forked from mravanelli/pytorch-kaldi
-
Notifications
You must be signed in to change notification settings - Fork 3
/
quantized_modules.py
249 lines (212 loc) · 8.49 KB
/
quantized_modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import torch
import pdb
import torch.nn as nn
import math
from torch.autograd import Variable
from torch.autograd import Function
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
from torch.nn import functional as F
import save_cgs_mat
import numpy as np
def prune (model, pruning_perc):
all_weights = []
for p in model.parameters():
if len(p.data.size()) != 1:
all_weights += list(p.cpu().data.abs().numpy().flatten())
threshold = np.percentile(np.array(all_weights), pruning_perc)
# generate mask
masks = []
for p in model.parameters():
if len(p.data.size()) != 1:
pruned_inds = p.data.abs() > threshold
masks.append(pruned_inds.float())
return masks
def Binarize(tensor,quant_mode='det'):
if quant_mode=='det':
return tensor.sign()
else:
return tensor.add_(1).div_(2).add_(torch.rand(tensor.size()).add(-0.5)).clamp_(0,1).round().mul_(2).add_(-1)
def find_mean(tensor):
sparse_tens = tensor.to_sparse()
return sparse_tens.values().abs().mean()
class HingeLoss(nn.Module):
def __init__(self):
super(HingeLoss,self).__init__()
self.margin=1.0
def hinge_loss(self,input,target):
#import pdb; pdb.set_trace()
output=self.margin-input.mul(target)
output[output.le(0)]=0
return output.mean()
def forward(self, input, target):
return self.hinge_loss(input,target)
class SqrtHingeLossFunction(Function):
def __init__(self):
super(SqrtHingeLossFunction,self).__init__()
self.margin=1.0
def forward(self, input, target):
output=self.margin-input.mul(target)
output[output.le(0)]=0
self.save_for_backward(input, target)
loss=output.mul(output).sum(0).sum(1).div(target.numel())
return loss
def backward(self,grad_output):
input, target = self.saved_tensors
output=self.margin-input.mul(target)
output[output.le(0)]=0
import pdb; pdb.set_trace()
grad_output.resize_as_(input).copy_(target).mul_(-2).mul_(output)
grad_output.mul_(output.ne(0).float())
grad_output.div_(input.numel())
return grad_output,grad_output
def Quantize(tensor, numBits=3, if_forward=False, balanced=True):
# tensor.clamp_(-2**(numBits-1),2**(numBits-1))
tensor.clamp_(-1,1)
tensor_sign = tensor.sign()
if balanced:
mean = find_mean(tensor)
scale = mean * 2.5
if if_forward:
tensor.abs_().mul_(2 ** (numBits - 1)).ceil_().div_(2 ** (numBits - 1))
else:
tensor = tensor.abs().div(scale).mul(2 ** (numBits - 1)).ceil().mul(scale).ceil().div(2 ** (numBits - 1))
tensor.clamp_(-1, 1)
tensor.mul_(tensor_sign)
else:
# tensor=tensor.mul(2**(numBits-1)).round().div(2**(numBits-1))
if if_forward:
tensor.abs_().mul_(2**(numBits-1)).ceil_().div_(2**(numBits-1))
else:
tensor=tensor.abs().mul(2**(numBits-1)).ceil().div(2**(numBits-1))
tensor.mul_(tensor_sign)
return tensor
def Quantize_inp(inp, Bits, if_forward=False):
max = inp.max()
min = inp.min()
max.abs_()
min.abs_()
if max > min:
var = max
else:
var = min
if not (var == 0.):
inp_sign = inp.sign()
if if_forward:
inp.div_(var)
inp.abs_().mul_(2 ** (Bits - 1)).ceil_().div_(2 ** (Bits - 1))
inp.mul_(var)
else:
inp = inp.div(var)
inp = inp.abs().mul(2 ** (Bits - 1)).ceil().div(2 ** (Bits - 1))
inp = inp.mul(var)
inp.mul_(inp_sign)
return inp
def QuantizeVar(tensor,quant_mode='det', params=None, numBits=3):
max = tensor.max()
min = tensor.min()
tensor.clamp_(min,max)
# min.abs_()
# if max > min:
# var = max
# else:
# var = min
tensor_sign = tensor.sign()
# tensor.div_(var)
if quant_mode=='det':
# tensor=tensor.mul(2**(numBits-1)).round().div(2**(numBits-1))
tensor = tensor.abs().mul(2**(numBits-1)).ceil().div(2**(numBits-1))
tensor.mul_(tensor_sign)
else:
tensor=tensor.mul(2**(numBits-1)).round().add(torch.rand(tensor.size()).add(-0.5)).div(2**(numBits-1))
quant_fixed(tensor, params)
return tensor
import torch.nn._functions as tnnf
class BinarizeLinear(Module):
def __init__(self, in_features, out_features, bias=True):
super(BinarizeLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in_features))
self.weight_org = torch.Tensor(out_features, in_features)
# self.weight_quant = self.weight.detach().clone()
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input):
# def forward(self, input, i, xorh='x'):
self.weight_org = self.weight.data
# save_cgs_mat.save_mat(self.weight.data, str(i) + xorh + 'testw')
self.weight.data = Binarize(self.weight.data)
# save_cgs_mat.save_mat(self.weight.data, str(i) + xorh + 'testwb')
out = F.linear(input, self.weight, self.bias)
self.weight.data = self.weight_org
# save_cgs_mat.save_mat(self.weight.data, str(i) + xorh + 'orgw')
return out
def extra_repr(self):
return 'in_features={}, out_features={}, bias={}'.format(
self.in_features, self.out_features, self.bias is not None
)
class QuantizeLinear(Module):
def __init__(self, in_features, out_features, numBits=8, bias=True, if_forward=False, if_inp_quant=False, inp_quant=16):
super(QuantizeLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in_features))
self.weight_org = torch.Tensor(out_features, in_features)
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.numBits = numBits
self.if_forward = if_forward
self.if_inp_quant = if_inp_quant
self.inp_quant = inp_quant
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input):
if self.if_forward:
self.weight.data = Quantize(self.weight.data, numBits=self.numBits, if_forward=self.if_forward, balanced=False)
# self.weight.data = QuantizeVar(self.weight.data, numBits=self.numBits)
if self.if_inp_quant:
input.data = Quantize_inp(input.data, self.inp_quant, self.if_forward)
out = F.linear(input, self.weight, self.bias)
else:
self.weight_org = self.weight.data
self.weight.data = Quantize(self.weight.data, numBits=self.numBits, balanced=False)
# self.weight.data = QuantizeVar(self.weight.data, numBits=self.numBits)
if self.if_inp_quant:
input.data = Quantize_inp(input.data, self.inp_quant)
out = F.linear(input, self.weight, self.bias)
self.weight.data = self.weight_org
return out
def extra_repr(self):
return 'in_features={}, out_features={}, bias={}'.format(
self.in_features, self.out_features, self.bias is not None
)
class BinarizeConv2d(nn.Conv2d):
def __init__(self, *kargs, **kwargs):
super(BinarizeConv2d, self).__init__(*kargs, **kwargs)
def forward(self, input):
if input.size(1) != 3:
input.data = Binarize(input.data)
if not hasattr(self.weight,'org'):
self.weight.org=self.weight.data.clone()
self.weight.data=Binarize(self.weight.org)
out = nn.functional.conv2d(input, self.weight, None, self.stride,
self.padding, self.dilation, self.groups)
if not self.bias is None:
self.bias.org=self.bias.data.clone()
out += self.bias.view(1, -1, 1, 1).expand_as(out)
return out