Skip to content

rbassett3/headpose_forensic

Repository files navigation

Note: This repo was forked from the original on bitbucket: https://bitbucket.org/ericyang3721/headpose_forensic.git

HeadPose Forensics

This repository is the implementation of the work used in our ICASSP paper Exposing Deep Fakes Using Inconsistent Head Poses

Environment

  • Ubuntu 16.04
  • tqdm 4.28.1
  • numpy 1.15.4
  • dlib 19.16.0
  • opencv-python 3.4.3.18

Test

python run_test.py --input_dir=debug_data --classifier_path=path/to/trained/model --save_file=path/to/output/results

This will examine all images and videos in the folder of 'debug_data', print results in terminal, and the probability of being fake images/video could be saved in --save_file in the project root folder.

The result include a optout attribute, which indicate whether a image is not used for classification when it is true.

Train

There are 3 steps to train the classifier:

step 1: extract landmarks of real and fake data

python train_step1_landmarks.py --real_video_dir=dir/to/real/videos --fake_video_dir=dir/to/fake/videos --output_landmark_path=path/to/save/landmarks

step 2: extract head poses

python train_step2_headposes.py --landmark_info_path=path/to/landmarks/in/step1 --headpose_save_path=path/to/save/headpose/data

step 3: train svm model

python train_step3_training.py --headpose_path=path/to/headposes/in/step2 --model_save_path=path/to/save/trained/model

Citation

Please cite our paper in your publications if it helps your research.

@inproceedings{yang2019exposing,
  title={Exposing Deep Fakes Using Inconsistent Head Poses},
  author={Yang, Xin and Li, Yuezun and Lyu, Siwei},
  booktitle={IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  year={2019}
}

Notice

This repository is NOT for commecial use. It is provided "as it is" and we are not responsible for any subsequence of using this code.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages