
wheel=0.33.6=py36_0
wincertstore=0.2=py36_1002
winpty=0.4.3=4
wrapt=1.11.2=py36hfa6e2cd_0
yaml=0.1.7=hfa6e2cd_1001
zeromq=4.3.2=h6538335_2
zlib=1.2.11=h2fa13f4_1005