diff --git a/CHANGELOG.rst b/CHANGELOG.rst index 3020fdcc6..a7250363d 100644 --- a/CHANGELOG.rst +++ b/CHANGELOG.rst @@ -3,6 +3,7 @@ Change Log [upcoming release] - 2024-..-.. ------------------------------- +- [FIXED] trafo3w with tap changer at star point corrected - [FIXED] namespace changes from numpy 2.0 release - [CHANGED] inf to np.full(...) with value inf for array operations in pypower folder - [CHANGED] node existence check for multiple branch elements from mixed array and set operations to set operations only diff --git a/pandapower/build_branch.py b/pandapower/build_branch.py index 8aba48f79..0806f718e 100644 --- a/pandapower/build_branch.py +++ b/pandapower/build_branch.py @@ -984,9 +984,12 @@ def _trafo_df_from_trafo3w(net, sequence=1): trafo2 = dict() sides = ["hv", "mv", "lv"] mode = net._options["mode"] - loss_side = net._options["trafo3w_losses"].lower() - nr_trafos = len(net["trafo3w"]) t3 = net["trafo3w"] + # todo check magnetizing impedance implementation: + #loss_side = net._options["trafo3w_losses"].lower() + loss_side = t3.loss_side.values if "loss_side" in t3.columns else np.full(len(t3), + net._options["trafo3w_losses"].lower()) + nr_trafos = len(net["trafo3w"]) if sequence==1: mode_tmp = "type_c" if mode == "sc" and net._options.get("use_pre_fault_voltage", False) else mode _calculate_sc_voltages_of_equivalent_transformers(t3, trafo2, mode_tmp, characteristic=net.get( @@ -1004,8 +1007,11 @@ def _trafo_df_from_trafo3w(net, sequence=1): trafo2["hv_bus"] = {"hv": t3.hv_bus.values, "mv": aux_buses, "lv": aux_buses} trafo2["lv_bus"] = {"hv": aux_buses, "mv": t3.mv_bus.values, "lv": t3.lv_bus.values} trafo2["in_service"] = {side: t3.in_service.values for side in sides} - trafo2["i0_percent"] = {side: t3.i0_percent.values if loss_side == side else zeros for side in sides} - trafo2["pfe_kw"] = {side: t3.pfe_kw.values if loss_side == side else zeros for side in sides} + # todo check magnetizing impedance implementation: + #trafo2["i0_percent"] = {side: t3.i0_percent.values if loss_side == side else zeros for side in sides} + #trafo2["pfe_kw"] = {side: t3.pfe_kw.values if loss_side == side else zeros for side in sides} + trafo2["i0_percent"] = {side: np.where(loss_side == side, t3.i0_percent.values, zeros) for side in sides} + trafo2["pfe_kw"] = {side: np.where(loss_side == side, t3.pfe_kw.values, zeros) for side in sides} trafo2["vn_hv_kv"] = {side: t3.vn_hv_kv.values for side in sides} trafo2["vn_lv_kv"] = {side: t3["vn_%s_kv" % side].values for side in sides} trafo2["shift_degree"] = {"hv": np.zeros(nr_trafos), "mv": t3.shift_mv_degree.values, @@ -1105,8 +1111,12 @@ def _calculate_3w_tap_changers(t3, t2, sides): tap_arrays["tap_side"][side][tap_mask] = "hv" if side == "hv" else "lv" # t3 trafos with tap changer at star points - if any_at_star_point: - mask_star_point = tap_mask & at_star_point + if any_at_star_point & np.any(mask_star_point := (tap_mask & at_star_point)): + t = tap_arrays["tap_step_percent"][side][mask_star_point] * np.exp(1j * np.deg2rad(tap_arrays["tap_step_degree"][side][mask_star_point])) + tap_pos = tap_arrays["tap_pos"][side][mask_star_point] + t_corrected = 100 * t / (100 + (t * tap_pos)) + tap_arrays["tap_step_percent"][side][mask_star_point] = np.abs(t_corrected) tap_arrays["tap_side"][side][mask_star_point] = "lv" if side == "hv" else "hv" - tap_arrays["tap_step_degree"][side][mask_star_point] += 180 + tap_arrays["tap_step_degree"][side][mask_star_point] = np.rad2deg(np.angle(t_corrected)) + tap_arrays["tap_step_degree"][side][mask_star_point] -= 180 t2.update(tap_arrays) diff --git a/pandapower/converter/powerfactory/pp_import_functions.py b/pandapower/converter/powerfactory/pp_import_functions.py index 42c370c02..ab72e79ba 100644 --- a/pandapower/converter/powerfactory/pp_import_functions.py +++ b/pandapower/converter/powerfactory/pp_import_functions.py @@ -2417,10 +2417,6 @@ def create_trafo3w(net, item, tap_opt='nntap'): 'in_service': not bool(item.outserv) } - if params['tap_at_star_point']: - logger.warning('%s: implementation for tap changer at star point is not finalized - it can ' - 'lead to wrong results for voltage' % item.loc_name) - if item.nt3nm != 1: logger.warning("trafo3w %s has parallel=%d, this is not implemented. " "Calculation results will be incorrect." % (item.loc_name, item.nt3nm)) diff --git a/pandapower/test/loadflow/test_results.py b/pandapower/test/loadflow/test_results.py index 0069e33bd..bd0b5aec7 100644 --- a/pandapower/test/loadflow/test_results.py +++ b/pandapower/test/loadflow/test_results.py @@ -2,8 +2,10 @@ # Copyright (c) 2016-2024 by University of Kassel and Fraunhofer Institute for Energy Economics # and Energy System Technology (IEE), Kassel. All rights reserved. +import os import pandas as pd import pytest +import numpy as np from numpy import in1d, isnan, isclose, allclose import pandapower as pp @@ -635,6 +637,31 @@ def test_trafo3w(result_test_network, v_tol=1e-6, i_tol=1e-6, s_tol=2e-2, l_tol= assert abs((net.res_trafo3w.i_mv_ka.at[t3] - imv)) < i_tol assert abs((net.res_trafo3w.i_lv_ka.at[t3] - ilv)) < i_tol +@pytest.mark.parametrize("tap_pos", (-1, 2)) +@pytest.mark.parametrize("tap_side", ('hv', 'mv', 'lv')) +@pytest.mark.parametrize("tap_step_degree", (15, 30)) +def test_trafo3w_tap(tap_pos, tap_side, tap_step_degree): + results = pd.read_csv(os.path.join(pp.pp_dir, "test", "test_files", "test_results_files", "trafo_3w_tap_results.csv"), sep=";", decimal=",") + + if results.query("tap_side == @tap_side & tap_pos == @tap_pos & tap_step_degree == @tap_step_degree").empty: + pytest.skip(f"Skipping combination: tap_side={tap_side}, tap_pos={tap_pos}, tap_step_degree={tap_step_degree}") + + net = pp.from_json(os.path.join(pp.pp_dir, "test", "test_files","test_trafo3w_tap.json")) # + net.trafo3w.loc[0, 'tap_at_star_point']= False + net.trafo3w.loc[1, 'tap_at_star_point']= True + + net.trafo3w.loc[0, "tap_side"] = tap_side + net.trafo3w.loc[1, "tap_side"] = tap_side + net.trafo3w.loc[0, "tap_pos"] = tap_pos + net.trafo3w.loc[1, "tap_pos"] = tap_pos + net.trafo3w.loc[0, "tap_step_degree"] = tap_step_degree + net.trafo3w.loc[1, "tap_step_degree"] = tap_step_degree + pp.runpp(net) + + for index in range(8): + for variable, tol in zip(("vm_pu", "va_degree"), (1e-6, 1e-3)): + assert np.isclose(net.res_bus.at[index, variable], results.query("tap_side==@tap_side & tap_pos==@tap_pos & tap_step_degree==@tap_step_degree &" + "index==@index & element=='bus' & variable==@variable").value, rtol=0, atol=tol), f"failed for bus {index=}, {variable}, value {net.res_bus.at[index, variable]}" def test_impedance(result_test_network, v_tol=1e-6, i_tol=1e-6, s_tol=5e-3, l_tol=1e-3): net = result_test_network diff --git a/pandapower/test/test_files/test_results_files/trafo_3w_tap_results.csv b/pandapower/test/test_files/test_results_files/trafo_3w_tap_results.csv new file mode 100644 index 000000000..232384912 --- /dev/null +++ b/pandapower/test/test_files/test_results_files/trafo_3w_tap_results.csv @@ -0,0 +1,129 @@ +tap_side;tap_pos;tap_step_degree;element;name;index;variable;value +hv;2;0;bus;0_Slack;0;vm_pu;1 +hv;2;0;bus;0_Slack;0;va_degree;0 +hv;2;0;bus;1_HV;1;vm_pu;0,998129 +hv;2;0;bus;1_HV;1;va_degree;-0,093039 +hv;2;0;bus;2_MV;2;vm_pu;0,898854 +hv;2;0;bus;2_MV;2;va_degree;-0,686136 +hv;2;0;bus;3_LV;3;vm_pu;0,903326 +hv;2;0;bus;3_LV;3;va_degree;-0,394202 +hv;2;0;bus;4_Slack;4;vm_pu;1 +hv;2;0;bus;4_Slack;4;va_degree;0 +hv;2;0;bus;5_HV;5;vm_pu;0,998127 +hv;2;0;bus;5_HV;5;va_degree;-0,092972 +hv;2;0;bus;6_MV;6;vm_pu;0,898367 +hv;2;0;bus;6_MV;6;va_degree;-0,723542 +hv;2;0;bus;7_LV;7;vm_pu;0,902842 +hv;2;0;bus;7_LV;7;va_degree;-0,431292 +hv;-1;0;bus;0_Slack;0;vm_pu;1 +hv;-1;0;bus;0_Slack;0;va_degree;0 +hv;-1;0;bus;1_HV;1;vm_pu;0,998009 +hv;-1;0;bus;1_HV;1;va_degree;-0,092674 +hv;-1;0;bus;2_MV;2;vm_pu;1,042353 +hv;-1;0;bus;2_MV;2;va_degree;-0,583495 +hv;-1;0;bus;3_LV;3;vm_pu;1,046203 +hv;-1;0;bus;3_LV;3;va_degree;-0,366142 +hv;-1;0;bus;4_Slack;4;vm_pu;1 +hv;-1;0;bus;4_Slack;4;va_degree;0 +hv;-1;0;bus;5_HV;5;vm_pu;0,99801 +hv;-1;0;bus;5_HV;5;va_degree;-0,092708 +hv;-1;0;bus;6_MV;6;vm_pu;1,042629 +hv;-1;0;bus;6_MV;6;va_degree;-0,565781 +hv;-1;0;bus;7_LV;7;vm_pu;1,046477 +hv;-1;0;bus;7_LV;7;va_degree;-0,348542 +mv;2;0;bus;0_Slack;0;vm_pu;1 +mv;2;0;bus;0_Slack;0;va_degree;0 +mv;2;0;bus;1_HV;1;vm_pu;0,998058 +mv;2;0;bus;1_HV;1;va_degree;-0,092876 +mv;2;0;bus;2_MV;2;vm_pu;1,089856 +mv;2;0;bus;2_MV;2;va_degree;-0,555702 +mv;2;0;bus;3_LV;3;vm_pu;0,993842 +mv;2;0;bus;3_LV;3;va_degree;-0,374824 +mv;2;0;bus;4_Slack;4;vm_pu;1 +mv;2;0;bus;4_Slack;4;va_degree;0 +mv;2;0;bus;5_HV;5;vm_pu;0,998055 +mv;2;0;bus;5_HV;5;va_degree;-0,092822 +mv;2;0;bus;6_MV;6;vm_pu;1,088759 +mv;2;0;bus;6_MV;6;va_degree;-0,61575 +mv;2;0;bus;7_LV;7;vm_pu;0,993837 +mv;2;0;bus;7_LV;7;va_degree;-0,374788 +mv;-1;0;bus;0_Slack;0;vm_pu;1 +mv;-1;0;bus;0_Slack;0;va_degree;0 +mv;-1;0;bus;1_HV;1;vm_pu;0,998054 +mv;-1;0;bus;1_HV;1;va_degree;-0,092788 +mv;-1;0;bus;2_MV;2;vm_pu;0,9397 +mv;-1;0;bus;2_MV;2;va_degree;-0,653191 +mv;-1;0;bus;3_LV;3;vm_pu;0,993834 +mv;-1;0;bus;3_LV;3;va_degree;-0,374766 +mv;-1;0;bus;4_Slack;4;vm_pu;1 +mv;-1;0;bus;4_Slack;4;va_degree;0 +mv;-1;0;bus;5_HV;5;vm_pu;0,998055 +mv;-1;0;bus;5_HV;5;va_degree;-0,092822 +mv;-1;0;bus;6_MV;6;vm_pu;0,940291 +mv;-1;0;bus;6_MV;6;va_degree;-0,61575 +mv;-1;0;bus;7_LV;7;vm_pu;0,993837 +mv;-1;0;bus;7_LV;7;va_degree;-0,374788 +lv;2;0;bus;0_Slack;0;vm_pu;1 +lv;2;0;bus;0_Slack;0;va_degree;0 +lv;2;0;bus;1_HV;1;vm_pu;0,998056 +lv;2;0;bus;1_HV;1;va_degree;-0,092829 +lv;2;0;bus;2_MV;2;vm_pu;0,989781 +lv;2;0;bus;2_MV;2;va_degree;-0,615751 +lv;2;0;bus;3_LV;3;vm_pu;1,093532 +lv;2;0;bus;3_LV;3;va_degree;-0,356789 +lv;2;0;bus;4_Slack;4;vm_pu;1 +lv;2;0;bus;4_Slack;4;va_degree;0 +lv;2;0;bus;5_HV;5;vm_pu;0,998055 +lv;2;0;bus;5_HV;5;va_degree;-0,092822 +lv;2;0;bus;6_MV;6;vm_pu;0,98978 +lv;2;0;bus;6_MV;6;va_degree;-0,61575 +lv;2;0;bus;7_LV;7;vm_pu;1,093221 +lv;2;0;bus;7_LV;7;va_degree;-0,374788 +lv;-1;0;bus;0_Slack;0;vm_pu;1 +lv;-1;0;bus;0_Slack;0;va_degree;0 +lv;-1;0;bus;1_HV;1;vm_pu;0,998055 +lv;-1;0;bus;1_HV;1;va_degree;-0,092817 +lv;-1;0;bus;2_MV;2;vm_pu;0,98978 +lv;-1;0;bus;2_MV;2;va_degree;-0,61575 +lv;-1;0;bus;3_LV;3;vm_pu;0,943978 +lv;-1;0;bus;3_LV;3;va_degree;-0,385997 +lv;-1;0;bus;4_Slack;4;vm_pu;1 +lv;-1;0;bus;4_Slack;4;va_degree;0 +lv;-1;0;bus;5_HV;5;vm_pu;0,998055 +lv;-1;0;bus;5_HV;5;va_degree;-0,092822 +lv;-1;0;bus;6_MV;6;vm_pu;0,98978 +lv;-1;0;bus;6_MV;6;va_degree;-0,61575 +lv;-1;0;bus;7_LV;7;vm_pu;0,944145 +lv;-1;0;bus;7_LV;7;va_degree;-0,374788 +hv;2;15;bus;0_Slack;0;vm_pu;1 +hv;2;15;bus;0_Slack;0;va_degree;0 +hv;2;15;bus;1_HV;1;vm_pu;0,998127 +hv;2;15;bus;1_HV;1;va_degree;-0,093034 +hv;2;15;bus;2_MV;2;vm_pu;0,901427 +hv;2;15;bus;2_MV;2;va_degree;-2,035887 +hv;2;15;bus;3_LV;3;vm_pu;0,905886 +hv;2;15;bus;3_LV;3;va_degree;-1,74561 +hv;2;15;bus;4_Slack;4;vm_pu;1 +hv;2;15;bus;4_Slack;4;va_degree;0 +hv;2;15;bus;5_HV;5;vm_pu;0,998125 +hv;2;15;bus;5_HV;5;va_degree;-0,092969 +hv;2;15;bus;6_MV;6;vm_pu;0,900955 +hv;2;15;bus;6_MV;6;va_degree;-2,07209 +hv;2;15;bus;7_LV;7;vm_pu;0,905417 +hv;2;15;bus;7_LV;7;va_degree;-1,781509 +hv;-1;30;bus;0_Slack;0;vm_pu;1 +hv;-1;30;bus;0_Slack;0;va_degree;0 +hv;-1;30;bus;1_HV;1;vm_pu;0,998016 +hv;-1;30;bus;1_HV;1;va_degree;-0,092697 +hv;-1;30;bus;2_MV;2;vm_pu;1,034638 +hv;-1;30;bus;2_MV;2;va_degree;0,908979 +hv;-1;30;bus;3_LV;3;vm_pu;1,038516 +hv;-1;30;bus;3_LV;3;va_degree;1,129574 +hv;-1;30;bus;4_Slack;4;vm_pu;1 +hv;-1;30;bus;4_Slack;4;va_degree;0 +hv;-1;30;bus;5_HV;5;vm_pu;0,998017 +hv;-1;30;bus;5_HV;5;va_degree;-0,092725 +hv;-1;30;bus;6_MV;6;vm_pu;1,034873 +hv;-1;30;bus;6_MV;6;va_degree;0,924241 +hv;-1;30;bus;7_LV;7;vm_pu;1,038751 +hv;-1;30;bus;7_LV;7;va_degree;1,144736 diff --git a/pandapower/test/test_files/test_trafo3w_tap.json b/pandapower/test/test_files/test_trafo3w_tap.json new file mode 100644 index 000000000..8f4d8aee0 --- /dev/null +++ b/pandapower/test/test_files/test_trafo3w_tap.json @@ -0,0 +1,3392 @@ +{ + "_module": "pandapower.auxiliary", + "_class": "pandapowerNet", + "_object": { + "bus": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"vn_kv\",\"type\",\"zone\",\"in_service\",\"description\",\"substat\",\"folder_id\",\"equipment\"],\"index\":[0,1,2,3,4,5,6,7],\"data\":[[\"0_Slack\",20.0,\"b\",\"test_trafo3w\",true,\"test_trafo3w\",\"\",\"test_trafo3w\",\"\"],[\"1_HV\",20.0,\"b\",\"test_trafo3w\",true,\"test_trafo3w\",\"\",\"test_trafo3w\",\"\"],[\"2_MV\",0.600000023841858,\"b\",\"test_trafo3w\",true,\"test_trafo3w\",\"\",\"test_trafo3w\",\"\"],[\"3_LV\",0.400000005960464,\"b\",\"test_trafo3w\",true,\"test_trafo3w\",\"\",\"test_trafo3w\",\"\"],[\"4_Slack\",20.0,\"b\",\"test_trafo3w\",true,\"test_trafo3w\",\"\",\"test_trafo3w\",\"\"],[\"5_HV\",20.0,\"b\",\"test_trafo3w\",true,\"test_trafo3w\",\"\",\"test_trafo3w\",\"\"],[\"6_MV\",0.600000023841858,\"b\",\"test_trafo3w\",true,\"test_trafo3w\",\"\",\"test_trafo3w\",\"\"],[\"7_LV\",0.400000005960464,\"b\",\"test_trafo3w\",true,\"test_trafo3w\",\"\",\"test_trafo3w\",\"\"]]}", + "orient": "split", + "dtype": { + "name": "object", + "vn_kv": "float64", + "type": "object", + "zone": "object", + "in_service": "bool", + "description": "object", + "substat": "object", + "folder_id": "object", + "equipment": "object" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "bus_dc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"vn_kv\",\"type\",\"zone\",\"in_service\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "vn_kv": "float64", + "type": "object", + "zone": "object", + "in_service": "bool" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "load": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"bus\",\"p_mw\",\"q_mvar\",\"const_z_percent\",\"const_i_percent\",\"sn_mva\",\"scaling\",\"in_service\",\"type\",\"description\",\"equipment\"],\"index\":[0,1,2,3],\"data\":[[\"Load2\",2,0.300000011920929,0.200000002980232,0.0,0.0,null,1.0,true,\"wye\",\"\",\"\"],[\"Load4\",3,0.200000002980232,0.100000001490116,0.0,0.0,null,1.0,true,\"wye\",\"\",\"\"],[\"Load4(1)\",7,0.200000002980232,0.100000001490116,0.0,0.0,null,1.0,true,\"wye\",\"\",\"\"],[\"Load2(1)\",6,0.300000011920929,0.200000002980232,0.0,0.0,null,1.0,true,\"wye\",\"\",\"\"]]}", + "orient": "split", + "dtype": { + "name": "object", + "bus": "uint32", + "p_mw": "float64", + "q_mvar": "float64", + "const_z_percent": "float64", + "const_i_percent": "float64", + "sn_mva": "float64", + "scaling": "float64", + "in_service": "bool", + "type": "object", + "description": "object", + "equipment": "object" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "sgen": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"bus\",\"p_mw\",\"q_mvar\",\"sn_mva\",\"scaling\",\"in_service\",\"type\",\"current_source\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "bus": "int64", + "p_mw": "float64", + "q_mvar": "float64", + "sn_mva": "float64", + "scaling": "float64", + "in_service": "bool", + "type": "object", + "current_source": "bool" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "motor": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"bus\",\"pn_mech_mw\",\"loading_percent\",\"cos_phi\",\"cos_phi_n\",\"efficiency_percent\",\"efficiency_n_percent\",\"lrc_pu\",\"vn_kv\",\"scaling\",\"in_service\",\"rx\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "bus": "int64", + "pn_mech_mw": "float64", + "loading_percent": "float64", + "cos_phi": "float64", + "cos_phi_n": "float64", + "efficiency_percent": "float64", + "efficiency_n_percent": "float64", + "lrc_pu": "float64", + "vn_kv": "float64", + "scaling": "float64", + "in_service": "bool", + "rx": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "asymmetric_load": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"bus\",\"p_a_mw\",\"q_a_mvar\",\"p_b_mw\",\"q_b_mvar\",\"p_c_mw\",\"q_c_mvar\",\"sn_mva\",\"scaling\",\"in_service\",\"type\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "bus": "uint32", + "p_a_mw": "float64", + "q_a_mvar": "float64", + "p_b_mw": "float64", + "q_b_mvar": "float64", + "p_c_mw": "float64", + "q_c_mvar": "float64", + "sn_mva": "float64", + "scaling": "float64", + "in_service": "bool", + "type": "object" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "asymmetric_sgen": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"bus\",\"p_a_mw\",\"q_a_mvar\",\"p_b_mw\",\"q_b_mvar\",\"p_c_mw\",\"q_c_mvar\",\"sn_mva\",\"scaling\",\"in_service\",\"type\",\"current_source\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "bus": "int64", + "p_a_mw": "float64", + "q_a_mvar": "float64", + "p_b_mw": "float64", + "q_b_mvar": "float64", + "p_c_mw": "float64", + "q_c_mvar": "float64", + "sn_mva": "float64", + "scaling": "float64", + "in_service": "bool", + "type": "object", + "current_source": "bool" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "storage": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"bus\",\"p_mw\",\"q_mvar\",\"sn_mva\",\"soc_percent\",\"min_e_mwh\",\"max_e_mwh\",\"scaling\",\"in_service\",\"type\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "bus": "int64", + "p_mw": "float64", + "q_mvar": "float64", + "sn_mva": "float64", + "soc_percent": "float64", + "min_e_mwh": "float64", + "max_e_mwh": "float64", + "scaling": "float64", + "in_service": "bool", + "type": "object" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "gen": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"bus\",\"p_mw\",\"vm_pu\",\"sn_mva\",\"min_q_mvar\",\"max_q_mvar\",\"scaling\",\"slack\",\"in_service\",\"slack_weight\",\"type\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "bus": "uint32", + "p_mw": "float64", + "vm_pu": "float64", + "sn_mva": "float64", + "min_q_mvar": "float64", + "max_q_mvar": "float64", + "scaling": "float64", + "slack": "bool", + "in_service": "bool", + "slack_weight": "float64", + "type": "object" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "switch": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"bus\",\"element\",\"et\",\"type\",\"closed\",\"name\",\"z_ohm\",\"in_ka\"],\"index\":[0,1,2,3,4,5,6,7,8,9],\"data\":[[5,0,\"t3\",\"CB\",true,\"Schalter\",0.0,null],[6,0,\"t3\",\"CB\",true,\"Schalter\",0.0,null],[7,0,\"t3\",\"CB\",true,\"Schalter\",0.0,null],[1,1,\"t3\",\"CB\",true,\"Schalter\",0.0,null],[2,1,\"t3\",\"CB\",true,\"Schalter\",0.0,null],[3,1,\"t3\",\"CB\",true,\"Schalter\",0.0,null],[1,0,\"l\",\"CB\",true,\"Schalter\",0.0,null],[0,0,\"l\",\"CB\",true,\"Schalter\",0.0,null],[5,1,\"l\",\"CB\",true,\"Schalter\",0.0,null],[4,1,\"l\",\"CB\",true,\"Schalter\",0.0,null]]}", + "orient": "split", + "dtype": { + "bus": "int64", + "element": "int64", + "et": "object", + "type": "object", + "closed": "bool", + "name": "object", + "z_ohm": "float64", + "in_ka": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "shunt": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"bus\",\"name\",\"q_mvar\",\"p_mw\",\"vn_kv\",\"step\",\"max_step\",\"in_service\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "bus": "uint32", + "name": "object", + "q_mvar": "float64", + "p_mw": "float64", + "vn_kv": "float64", + "step": "uint32", + "max_step": "uint32", + "in_service": "bool" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "svc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"bus\",\"x_l_ohm\",\"x_cvar_ohm\",\"set_vm_pu\",\"thyristor_firing_angle_degree\",\"controllable\",\"in_service\",\"min_angle_degree\",\"max_angle_degree\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "bus": "uint32", + "x_l_ohm": "float64", + "x_cvar_ohm": "float64", + "set_vm_pu": "float64", + "thyristor_firing_angle_degree": "float64", + "controllable": "bool", + "in_service": "bool", + "min_angle_degree": "float64", + "max_angle_degree": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "ssc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"bus\",\"r_ohm\",\"x_ohm\",\"vm_internal_pu\",\"va_internal_degree\",\"set_vm_pu\",\"controllable\",\"in_service\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "bus": "uint32", + "r_ohm": "float64", + "x_ohm": "float64", + "vm_internal_pu": "float64", + "va_internal_degree": "float64", + "set_vm_pu": "float64", + "controllable": "bool", + "in_service": "bool" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "vsc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"bus\",\"bus_dc\",\"r_ohm\",\"x_ohm\",\"control_mode_ac\",\"control_value_ac\",\"control_mode_dc\",\"control_value_dc\",\"controllable\",\"in_service\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "bus": "uint32", + "bus_dc": "uint32", + "r_ohm": "float64", + "x_ohm": "float64", + "control_mode_ac": "object", + "control_value_ac": "float64", + "control_mode_dc": "object", + "control_value_dc": "float64", + "controllable": "bool", + "in_service": "bool" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "ext_grid": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"bus\",\"vm_pu\",\"va_degree\",\"slack_weight\",\"in_service\",\"s_sc_max_mva\",\"s_sc_min_mva\",\"rx_min\",\"rx_max\",\"r0x0_max\",\"x0x_max\",\"r0x0_min\",\"x0x_min\",\"description\"],\"index\":[0,1],\"data\":[[\"ExtGrid9\",0,1.0,0.0,1.0,true,10000.0,8000.0,0.100000001490116,0.100000001490116,0.100000001490116,1.0,0.100000001490116,1.0,\"\"],[\"ExtGrid9(1)\",4,1.0,0.0,1.0,true,10000.0,8000.0,0.100000001490116,0.100000001490116,0.100000001490116,1.0,0.100000001490116,1.0,\"\"]]}", + "orient": "split", + "dtype": { + "name": "object", + "bus": "uint32", + "vm_pu": "float64", + "va_degree": "float64", + "slack_weight": "float64", + "in_service": "bool", + "s_sc_max_mva": "float64", + "s_sc_min_mva": "float64", + "rx_min": "float64", + "rx_max": "float64", + "r0x0_max": "float64", + "x0x_max": "float64", + "r0x0_min": "float64", + "x0x_min": "float64", + "description": "object" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "line": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"std_type\",\"from_bus\",\"to_bus\",\"length_km\",\"r_ohm_per_km\",\"x_ohm_per_km\",\"c_nf_per_km\",\"g_us_per_km\",\"max_i_ka\",\"df\",\"parallel\",\"type\",\"in_service\",\"r0_ohm_per_km\",\"x0_ohm_per_km\",\"c0_nf_per_km\",\"alpha\",\"temperature_degree_celsius\",\"description\",\"line_idx\",\"folder_id\",\"equipment\",\"section_idx\"],\"index\":[0,1],\"data\":[[\"Line16\",\"Test-Leitung\",1,0,12.199999809265137,0.079999998211861,0.119999997317791,300.000011920928955,0.0,0.200000002980232,0.800000011920929,1,\"cs\",true,0.0,0.0,0.0,0.004029999952763,80.0,\"\",0.0,\"test_trafo3w\",\"\",0],[\"Line16(1)\",\"Test-Leitung\",5,4,12.199999809265137,0.079999998211861,0.119999997317791,300.000011920928955,0.0,0.200000002980232,0.800000011920929,1,\"cs\",true,0.0,0.0,0.0,0.004029999952763,80.0,\"\",1.0,\"test_trafo3w\",\"\",0]]}", + "orient": "split", + "dtype": { + "name": "object", + "std_type": "object", + "from_bus": "uint32", + "to_bus": "uint32", + "length_km": "float64", + "r_ohm_per_km": "float64", + "x_ohm_per_km": "float64", + "c_nf_per_km": "float64", + "g_us_per_km": "float64", + "max_i_ka": "float64", + "df": "float64", + "parallel": "uint32", + "type": "object", + "in_service": "bool", + "r0_ohm_per_km": "float64", + "x0_ohm_per_km": "float64", + "c0_nf_per_km": "float64", + "alpha": "float64", + "temperature_degree_celsius": "float64", + "description": "object", + "line_idx": "float64", + "folder_id": "object", + "equipment": "object", + "section_idx": "int64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "line_dc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"std_type\",\"from_bus_dc\",\"to_bus_dc\",\"length_km\",\"r_ohm_per_km\",\"g_us_per_km\",\"max_i_ka\",\"df\",\"parallel\",\"type\",\"in_service\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "std_type": "object", + "from_bus_dc": "uint32", + "to_bus_dc": "uint32", + "length_km": "float64", + "r_ohm_per_km": "float64", + "g_us_per_km": "float64", + "max_i_ka": "float64", + "df": "float64", + "parallel": "uint32", + "type": "object", + "in_service": "bool" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "trafo": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"std_type\",\"hv_bus\",\"lv_bus\",\"sn_mva\",\"vn_hv_kv\",\"vn_lv_kv\",\"vk_percent\",\"vkr_percent\",\"pfe_kw\",\"i0_percent\",\"shift_degree\",\"tap_side\",\"tap_neutral\",\"tap_min\",\"tap_max\",\"tap_step_percent\",\"tap_step_degree\",\"tap_pos\",\"tap_phase_shifter\",\"parallel\",\"df\",\"in_service\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "std_type": "object", + "hv_bus": "uint32", + "lv_bus": "uint32", + "sn_mva": "float64", + "vn_hv_kv": "float64", + "vn_lv_kv": "float64", + "vk_percent": "float64", + "vkr_percent": "float64", + "pfe_kw": "float64", + "i0_percent": "float64", + "shift_degree": "float64", + "tap_side": "object", + "tap_neutral": "int32", + "tap_min": "int32", + "tap_max": "int32", + "tap_step_percent": "float64", + "tap_step_degree": "float64", + "tap_pos": "int32", + "tap_phase_shifter": "bool", + "parallel": "uint32", + "df": "float64", + "in_service": "bool" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "trafo3w": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"std_type\",\"hv_bus\",\"mv_bus\",\"lv_bus\",\"sn_hv_mva\",\"sn_mv_mva\",\"sn_lv_mva\",\"vn_hv_kv\",\"vn_mv_kv\",\"vn_lv_kv\",\"vk_hv_percent\",\"vk_mv_percent\",\"vk_lv_percent\",\"vkr_hv_percent\",\"vkr_mv_percent\",\"vkr_lv_percent\",\"pfe_kw\",\"i0_percent\",\"shift_mv_degree\",\"shift_lv_degree\",\"tap_side\",\"tap_neutral\",\"tap_min\",\"tap_max\",\"tap_step_percent\",\"tap_step_degree\",\"tap_pos\",\"tap_at_star_point\",\"in_service\",\"vk0_hv_percent\",\"vk0_mv_percent\",\"vk0_lv_percent\",\"vkr0_hv_percent\",\"vkr0_mv_percent\",\"vkr0_lv_percent\",\"vector_group\",\"equipment\",\"vm_set_pu\"],\"index\":[0,1],\"data\":[[\"3W_Star\",\"3-Wicklungstransformatortyp_1_1\",5,6,7,1.0,0.699999988079071,0.300000011920929,20.0,0.600000023841858,0.400000005960464,2.0,1.0,0.5,0.300000011920929,0.200000002980232,0.100000001490116,50.0,10.0,0.0,0.0,\"hv\",0,-1,1,5.0,0.0,1,true,true,3.0,3.0,3.0,0.0,0.0,0.0,\"YNynyn\",\"\",1.0],[\"3W_Terminal\",\"3-Wicklungstransformatortyp_1\",1,2,3,1.0,0.699999988079071,0.300000011920929,20.0,0.600000023841858,0.400000005960464,2.0,1.0,0.5,0.300000011920929,0.200000002980232,0.100000001490116,50.0,10.0,0.0,0.0,\"hv\",0,-1,1,5.0,0.0,1,false,true,3.0,3.0,3.0,0.0,0.0,0.0,\"YNynyn\",\"\",1.0]]}", + "orient": "split", + "dtype": { + "name": "object", + "std_type": "object", + "hv_bus": "uint32", + "mv_bus": "uint32", + "lv_bus": "uint32", + "sn_hv_mva": "float64", + "sn_mv_mva": "float64", + "sn_lv_mva": "float64", + "vn_hv_kv": "float64", + "vn_mv_kv": "float64", + "vn_lv_kv": "float64", + "vk_hv_percent": "float64", + "vk_mv_percent": "float64", + "vk_lv_percent": "float64", + "vkr_hv_percent": "float64", + "vkr_mv_percent": "float64", + "vkr_lv_percent": "float64", + "pfe_kw": "float64", + "i0_percent": "float64", + "shift_mv_degree": "float64", + "shift_lv_degree": "float64", + "tap_side": "object", + "tap_neutral": "int32", + "tap_min": "int32", + "tap_max": "int32", + "tap_step_percent": "float64", + "tap_step_degree": "float64", + "tap_pos": "int32", + "tap_at_star_point": "bool", + "in_service": "bool", + "vk0_hv_percent": "float64", + "vk0_mv_percent": "float64", + "vk0_lv_percent": "float64", + "vkr0_hv_percent": "float64", + "vkr0_mv_percent": "float64", + "vkr0_lv_percent": "float64", + "vector_group": "object", + "equipment": "object", + "vm_set_pu": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "impedance": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"from_bus\",\"to_bus\",\"rft_pu\",\"xft_pu\",\"rtf_pu\",\"xtf_pu\",\"sn_mva\",\"in_service\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "from_bus": "uint32", + "to_bus": "uint32", + "rft_pu": "float64", + "xft_pu": "float64", + "rtf_pu": "float64", + "xtf_pu": "float64", + "sn_mva": "float64", + "in_service": "bool" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "tcsc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"from_bus\",\"to_bus\",\"x_l_ohm\",\"x_cvar_ohm\",\"set_p_to_mw\",\"thyristor_firing_angle_degree\",\"controllable\",\"in_service\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "from_bus": "uint32", + "to_bus": "uint32", + "x_l_ohm": "float64", + "x_cvar_ohm": "float64", + "set_p_to_mw": "float64", + "thyristor_firing_angle_degree": "float64", + "controllable": "bool", + "in_service": "bool" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "dcline": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"from_bus\",\"to_bus\",\"p_mw\",\"loss_percent\",\"loss_mw\",\"vm_from_pu\",\"vm_to_pu\",\"max_p_mw\",\"min_q_from_mvar\",\"min_q_to_mvar\",\"max_q_from_mvar\",\"max_q_to_mvar\",\"in_service\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "from_bus": "uint32", + "to_bus": "uint32", + "p_mw": "float64", + "loss_percent": "float64", + "loss_mw": "float64", + "vm_from_pu": "float64", + "vm_to_pu": "float64", + "max_p_mw": "float64", + "min_q_from_mvar": "float64", + "min_q_to_mvar": "float64", + "max_q_from_mvar": "float64", + "max_q_to_mvar": "float64", + "in_service": "bool" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "ward": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"bus\",\"ps_mw\",\"qs_mvar\",\"qz_mvar\",\"pz_mw\",\"in_service\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "bus": "uint32", + "ps_mw": "float64", + "qs_mvar": "float64", + "qz_mvar": "float64", + "pz_mw": "float64", + "in_service": "bool" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "xward": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"bus\",\"ps_mw\",\"qs_mvar\",\"qz_mvar\",\"pz_mw\",\"r_ohm\",\"x_ohm\",\"vm_pu\",\"slack_weight\",\"in_service\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "bus": "uint32", + "ps_mw": "float64", + "qs_mvar": "float64", + "qz_mvar": "float64", + "pz_mw": "float64", + "r_ohm": "float64", + "x_ohm": "float64", + "vm_pu": "float64", + "slack_weight": "float64", + "in_service": "bool" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "measurement": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"measurement_type\",\"element_type\",\"element\",\"value\",\"std_dev\",\"side\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "measurement_type": "object", + "element_type": "object", + "element": "uint32", + "value": "float64", + "std_dev": "float64", + "side": "object" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "pwl_cost": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"power_type\",\"element\",\"et\",\"points\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "power_type": "object", + "element": "uint32", + "et": "object", + "points": "object" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "poly_cost": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"element\",\"et\",\"cp0_eur\",\"cp1_eur_per_mw\",\"cp2_eur_per_mw2\",\"cq0_eur\",\"cq1_eur_per_mvar\",\"cq2_eur_per_mvar2\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "element": "uint32", + "et": "object", + "cp0_eur": "float64", + "cp1_eur_per_mw": "float64", + "cp2_eur_per_mw2": "float64", + "cq0_eur": "float64", + "cq1_eur_per_mvar": "float64", + "cq2_eur_per_mvar2": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "characteristic": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"object\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "object": "object" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "controller": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"object\",\"in_service\",\"order\",\"level\",\"initial_run\",\"recycle\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "object": "object", + "in_service": "bool", + "order": "float64", + "level": "object", + "initial_run": "bool", + "recycle": "object" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "group": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"name\",\"element_type\",\"element\",\"reference_column\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "name": "object", + "element_type": "object", + "element": "object", + "reference_column": "object" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "bus_geodata": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"x\",\"y\",\"coords\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "x": "float64", + "y": "float64", + "coords": "object" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "bus_dc_geodata": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"x\",\"y\",\"coords\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "x": "float64", + "y": "float64", + "coords": "object" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "line_geodata": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"coords\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "coords": "object" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "line_dc_geodata": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"coords\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "coords": "object" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "version": "2.13.1", + "format_version": "2.13.1", + "converged": false, + "OPF_converged": false, + "name": "Gesamtnetz", + "f_hz": 50.0, + "sn_mva": 100.0, + "std_types": { + "line": { + "48-AL1/8-ST1A 0.4": { + "c_nf_per_km": 12.2, + "r_ohm_per_km": 0.5939, + "x_ohm_per_km": 0.3, + "max_i_ka": 0.21, + "type": "ol", + "q_mm2": 48, + "alpha": 0.00403, + "voltage_rating": "LV" + }, + "122-AL1/20-ST1A 10.0": { + "c_nf_per_km": 11.1, + "r_ohm_per_km": 0.2376, + "x_ohm_per_km": 0.323, + "max_i_ka": 0.41, + "type": "ol", + "q_mm2": 122, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "NAYY 4x50 SE": { + "c_nf_per_km": 210, + "r_ohm_per_km": 0.642, + "x_ohm_per_km": 0.083, + "max_i_ka": 0.142, + "type": "cs", + "q_mm2": 50, + "alpha": 0.00403, + "voltage_rating": "LV" + }, + "94-AL1/15-ST1A 0.4": { + "c_nf_per_km": 13.2, + "r_ohm_per_km": 0.306, + "x_ohm_per_km": 0.29, + "max_i_ka": 0.35, + "type": "ol", + "q_mm2": 94, + "alpha": 0.00403, + "voltage_rating": "LV" + }, + "NA2XS2Y 1x95 RM/25 12/20 kV": { + "c_nf_per_km": 216, + "r_ohm_per_km": 0.313, + "x_ohm_per_km": 0.132, + "max_i_ka": 0.252, + "type": "cs", + "q_mm2": 95, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "243-AL1/39-ST1A 110.0": { + "c_nf_per_km": 9, + "r_ohm_per_km": 0.1188, + "x_ohm_per_km": 0.39, + "max_i_ka": 0.645, + "type": "ol", + "q_mm2": 243, + "alpha": 0.00403, + "voltage_rating": "HV" + }, + "94-AL1/15-ST1A 10.0": { + "c_nf_per_km": 10.75, + "r_ohm_per_km": 0.306, + "x_ohm_per_km": 0.33, + "max_i_ka": 0.35, + "type": "ol", + "q_mm2": 94, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "679-AL1/86-ST1A 220.0": { + "c_nf_per_km": 11.7, + "r_ohm_per_km": 0.042, + "x_ohm_per_km": 0.275, + "max_i_ka": 1.15, + "type": "ol", + "q_mm2": 679, + "alpha": 0.00403, + "voltage_rating": "HV" + }, + "NAYY 4x120 SE": { + "c_nf_per_km": 264, + "r_ohm_per_km": 0.225, + "x_ohm_per_km": 0.08, + "max_i_ka": 0.242, + "type": "cs", + "q_mm2": 120, + "alpha": 0.00403, + "voltage_rating": "LV" + }, + "NA2XS2Y 1x70 RM/25 12/20 kV": { + "c_nf_per_km": 190, + "r_ohm_per_km": 0.443, + "x_ohm_per_km": 0.132, + "max_i_ka": 0.22, + "type": "cs", + "q_mm2": 70, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "34-AL1/6-ST1A 10.0": { + "c_nf_per_km": 9.7, + "r_ohm_per_km": 0.8342, + "x_ohm_per_km": 0.36, + "max_i_ka": 0.17, + "type": "ol", + "q_mm2": 34, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "Test-Leitung": { + "r_ohm_per_km": 0.07999999821186066, + "x_ohm_per_km": 0.11999999731779099, + "c_nf_per_km": 300.00001192092896, + "q_mm2": 0.0, + "max_i_ka": 0.20000000298023224, + "endtemp_degree": 80.0, + "type": "cs", + "r0_ohm_per_km": 0.0, + "x0_ohm_per_km": 0.0, + "c0_nf_per_km": 0.0, + "alpha": 0.004029999952763319 + }, + "149-AL1/24-ST1A 110.0": { + "c_nf_per_km": 8.75, + "r_ohm_per_km": 0.194, + "x_ohm_per_km": 0.41, + "max_i_ka": 0.47, + "type": "ol", + "q_mm2": 149, + "alpha": 0.00403, + "voltage_rating": "HV" + }, + "490-AL1/64-ST1A 380.0": { + "c_nf_per_km": 11, + "r_ohm_per_km": 0.059, + "x_ohm_per_km": 0.253, + "max_i_ka": 0.96, + "type": "ol", + "q_mm2": 490, + "alpha": 0.00403, + "voltage_rating": "HV" + }, + "122-AL1/20-ST1A 110.0": { + "c_nf_per_km": 8.5, + "r_ohm_per_km": 0.2376, + "x_ohm_per_km": 0.43, + "max_i_ka": 0.41, + "type": "ol", + "q_mm2": 122, + "alpha": 0.00403, + "voltage_rating": "HV" + }, + "94-AL1/15-ST1A 110.0": { + "c_nf_per_km": 8.65, + "r_ohm_per_km": 0.306, + "x_ohm_per_km": 0.44, + "max_i_ka": 0.35, + "type": "ol", + "q_mm2": 94, + "alpha": 0.00403, + "voltage_rating": "HV" + }, + "490-AL1/64-ST1A 110.0": { + "c_nf_per_km": 9.75, + "r_ohm_per_km": 0.059, + "x_ohm_per_km": 0.37, + "max_i_ka": 0.96, + "type": "ol", + "q_mm2": 490, + "alpha": 0.00403, + "voltage_rating": "HV" + }, + "70-AL1/11-ST1A 10.0": { + "c_nf_per_km": 10.4, + "r_ohm_per_km": 0.4132, + "x_ohm_per_km": 0.339, + "max_i_ka": 0.29, + "type": "ol", + "q_mm2": 70, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "122-AL1/20-ST1A 20.0": { + "c_nf_per_km": 10.3, + "r_ohm_per_km": 0.2376, + "x_ohm_per_km": 0.344, + "max_i_ka": 0.41, + "type": "ol", + "q_mm2": 122, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "679-AL1/86-ST1A 110.0": { + "c_nf_per_km": 9.95, + "r_ohm_per_km": 0.042, + "x_ohm_per_km": 0.36, + "max_i_ka": 1.15, + "type": "ol", + "q_mm2": 679, + "alpha": 0.00403, + "voltage_rating": "HV" + }, + "149-AL1/24-ST1A 20.0": { + "c_nf_per_km": 10.5, + "r_ohm_per_km": 0.194, + "x_ohm_per_km": 0.337, + "max_i_ka": 0.47, + "type": "ol", + "q_mm2": 149, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "70-AL1/11-ST1A 110.0": { + "c_nf_per_km": 8.4, + "r_ohm_per_km": 0.4132, + "x_ohm_per_km": 0.45, + "max_i_ka": 0.29, + "type": "ol", + "q_mm2": 70, + "alpha": 0.00403, + "voltage_rating": "HV" + }, + "NA2XS2Y 1x150 RM/25 12/20 kV": { + "c_nf_per_km": 250, + "r_ohm_per_km": 0.206, + "x_ohm_per_km": 0.116, + "max_i_ka": 0.319, + "type": "cs", + "q_mm2": 150, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "NA2XS2Y 1x240 RM/25 6/10 kV": { + "c_nf_per_km": 456, + "r_ohm_per_km": 0.122, + "x_ohm_per_km": 0.105, + "max_i_ka": 0.416, + "type": "cs", + "q_mm2": 240, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "N2XS(FL)2Y 1x120 RM/35 64/110 kV": { + "c_nf_per_km": 112, + "r_ohm_per_km": 0.153, + "x_ohm_per_km": 0.166, + "max_i_ka": 0.366, + "type": "cs", + "q_mm2": 120, + "alpha": 0.00393, + "voltage_rating": "HV" + }, + "NA2XS2Y 1x185 RM/25 12/20 kV": { + "c_nf_per_km": 273, + "r_ohm_per_km": 0.161, + "x_ohm_per_km": 0.117, + "max_i_ka": 0.362, + "type": "cs", + "q_mm2": 185, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "490-AL1/64-ST1A 220.0": { + "c_nf_per_km": 10, + "r_ohm_per_km": 0.059, + "x_ohm_per_km": 0.285, + "max_i_ka": 0.96, + "type": "ol", + "q_mm2": 490, + "alpha": 0.00403, + "voltage_rating": "HV" + }, + "NA2XS2Y 1x185 RM/25 6/10 kV": { + "c_nf_per_km": 406, + "r_ohm_per_km": 0.161, + "x_ohm_per_km": 0.11, + "max_i_ka": 0.358, + "type": "cs", + "q_mm2": 185, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "NA2XS2Y 1x120 RM/25 6/10 kV": { + "c_nf_per_km": 340, + "r_ohm_per_km": 0.253, + "x_ohm_per_km": 0.113, + "max_i_ka": 0.28, + "type": "cs", + "q_mm2": 120, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "NA2XS2Y 1x70 RM/25 6/10 kV": { + "c_nf_per_km": 280, + "r_ohm_per_km": 0.443, + "x_ohm_per_km": 0.123, + "max_i_ka": 0.217, + "type": "cs", + "q_mm2": 70, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "34-AL1/6-ST1A 20.0": { + "c_nf_per_km": 9.15, + "r_ohm_per_km": 0.8342, + "x_ohm_per_km": 0.382, + "max_i_ka": 0.17, + "type": "ol", + "q_mm2": 34, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "N2XS(FL)2Y 1x300 RM/35 64/110 kV": { + "c_nf_per_km": 144, + "r_ohm_per_km": 0.06, + "x_ohm_per_km": 0.144, + "max_i_ka": 0.588, + "type": "cs", + "q_mm2": 300, + "alpha": 0.00393, + "voltage_rating": "HV" + }, + "48-AL1/8-ST1A 10.0": { + "c_nf_per_km": 10.1, + "r_ohm_per_km": 0.5939, + "x_ohm_per_km": 0.35, + "max_i_ka": 0.21, + "type": "ol", + "q_mm2": 48, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "NA2XS2Y 1x240 RM/25 12/20 kV": { + "c_nf_per_km": 304, + "r_ohm_per_km": 0.122, + "x_ohm_per_km": 0.112, + "max_i_ka": 0.421, + "type": "cs", + "q_mm2": 240, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "149-AL1/24-ST1A 10.0": { + "c_nf_per_km": 11.25, + "r_ohm_per_km": 0.194, + "x_ohm_per_km": 0.315, + "max_i_ka": 0.47, + "type": "ol", + "q_mm2": 149, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "15-AL1/3-ST1A 0.4": { + "c_nf_per_km": 11, + "r_ohm_per_km": 1.8769, + "x_ohm_per_km": 0.35, + "max_i_ka": 0.105, + "type": "ol", + "q_mm2": 16, + "alpha": 0.00403, + "voltage_rating": "LV" + }, + "NA2XS2Y 1x120 RM/25 12/20 kV": { + "c_nf_per_km": 230, + "r_ohm_per_km": 0.253, + "x_ohm_per_km": 0.119, + "max_i_ka": 0.283, + "type": "cs", + "q_mm2": 120, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "48-AL1/8-ST1A 20.0": { + "c_nf_per_km": 9.5, + "r_ohm_per_km": 0.5939, + "x_ohm_per_km": 0.372, + "max_i_ka": 0.21, + "type": "ol", + "q_mm2": 48, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "NA2XS2Y 1x95 RM/25 6/10 kV": { + "c_nf_per_km": 315, + "r_ohm_per_km": 0.313, + "x_ohm_per_km": 0.123, + "max_i_ka": 0.249, + "type": "cs", + "q_mm2": 95, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "48-AL1/8-ST1A 110.0": { + "c_nf_per_km": 8, + "r_ohm_per_km": 0.5939, + "x_ohm_per_km": 0.46, + "max_i_ka": 0.21, + "type": "ol", + "q_mm2": 48, + "alpha": 0.00403, + "voltage_rating": "HV" + }, + "679-AL1/86-ST1A 380.0": { + "c_nf_per_km": 14.6, + "r_ohm_per_km": 0.042, + "x_ohm_per_km": 0.25, + "max_i_ka": 1.15, + "type": "ol", + "q_mm2": 679, + "alpha": 0.00403, + "voltage_rating": "HV" + }, + "24-AL1/4-ST1A 0.4": { + "c_nf_per_km": 11.25, + "r_ohm_per_km": 1.2012, + "x_ohm_per_km": 0.335, + "max_i_ka": 0.14, + "type": "ol", + "q_mm2": 24, + "alpha": 0.00403, + "voltage_rating": "LV" + }, + "184-AL1/30-ST1A 110.0": { + "c_nf_per_km": 8.8, + "r_ohm_per_km": 0.1571, + "x_ohm_per_km": 0.4, + "max_i_ka": 0.535, + "type": "ol", + "q_mm2": 184, + "alpha": 0.00403, + "voltage_rating": "HV" + }, + "305-AL1/39-ST1A 110.0": { + "c_nf_per_km": 9.2, + "r_ohm_per_km": 0.0949, + "x_ohm_per_km": 0.38, + "max_i_ka": 0.74, + "type": "ol", + "q_mm2": 305, + "alpha": 0.00403, + "voltage_rating": "HV" + }, + "N2XS(FL)2Y 1x185 RM/35 64/110 kV": { + "c_nf_per_km": 125, + "r_ohm_per_km": 0.099, + "x_ohm_per_km": 0.156, + "max_i_ka": 0.457, + "type": "cs", + "q_mm2": 185, + "alpha": 0.00393, + "voltage_rating": "HV" + }, + "N2XS(FL)2Y 1x240 RM/35 64/110 kV": { + "c_nf_per_km": 135, + "r_ohm_per_km": 0.075, + "x_ohm_per_km": 0.149, + "max_i_ka": 0.526, + "type": "cs", + "q_mm2": 240, + "alpha": 0.00393, + "voltage_rating": "HV" + }, + "94-AL1/15-ST1A 20.0": { + "c_nf_per_km": 10, + "r_ohm_per_km": 0.306, + "x_ohm_per_km": 0.35, + "max_i_ka": 0.35, + "type": "ol", + "q_mm2": 94, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "NAYY 4x150 SE": { + "c_nf_per_km": 261, + "r_ohm_per_km": 0.208, + "x_ohm_per_km": 0.08, + "max_i_ka": 0.27, + "type": "cs", + "q_mm2": 150, + "alpha": 0.00403, + "voltage_rating": "LV" + }, + "184-AL1/30-ST1A 20.0": { + "c_nf_per_km": 10.75, + "r_ohm_per_km": 0.1571, + "x_ohm_per_km": 0.33, + "max_i_ka": 0.535, + "type": "ol", + "q_mm2": 184, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "70-AL1/11-ST1A 20.0": { + "c_nf_per_km": 9.7, + "r_ohm_per_km": 0.4132, + "x_ohm_per_km": 0.36, + "max_i_ka": 0.29, + "type": "ol", + "q_mm2": 70, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "NA2XS2Y 1x150 RM/25 6/10 kV": { + "c_nf_per_km": 360, + "r_ohm_per_km": 0.206, + "x_ohm_per_km": 0.11, + "max_i_ka": 0.315, + "type": "cs", + "q_mm2": 150, + "alpha": 0.00403, + "voltage_rating": "MV" + }, + "243-AL1/39-ST1A 20.0": { + "c_nf_per_km": 11, + "r_ohm_per_km": 0.1188, + "x_ohm_per_km": 0.32, + "max_i_ka": 0.645, + "type": "ol", + "q_mm2": 243, + "alpha": 0.00403, + "voltage_rating": "MV" + } + }, + "line_dc": { + "95-CU": { + "r_ohm_per_km": 0.193, + "max_i_ka": 0.404, + "type": "cs", + "q_mm2": 95, + "alpha": 0.00393 + }, + "400-CU": { + "r_ohm_per_km": 0.047, + "max_i_ka": 0.922, + "type": "cs", + "q_mm2": 400, + "alpha": 0.00393 + }, + "1200-CU": { + "r_ohm_per_km": 0.0151, + "max_i_ka": 1.791, + "type": "cs", + "q_mm2": 1200, + "alpha": 0.00393 + }, + "2400-CU": { + "r_ohm_per_km": 0.0073, + "max_i_ka": 2.678, + "type": "cs", + "q_mm2": 2400, + "alpha": 0.00393 + }, + "95-AL": { + "r_ohm_per_km": 0.32, + "max_i_ka": 0.31, + "type": "cs", + "q_mm2": 95, + "alpha": 0.00403 + }, + "400-AL": { + "r_ohm_per_km": 0.0778, + "max_i_ka": 0.705, + "type": "cs", + "q_mm2": 400, + "alpha": 0.00403 + }, + "1200-AL": { + "r_ohm_per_km": 0.0247, + "max_i_ka": 1.371, + "type": "cs", + "q_mm2": 1200, + "alpha": 0.00403 + }, + "2400-AL": { + "r_ohm_per_km": 0.0121, + "max_i_ka": 2.066, + "type": "cs", + "q_mm2": 2400, + "alpha": 0.00403 + } + }, + "trafo": { + "25 MVA 110/10 kV": { + "sn_mva": 25, + "vn_hv_kv": 110, + "vn_lv_kv": 10, + "vk_percent": 12, + "vkr_percent": 0.41, + "pfe_kw": 14, + "i0_percent": 0.07, + "shift_degree": 150, + "vector_group": "YNd5", + "tap_side": "hv", + "tap_neutral": 0, + "tap_min": -9, + "tap_max": 9, + "tap_step_degree": 0, + "tap_step_percent": 1.5, + "tap_phase_shifter": false + }, + "0.4 MVA 20/0.4 kV": { + "sn_mva": 0.4, + "vn_hv_kv": 20, + "vn_lv_kv": 0.4, + "vk_percent": 6, + "vkr_percent": 1.425, + "pfe_kw": 1.35, + "i0_percent": 0.3375, + "shift_degree": 150, + "vector_group": "Dyn5", + "tap_side": "hv", + "tap_neutral": 0, + "tap_min": -2, + "tap_max": 2, + "tap_step_degree": 0, + "tap_step_percent": 2.5, + "tap_phase_shifter": false + }, + "0.25 MVA 20/0.4 kV": { + "sn_mva": 0.25, + "vn_hv_kv": 20, + "vn_lv_kv": 0.4, + "vk_percent": 6, + "vkr_percent": 1.44, + "pfe_kw": 0.8, + "i0_percent": 0.32, + "shift_degree": 150, + "vector_group": "Yzn5", + "tap_side": "hv", + "tap_neutral": 0, + "tap_min": -2, + "tap_max": 2, + "tap_step_degree": 0, + "tap_step_percent": 2.5, + "tap_phase_shifter": false + }, + "0.25 MVA 10/0.4 kV": { + "sn_mva": 0.25, + "vn_hv_kv": 10, + "vn_lv_kv": 0.4, + "vk_percent": 4, + "vkr_percent": 1.2, + "pfe_kw": 0.6, + "i0_percent": 0.24, + "shift_degree": 150, + "vector_group": "Dyn5", + "tap_side": "hv", + "tap_neutral": 0, + "tap_min": -2, + "tap_max": 2, + "tap_step_degree": 0, + "tap_step_percent": 2.5, + "tap_phase_shifter": false + }, + "40 MVA 110/20 kV": { + "i0_percent": 0.05, + "pfe_kw": 18, + "vkr_percent": 0.34, + "sn_mva": 40, + "vn_lv_kv": 20.0, + "vn_hv_kv": 110.0, + "vk_percent": 16.2, + "shift_degree": 150, + "vector_group": "YNd5", + "tap_side": "hv", + "tap_neutral": 0, + "tap_min": -9, + "tap_max": 9, + "tap_step_degree": 0, + "tap_step_percent": 1.5, + "tap_phase_shifter": false + }, + "63 MVA 110/20 kV": { + "i0_percent": 0.04, + "pfe_kw": 22, + "vkr_percent": 0.32, + "sn_mva": 63, + "vn_lv_kv": 20.0, + "vn_hv_kv": 110.0, + "vk_percent": 18, + "shift_degree": 150, + "vector_group": "YNd5", + "tap_side": "hv", + "tap_neutral": 0, + "tap_min": -9, + "tap_max": 9, + "tap_step_degree": 0, + "tap_step_percent": 1.5, + "tap_phase_shifter": false + }, + "40 MVA 110/10 kV": { + "sn_mva": 40, + "vn_hv_kv": 110, + "vn_lv_kv": 10, + "vk_percent": 16.2, + "vkr_percent": 0.34, + "pfe_kw": 18, + "i0_percent": 0.05, + "shift_degree": 150, + "vector_group": "YNd5", + "tap_side": "hv", + "tap_neutral": 0, + "tap_min": -9, + "tap_max": 9, + "tap_step_degree": 0, + "tap_step_percent": 1.5, + "tap_phase_shifter": false + }, + "100 MVA 220/110 kV": { + "i0_percent": 0.06, + "pfe_kw": 55, + "vkr_percent": 0.26, + "sn_mva": 100, + "vn_lv_kv": 110.0, + "vn_hv_kv": 220.0, + "vk_percent": 12.0, + "shift_degree": 0, + "vector_group": "Yy0", + "tap_side": "hv", + "tap_neutral": 0, + "tap_min": -9, + "tap_max": 9, + "tap_step_degree": 0, + "tap_step_percent": 1.5, + "tap_phase_shifter": false + }, + "160 MVA 380/110 kV": { + "i0_percent": 0.06, + "pfe_kw": 60, + "vkr_percent": 0.25, + "sn_mva": 160, + "vn_lv_kv": 110.0, + "vn_hv_kv": 380.0, + "vk_percent": 12.2, + "shift_degree": 0, + "vector_group": "Yy0", + "tap_side": "hv", + "tap_neutral": 0, + "tap_min": -9, + "tap_max": 9, + "tap_step_degree": 0, + "tap_step_percent": 1.5, + "tap_phase_shifter": false + }, + "0.63 MVA 20/0.4 kV": { + "sn_mva": 0.63, + "vn_hv_kv": 20, + "vn_lv_kv": 0.4, + "vk_percent": 6, + "vkr_percent": 1.206, + "pfe_kw": 1.65, + "i0_percent": 0.2619, + "shift_degree": 150, + "vector_group": "Dyn5", + "tap_side": "hv", + "tap_neutral": 0, + "tap_min": -2, + "tap_max": 2, + "tap_step_degree": 0, + "tap_step_percent": 2.5, + "tap_phase_shifter": false + }, + "63 MVA 110/10 kV": { + "sn_mva": 63, + "vn_hv_kv": 110, + "vn_lv_kv": 10, + "vk_percent": 18, + "vkr_percent": 0.32, + "pfe_kw": 22, + "i0_percent": 0.04, + "shift_degree": 150, + "vector_group": "YNd5", + "tap_side": "hv", + "tap_neutral": 0, + "tap_min": -9, + "tap_max": 9, + "tap_step_degree": 0, + "tap_step_percent": 1.5, + "tap_phase_shifter": false + }, + "0.4 MVA 10/0.4 kV": { + "sn_mva": 0.4, + "vn_hv_kv": 10, + "vn_lv_kv": 0.4, + "vk_percent": 4, + "vkr_percent": 1.325, + "pfe_kw": 0.95, + "i0_percent": 0.2375, + "shift_degree": 150, + "vector_group": "Dyn5", + "tap_side": "hv", + "tap_neutral": 0, + "tap_min": -2, + "tap_max": 2, + "tap_step_degree": 0, + "tap_step_percent": 2.5, + "tap_phase_shifter": false + }, + "0.63 MVA 10/0.4 kV": { + "sn_mva": 0.63, + "vn_hv_kv": 10, + "vn_lv_kv": 0.4, + "vk_percent": 4, + "vkr_percent": 1.0794, + "pfe_kw": 1.18, + "i0_percent": 0.1873, + "shift_degree": 150, + "vector_group": "Dyn5", + "tap_side": "hv", + "tap_neutral": 0, + "tap_min": -2, + "tap_max": 2, + "tap_step_degree": 0, + "tap_step_percent": 2.5, + "tap_phase_shifter": false + }, + "25 MVA 110/20 kV": { + "i0_percent": 0.07, + "pfe_kw": 14, + "vkr_percent": 0.41, + "sn_mva": 25, + "vn_lv_kv": 20.0, + "vn_hv_kv": 110.0, + "vk_percent": 12, + "shift_degree": 150, + "vector_group": "YNd5", + "tap_side": "hv", + "tap_neutral": 0, + "tap_min": -9, + "tap_max": 9, + "tap_step_degree": 0, + "tap_step_percent": 1.5, + "tap_phase_shifter": false + } + }, + "trafo3w": { + "63/25/38 MVA 110/20/10 kV": { + "sn_hv_mva": 63, + "sn_mv_mva": 25, + "sn_lv_mva": 38, + "vn_hv_kv": 110, + "vn_mv_kv": 20, + "vn_lv_kv": 10, + "vk_hv_percent": 10.4, + "vk_mv_percent": 10.4, + "vk_lv_percent": 10.4, + "vkr_hv_percent": 0.28, + "vkr_mv_percent": 0.32, + "vkr_lv_percent": 0.35, + "pfe_kw": 35, + "i0_percent": 0.89, + "shift_mv_degree": 0, + "shift_lv_degree": 0, + "vector_group": "YN0yn0yn0", + "tap_side": "hv", + "tap_neutral": 0, + "tap_min": -10, + "tap_max": 10, + "tap_step_percent": 1.2 + }, + "63/25/38 MVA 110/10/10 kV": { + "sn_hv_mva": 63, + "sn_mv_mva": 25, + "sn_lv_mva": 38, + "vn_hv_kv": 110, + "vn_mv_kv": 10, + "vn_lv_kv": 10, + "vk_hv_percent": 10.4, + "vk_mv_percent": 10.4, + "vk_lv_percent": 10.4, + "vkr_hv_percent": 0.28, + "vkr_mv_percent": 0.32, + "vkr_lv_percent": 0.35, + "pfe_kw": 35, + "i0_percent": 0.89, + "shift_mv_degree": 0, + "shift_lv_degree": 0, + "vector_group": "YN0yn0yn0", + "tap_side": "hv", + "tap_neutral": 0, + "tap_min": -10, + "tap_max": 10, + "tap_step_percent": 1.2 + } + }, + "fuse": { + "HV 100A": { + "fuse_type": "HV 100A", + "i_rated_a": 100.0, + "t_avg": 0, + "t_min": [ + 10.0, + 3.64, + 0.854, + 0.281, + 0.1, + 0.0531, + 0.022, + 0.01 + ], + "t_total": [ + 10.0, + 4.267, + 1.21, + 0.403, + 0.1, + 0.058, + 0.022, + 0.01 + ], + "x_avg": 0, + "x_min": [ + 300.0, + 350.0, + 450.0, + 550.0, + 700.0, + 850.0, + 1200.0, + 1752.0 + ], + "x_total": [ + 600.0, + 700.0, + 900.0, + 1150.0, + 1665.0, + 2000.0, + 3000.0, + 4313.0 + ] + }, + "HV 10A": { + "fuse_type": "HV 10A", + "i_rated_a": 10.0, + "t_avg": 0, + "t_min": [ + 10.0, + 1675.0, + 0.344, + 0.156, + 0.1, + 0.0417, + 0.0171, + 0.01 + ], + "t_total": [ + 10.0, + 1.3, + 0.3, + 0.155, + 0.1, + 0.0555, + 0.023, + 0.01 + ], + "x_avg": 0, + "x_min": [ + 30.0, + 32.0, + 35.0, + 37.0, + 39.0, + 50.0, + 70.0, + 88.0 + ], + "x_total": [ + 60.0, + 70.0, + 80.0, + 87.0, + 94.0, + 110.0, + 150.0, + 216.0 + ] + }, + "HV 125A": { + "fuse_type": "HV 125A", + "i_rated_a": 125.0, + "t_avg": 0, + "t_min": [ + 10.0, + 1.82, + 0.344, + 0.1, + 0.0467, + 0.0269, + 0.01 + ], + "t_total": [ + 10.0, + 2.478, + 0.426, + 0.1, + 0.0427, + 0.0211, + 0.01 + ], + "x_avg": 0, + "x_min": [ + 375.0, + 500.0, + 700.0, + 925.0, + 1200.0, + 1500.0, + 2341.0 + ], + "x_total": [ + 750.0, + 1000.0, + 1500.0, + 2200.0, + 3000.0, + 4000.0, + 5765.0 + ] + }, + "HV 160A": { + "fuse_type": "HV 160A", + "i_rated_a": 160.0, + "t_avg": 0, + "t_min": [ + 10.0, + 4.15, + 1.03, + 0.198, + 0.1, + 0.051, + 0.0172, + 0.01 + ], + "t_total": [ + 10.0, + 2.3, + 0.734, + 0.274, + 0.1, + 0.046, + 0.0177, + 0.01 + ], + "x_avg": 0, + "x_min": [ + 480.0, + 550.0, + 700.0, + 1000.0, + 1260.0, + 1600.0, + 2500.0, + 3227.0 + ], + "x_total": [ + 960.0, + 1300.0, + 1700.0, + 2200.0, + 2996.0, + 4000.0, + 6000.0, + 7946.0 + ] + }, + "HV 16A": { + "fuse_type": "HV 16A", + "i_rated_a": 16.0, + "t_avg": 0, + "t_min": [ + 10.0, + 0.352, + 0.164, + 0.1, + 0.0649, + 0.0342, + 0.01 + ], + "t_total": [ + 10.0, + 2.34, + 0.722, + 0.181, + 0.1, + 0.055, + 0.0296, + 0.01 + ], + "x_avg": 0, + "x_min": [ + 48.0, + 60.0, + 65.0, + 71.0, + 80.0, + 100.0, + 162.0 + ], + "x_total": [ + 96.0, + 110.0, + 125.0, + 150.0, + 168.0, + 200.0, + 250.0, + 398.0 + ] + }, + "HV 200A": { + "fuse_type": "HV 200A", + "i_rated_a": 200.0, + "t_avg": 0, + "t_min": [ + 10.0, + 4.267, + 1.21, + 0.403, + 0.1, + 0.058, + 0.022, + 0.01 + ], + "t_total": [ + 10.0, + 3.73, + 1.654, + 0.328, + 0.1, + 0.0531, + 0.019, + 0.01 + ], + "x_avg": 0, + "x_min": [ + 600.0, + 700.0, + 900.0, + 1150.0, + 1665.0, + 2000.0, + 3000.0, + 4313.0 + ], + "x_total": [ + 1200.0, + 1500.0, + 1800.0, + 2700.0, + 3960.0, + 5000.0, + 7500.0, + 10620.0 + ] + }, + "HV 20A": { + "fuse_type": "HV 20A", + "i_rated_a": 20.0, + "t_avg": 0, + "t_min": [ + 10.0, + 1.3, + 0.3, + 0.155, + 0.1, + 0.0555, + 0.023, + 0.01 + ], + "t_total": [ + 10.0, + 1.3, + 0.161, + 0.1, + 0.0611, + 0.0399, + 0.0141, + 0.01 + ], + "x_avg": 0, + "x_min": [ + 60.0, + 70.0, + 80.0, + 87.0, + 94.0, + 110.0, + 150.0, + 216.0 + ], + "x_total": [ + 120.0, + 150.0, + 200.0, + 223.0, + 260.0, + 300.0, + 450.0, + 532.0 + ] + }, + "HV 25A": { + "fuse_type": "HV 25A", + "i_rated_a": 25.0, + "t_avg": 0, + "t_min": [ + 10.0, + 2.512, + 0.833, + 0.299, + 0.1, + 0.0372, + 0.0223, + 0.01 + ], + "t_total": [ + 10.0, + 3.125, + 0.597, + 0.198, + 0.1, + 0.0378, + 0.022, + 0.01 + ], + "x_avg": 0, + "x_min": [ + 75.0, + 82.0, + 90.0, + 100.0, + 124.0, + 170.0, + 200.0, + 289.0 + ], + "x_total": [ + 150.0, + 170.0, + 210.0, + 250.0, + 294.0, + 400.0, + 500.0, + 711.0 + ] + }, + "HV 31.5A": { + "fuse_type": "HV 31.5A", + "i_rated_a": 31.5, + "t_avg": 0, + "t_min": [ + 10.0, + 2.34, + 0.722, + 0.181, + 0.1, + 0.055, + 0.0296, + 0.01 + ], + "t_total": [ + 10.0, + 2.84, + 0.368, + 0.164, + 0.1, + 0.0621, + 0.0378, + 0.0195, + 0.01 + ], + "x_avg": 0, + "x_min": [ + 95.0, + 110.0, + 125.0, + 150.0, + 165.0, + 200.0, + 250.0, + 390.0 + ], + "x_total": [ + 189.0, + 220.0, + 300.0, + 350.0, + 393.0, + 450.0, + 530.0, + 700.0, + 960.0 + ] + }, + "HV 40A": { + "fuse_type": "HV 40A", + "i_rated_a": 40.0, + "t_avg": 0, + "t_min": [ + 10.0, + 1.3, + 0.161, + 0.1, + 0.0611, + 0.0399, + 0.0141, + 0.01 + ], + "t_total": [ + 10.0, + 2.05, + 0.369, + 0.198, + 0.1, + 0.051, + 0.0298, + 0.01 + ], + "x_avg": 0, + "x_min": [ + 120.0, + 150.0, + 200.0, + 223.0, + 260.0, + 300.0, + 450.0, + 532.0 + ], + "x_total": [ + 240.0, + 300.0, + 400.0, + 450.0, + 530.0, + 650.0, + 800.0, + 1311.0 + ] + }, + "HV 50A": { + "fuse_type": "HV 50A", + "i_rated_a": 50.0, + "t_avg": 0, + "t_min": [ + 10.0, + 3.215, + 0.597, + 0.198, + 0.1, + 0.0378, + 0.022, + 0.01 + ], + "t_total": [ + 10.0, + 3.64, + 0.854, + 0.281, + 0.1, + 0.0531, + 0.022, + 0.01 + ], + "x_avg": 0, + "x_min": [ + 150.0, + 170.0, + 210.0, + 250.0, + 294.0, + 400.0, + 500.0, + 711.0 + ], + "x_total": [ + 300.0, + 350.0, + 450.0, + 550.0, + 700.0, + 850.0, + 1200.0, + 1752.0 + ] + }, + "HV 6.3A": { + "fuse_type": "HV 6.3A", + "i_rated_a": 6.3, + "t_avg": 0, + "t_min": [ + 10.0, + 1.39, + 0.344, + 0.168, + 0.1, + 0.056, + 0.0263, + 0.01 + ], + "t_total": [ + 10.0, + 1.711, + 0.516, + 0.198, + 0.1, + 0.0634, + 0.0303, + 0.01 + ], + "x_avg": 0, + "x_min": [ + 19.0, + 19.5, + 20.4, + 20.8, + 22.0, + 25.0, + 32.0, + 48.0 + ], + "x_total": [ + 38.0, + 40.0, + 43.0, + 48.0, + 53.0, + 60.0, + 75.0, + 118.0 + ] + }, + "HV 63A": { + "fuse_type": "HV 63A", + "i_rated_a": 63.0, + "t_avg": 0, + "t_min": [ + 10.0, + 2.84, + 0.368, + 0.164, + 0.1, + 0.0621, + 0.0378, + 0.0195, + 0.01 + ], + "t_total": [ + 10.0, + 1.82, + 0.344, + 0.1, + 0.0467, + 0.0269, + 0.01 + ], + "x_avg": 0, + "x_min": [ + 189.0, + 220.0, + 300.0, + 350.0, + 393.0, + 450.0, + 530.0, + 700.0, + 961.0 + ], + "x_total": [ + 378.0, + 500.0, + 700.0, + 934.0, + 1200.0, + 1500.0, + 2366.0 + ] + }, + "HV 80A": { + "fuse_type": "HV 80A", + "i_rated_a": 80.0, + "t_avg": 0, + "t_min": [ + 10.0, + 2.05, + 0.369, + 0.198, + 0.1, + 0.051, + 0.0298, + 0.01 + ], + "t_total": [ + 10.0, + 4.15, + 1.03, + 0.198, + 0.1, + 0.051, + 0.0172, + 0.01 + ], + "x_avg": 0, + "x_min": [ + 240.0, + 300.0, + 400.0, + 450.0, + 530.0, + 650.0, + 800.0, + 1311.0 + ], + "x_total": [ + 480.0, + 550.0, + 700.0, + 1000.0, + 1260.0, + 1600.0, + 2500.0, + 3227.0 + ] + }, + "Siemens NH-1-100": { + "fuse_type": "Siemens NH-1-100", + "i_rated_a": 100.0, + "t_avg": [ + 5400.0, + 2000.0, + 400.0, + 20.0, + 1.0, + 0.2, + 0.012, + 0.004 + ], + "t_min": 0, + "t_total": 0, + "x_avg": [ + 150.0, + 190.0, + 250.0, + 430.0, + 900.0, + 1250.0, + 2700.0, + 3600.0 + ], + "x_min": 0, + "x_total": 0 + }, + "Siemens NH-1-125": { + "fuse_type": "Siemens NH-1-125", + "i_rated_a": 125.0, + "t_avg": [ + 4800.0, + 120.0, + 7.0, + 0.1, + 0.004 + ], + "t_min": 0, + "t_total": 0, + "x_avg": [ + 180.0, + 400.0, + 740.0, + 2000.0, + 4250.0 + ], + "x_min": 0, + "x_total": 0 + }, + "Siemens NH-1-16": { + "fuse_type": "Siemens NH-1-16", + "i_rated_a": 16.0, + "t_avg": [ + 4000.0, + 400.0, + 2.0, + 0.1, + 0.04, + 0.01 + ], + "t_min": 0, + "t_total": 0, + "x_avg": [ + 26.0, + 35.0, + 75.0, + 150.0, + 200.0, + 300.0 + ], + "x_min": 0, + "x_total": 0 + }, + "Siemens NH-1-160": { + "fuse_type": "Siemens NH-1-160", + "i_rated_a": 160.0, + "t_avg": [ + 4800.0, + 120.0, + 7.0, + 0.1, + 0.004 + ], + "t_min": 0, + "t_total": 0, + "x_avg": [ + 210.0, + 500.0, + 900.0, + 2300.0, + 5000.0 + ], + "x_min": 0, + "x_total": 0 + }, + "Siemens NH-1-25": { + "fuse_type": "Siemens NH-1-25", + "i_rated_a": 25.0, + "t_avg": [ + 4000.0, + 1000.0, + 10.0, + 0.2, + 0.02, + 0.01 + ], + "t_min": 0, + "t_total": 0, + "x_avg": [ + 40.0, + 50.0, + 100.0, + 210.0, + 400.0, + 500.0 + ], + "x_min": 0, + "x_total": 0 + }, + "Siemens NH-1-50": { + "fuse_type": "Siemens NH-1-50", + "i_rated_a": 50.0, + "t_avg": [ + 4000.0, + 40.0, + 4.0, + 1.0, + 0.02, + 0.01 + ], + "t_min": 0, + "t_total": 0, + "x_avg": [ + 86.0, + 200.0, + 300.0, + 400.0, + 1000.0, + 1280.0 + ], + "x_min": 0, + "x_total": 0 + }, + "Siemens NH-1-63": { + "fuse_type": "Siemens NH-1-63", + "i_rated_a": 63.0, + "t_avg": [ + 4000.0, + 100.0, + 10.0, + 2.0, + 0.04, + 0.01 + ], + "t_min": 0, + "t_total": 0, + "x_avg": [ + 100.0, + 200.0, + 300.0, + 400.0, + 1000.0, + 1500.0 + ], + "x_min": 0, + "x_total": 0 + }, + "Siemens NH-1-80": { + "fuse_type": "Siemens NH-1-80", + "i_rated_a": 80.0, + "t_avg": [ + 4800.0, + 120.0, + 7.0, + 0.1, + 0.01 + ], + "t_min": 0, + "t_total": 0, + "x_avg": [ + 150.58, + 250.0, + 450.0, + 1150.0, + 2470.0 + ], + "x_min": 0, + "x_total": 0 + }, + "Siemens NH-2-1000": { + "fuse_type": "Siemens NH-2-1000", + "i_rated_a": 1000.0, + "t_avg": [ + 4800.0, + 120.0, + 7.0, + 0.1, + 0.004 + ], + "t_min": 0, + "t_total": 0, + "x_avg": [ + 1900.0, + 3500.0, + 8400.0, + 24000.0, + 52000.0 + ], + "x_min": 0, + "x_total": 0 + }, + "Siemens NH-2-200": { + "fuse_type": "Siemens NH-2-200", + "i_rated_a": 200.0, + "t_avg": [ + 4800.0, + 120.0, + 7.0, + 0.1, + 0.004 + ], + "t_min": 0, + "t_total": 0, + "x_avg": [ + 280.0, + 650.0, + 1200.0, + 3000.0, + 7000.0 + ], + "x_min": 0, + "x_total": 0 + }, + "Siemens NH-2-224": { + "fuse_type": "Siemens NH-2-224", + "i_rated_a": 224.0, + "t_avg": [ + 4800.0, + 120.0, + 7.0, + 0.2, + 0.04, + 0.004 + ], + "t_min": 0, + "t_total": 0, + "x_avg": [ + 400.0, + 750.0, + 1453.0, + 3025.0, + 4315.0, + 7600.0 + ], + "x_min": 0, + "x_total": 0 + }, + "Siemens NH-2-250": { + "fuse_type": "Siemens NH-2-250", + "i_rated_a": 250.0, + "t_avg": [ + 4800.0, + 120.0, + 7.0, + 0.1, + 0.004 + ], + "t_min": 0, + "t_total": 0, + "x_avg": [ + 450.0, + 800.0, + 1650.0, + 4000.0, + 8500.0 + ], + "x_min": 0, + "x_total": 0 + }, + "Siemens NH-2-315": { + "fuse_type": "Siemens NH-2-315", + "i_rated_a": 315.0, + "t_avg": [ + 4800.0, + 120.0, + 7.0, + 0.1, + 0.004 + ], + "t_min": 0, + "t_total": 0, + "x_avg": [ + 550.0, + 920.0, + 1900.0, + 5000.0, + 11000.0 + ], + "x_min": 0, + "x_total": 0 + }, + "Siemens NH-2-355": { + "fuse_type": "Siemens NH-2-355", + "i_rated_a": 355.0, + "t_avg": [ + 4800.0, + 120.0, + 6.0, + 0.1, + 0.004 + ], + "t_min": 0, + "t_total": 0, + "x_avg": [ + 650.0, + 1116.27, + 2350.0, + 5840.0, + 12790.0 + ], + "x_min": 0, + "x_total": 0 + }, + "Siemens NH-2-400": { + "fuse_type": "Siemens NH-2-400", + "i_rated_a": 400.0, + "t_avg": [ + 4800.0, + 120.0, + 7.0, + 0.1, + 0.004 + ], + "t_min": 0, + "t_total": 0, + "x_avg": [ + 720.0, + 1350.0, + 2800.0, + 6500.0, + 15000.0 + ], + "x_min": 0, + "x_total": 0 + }, + "Siemens NH-2-425": { + "fuse_type": "Siemens NH-2-425", + "i_rated_a": 425.0, + "t_avg": [ + 4800.0, + 120.0, + 7.0, + 0.1, + 0.004 + ], + "t_min": 0, + "t_total": 0, + "x_avg": [ + 850.0, + 1500.0, + 3050.0, + 7500.0, + 16500.0 + ], + "x_min": 0, + "x_total": 0 + }, + "Siemens NH-2-630": { + "fuse_type": "Siemens NH-2-630", + "i_rated_a": 630.0, + "t_avg": [ + 4800.0, + 120.0, + 7.0, + 0.1, + 0.004 + ], + "t_min": 0, + "t_total": 0, + "x_avg": [ + 1200.0, + 2000.0, + 4800.0, + 12000.0, + 26000.0 + ], + "x_min": 0, + "x_total": 0 + } + } + }, + "res_bus": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"vm_pu\",\"va_degree\",\"p_mw\",\"q_mvar\",\"pf_vm_pu\",\"pf_va_degree\"],\"index\":[0,1,2,3,4,5,6,7],\"data\":[[null,null,null,null,1.0,0.0],[null,null,null,null,0.998093953177678,-0.092908624517735],[null,null,null,null,0.941919777182215,-0.668331529464845],[null,null,null,null,0.946184781358671,-0.402368675202762],[null,null,null,null,1.0,0.0],[null,null,null,null,0.998094703442918,-0.092794494299508],[null,null,null,null,0.940158419364373,-0.695043755492632],[null,null,null,null,0.946434129567225,-0.383834848843142]]}", + "orient": "split", + "dtype": { + "vm_pu": "float64", + "va_degree": "float64", + "p_mw": "float64", + "q_mvar": "float64", + "pf_vm_pu": "float64", + "pf_va_degree": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_bus_dc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"vm_pu\",\"p_mw\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "vm_pu": "float64", + "p_mw": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_line": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_from_mw\",\"q_from_mvar\",\"p_to_mw\",\"q_to_mvar\",\"pl_mw\",\"ql_mvar\",\"i_from_ka\",\"i_to_ka\",\"i_ka\",\"vm_from_pu\",\"va_from_degree\",\"vm_to_pu\",\"va_to_degree\",\"loading_percent\",\"pf_loading\"],\"index\":[0,1],\"data\":[[null,null,null,null,null,null,null,null,null,null,null,null,null,null,12.070777265744161],[null,null,null,null,null,null,null,null,null,null,null,null,null,null,12.064975979098271]]}", + "orient": "split", + "dtype": { + "p_from_mw": "float64", + "q_from_mvar": "float64", + "p_to_mw": "float64", + "q_to_mvar": "float64", + "pl_mw": "float64", + "ql_mvar": "float64", + "i_from_ka": "float64", + "i_to_ka": "float64", + "i_ka": "float64", + "vm_from_pu": "float64", + "va_from_degree": "float64", + "vm_to_pu": "float64", + "va_to_degree": "float64", + "loading_percent": "float64", + "pf_loading": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_line_dc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_from_mw\",\"p_to_mw\",\"pl_mw\",\"i_from_ka\",\"i_to_ka\",\"i_ka\",\"vm_from_pu\",\"vm_to_pu\",\"loading_percent\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_from_mw": "float64", + "p_to_mw": "float64", + "pl_mw": "float64", + "i_from_ka": "float64", + "i_to_ka": "float64", + "i_ka": "float64", + "vm_from_pu": "float64", + "vm_to_pu": "float64", + "loading_percent": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_trafo": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_hv_mw\",\"q_hv_mvar\",\"p_lv_mw\",\"q_lv_mvar\",\"pl_mw\",\"ql_mvar\",\"i_hv_ka\",\"i_lv_ka\",\"vm_hv_pu\",\"va_hv_degree\",\"vm_lv_pu\",\"va_lv_degree\",\"loading_percent\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_hv_mw": "float64", + "q_hv_mvar": "float64", + "p_lv_mw": "float64", + "q_lv_mvar": "float64", + "pl_mw": "float64", + "ql_mvar": "float64", + "i_hv_ka": "float64", + "i_lv_ka": "float64", + "vm_hv_pu": "float64", + "va_hv_degree": "float64", + "vm_lv_pu": "float64", + "va_lv_degree": "float64", + "loading_percent": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_trafo3w": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_hv_mw\",\"q_hv_mvar\",\"p_mv_mw\",\"q_mv_mvar\",\"p_lv_mw\",\"q_lv_mvar\",\"pl_mw\",\"ql_mvar\",\"i_hv_ka\",\"i_mv_ka\",\"i_lv_ka\",\"vm_hv_pu\",\"va_hv_degree\",\"vm_mv_pu\",\"va_mv_degree\",\"vm_lv_pu\",\"va_lv_degree\",\"va_internal_degree\",\"vm_internal_pu\",\"loading_percent\",\"pf_loading\"],\"index\":[0,1],\"data\":[[null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,78.754132366422439],[null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,78.774886577535924]]}", + "orient": "split", + "dtype": { + "p_hv_mw": "float64", + "q_hv_mvar": "float64", + "p_mv_mw": "float64", + "q_mv_mvar": "float64", + "p_lv_mw": "float64", + "q_lv_mvar": "float64", + "pl_mw": "float64", + "ql_mvar": "float64", + "i_hv_ka": "float64", + "i_mv_ka": "float64", + "i_lv_ka": "float64", + "vm_hv_pu": "float64", + "va_hv_degree": "float64", + "vm_mv_pu": "float64", + "va_mv_degree": "float64", + "vm_lv_pu": "float64", + "va_lv_degree": "float64", + "va_internal_degree": "float64", + "vm_internal_pu": "float64", + "loading_percent": "float64", + "pf_loading": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_impedance": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_from_mw\",\"q_from_mvar\",\"p_to_mw\",\"q_to_mvar\",\"pl_mw\",\"ql_mvar\",\"i_from_ka\",\"i_to_ka\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_from_mw": "float64", + "q_from_mvar": "float64", + "p_to_mw": "float64", + "q_to_mvar": "float64", + "pl_mw": "float64", + "ql_mvar": "float64", + "i_from_ka": "float64", + "i_to_ka": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_ext_grid": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_mw\",\"q_mvar\",\"pf_p\",\"pf_q\"],\"index\":[0,1],\"data\":[[null,null,0.546666352941517,-0.073272435813862],[null,null,0.546195497108288,-0.073164402475002]]}", + "orient": "split", + "dtype": { + "p_mw": "float64", + "q_mvar": "float64", + "pf_p": "float64", + "pf_q": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_load": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_mw\",\"q_mvar\",\"pf_p\",\"pf_q\"],\"index\":[0,1,2,3],\"data\":[[null,null,0.300000011920929,0.200000002980232],[null,null,0.200000002980232,0.100000001490116],[null,null,0.200000002980232,0.100000001490116],[null,null,0.300000011920929,0.200000002980232]]}", + "orient": "split", + "dtype": { + "p_mw": "float64", + "q_mvar": "float64", + "pf_p": "float64", + "pf_q": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_motor": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_mw\",\"q_mvar\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_mw": "float64", + "q_mvar": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_sgen": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_mw\",\"q_mvar\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_mw": "float64", + "q_mvar": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_storage": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_mw\",\"q_mvar\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_mw": "float64", + "q_mvar": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_shunt": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_mw\",\"q_mvar\",\"vm_pu\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_mw": "float64", + "q_mvar": "float64", + "vm_pu": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_gen": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_mw\",\"q_mvar\",\"va_degree\",\"vm_pu\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_mw": "float64", + "q_mvar": "float64", + "va_degree": "float64", + "vm_pu": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_ward": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_mw\",\"q_mvar\",\"vm_pu\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_mw": "float64", + "q_mvar": "float64", + "vm_pu": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_xward": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_mw\",\"q_mvar\",\"vm_pu\",\"va_internal_degree\",\"vm_internal_pu\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_mw": "float64", + "q_mvar": "float64", + "vm_pu": "float64", + "va_internal_degree": "float64", + "vm_internal_pu": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_dcline": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_from_mw\",\"q_from_mvar\",\"p_to_mw\",\"q_to_mvar\",\"pl_mw\",\"vm_from_pu\",\"va_from_degree\",\"vm_to_pu\",\"va_to_degree\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_from_mw": "float64", + "q_from_mvar": "float64", + "p_to_mw": "float64", + "q_to_mvar": "float64", + "pl_mw": "float64", + "vm_from_pu": "float64", + "va_from_degree": "float64", + "vm_to_pu": "float64", + "va_to_degree": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_asymmetric_load": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_mw\",\"q_mvar\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_mw": "float64", + "q_mvar": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_asymmetric_sgen": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_mw\",\"q_mvar\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_mw": "float64", + "q_mvar": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_switch": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"i_ka\",\"loading_percent\",\"pf_closed\",\"pf_in_service\"],\"index\":[0,1,2,3,4,5,6,7,8,9],\"data\":[[null,null,true,true],[null,null,true,true],[null,null,true,true],[null,null,true,true],[null,null,true,true],[null,null,true,true],[null,null,true,true],[null,null,true,true],[null,null,true,true],[null,null,true,true]]}", + "orient": "split", + "dtype": { + "i_ka": "float64", + "loading_percent": "float64", + "pf_closed": "object", + "pf_in_service": "object" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_tcsc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"thyristor_firing_angle_degree\",\"x_ohm\",\"p_from_mw\",\"q_from_mvar\",\"p_to_mw\",\"q_to_mvar\",\"pl_mw\",\"ql_mvar\",\"i_ka\",\"vm_from_pu\",\"va_from_degree\",\"vm_to_pu\",\"va_to_degree\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "thyristor_firing_angle_degree": "float64", + "x_ohm": "float64", + "p_from_mw": "float64", + "q_from_mvar": "float64", + "p_to_mw": "float64", + "q_to_mvar": "float64", + "pl_mw": "float64", + "ql_mvar": "float64", + "i_ka": "float64", + "vm_from_pu": "float64", + "va_from_degree": "float64", + "vm_to_pu": "float64", + "va_to_degree": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_svc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"thyristor_firing_angle_degree\",\"x_ohm\",\"q_mvar\",\"vm_pu\",\"va_degree\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "thyristor_firing_angle_degree": "float64", + "x_ohm": "float64", + "q_mvar": "float64", + "vm_pu": "float64", + "va_degree": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_ssc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"q_mvar\",\"vm_internal_pu\",\"va_internal_degree\",\"vm_pu\",\"va_degree\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "q_mvar": "float64", + "vm_internal_pu": "float64", + "va_internal_degree": "float64", + "vm_pu": "float64", + "va_degree": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_vsc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_mw\",\"q_mvar\",\"p_dc_mw\",\"vm_internal_pu\",\"va_internal_degree\",\"vm_pu\",\"va_degree\",\"vm_dc_pu\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_mw": "float64", + "q_mvar": "float64", + "p_dc_mw": "float64", + "vm_internal_pu": "float64", + "va_internal_degree": "float64", + "vm_pu": "float64", + "va_degree": "float64", + "vm_dc_pu": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_bus_est": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"vm_pu\",\"va_degree\",\"p_mw\",\"q_mvar\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "vm_pu": "float64", + "va_degree": "float64", + "p_mw": "float64", + "q_mvar": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_line_est": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_from_mw\",\"q_from_mvar\",\"p_to_mw\",\"q_to_mvar\",\"pl_mw\",\"ql_mvar\",\"i_from_ka\",\"i_to_ka\",\"i_ka\",\"vm_from_pu\",\"va_from_degree\",\"vm_to_pu\",\"va_to_degree\",\"loading_percent\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_from_mw": "float64", + "q_from_mvar": "float64", + "p_to_mw": "float64", + "q_to_mvar": "float64", + "pl_mw": "float64", + "ql_mvar": "float64", + "i_from_ka": "float64", + "i_to_ka": "float64", + "i_ka": "float64", + "vm_from_pu": "float64", + "va_from_degree": "float64", + "vm_to_pu": "float64", + "va_to_degree": "float64", + "loading_percent": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_trafo_est": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_hv_mw\",\"q_hv_mvar\",\"p_lv_mw\",\"q_lv_mvar\",\"pl_mw\",\"ql_mvar\",\"i_hv_ka\",\"i_lv_ka\",\"vm_hv_pu\",\"va_hv_degree\",\"vm_lv_pu\",\"va_lv_degree\",\"loading_percent\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_hv_mw": "float64", + "q_hv_mvar": "float64", + "p_lv_mw": "float64", + "q_lv_mvar": "float64", + "pl_mw": "float64", + "ql_mvar": "float64", + "i_hv_ka": "float64", + "i_lv_ka": "float64", + "vm_hv_pu": "float64", + "va_hv_degree": "float64", + "vm_lv_pu": "float64", + "va_lv_degree": "float64", + "loading_percent": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_trafo3w_est": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_hv_mw\",\"q_hv_mvar\",\"p_mv_mw\",\"q_mv_mvar\",\"p_lv_mw\",\"q_lv_mvar\",\"pl_mw\",\"ql_mvar\",\"i_hv_ka\",\"i_mv_ka\",\"i_lv_ka\",\"vm_hv_pu\",\"va_hv_degree\",\"vm_mv_pu\",\"va_mv_degree\",\"vm_lv_pu\",\"va_lv_degree\",\"va_internal_degree\",\"vm_internal_pu\",\"loading_percent\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_hv_mw": "float64", + "q_hv_mvar": "float64", + "p_mv_mw": "float64", + "q_mv_mvar": "float64", + "p_lv_mw": "float64", + "q_lv_mvar": "float64", + "pl_mw": "float64", + "ql_mvar": "float64", + "i_hv_ka": "float64", + "i_mv_ka": "float64", + "i_lv_ka": "float64", + "vm_hv_pu": "float64", + "va_hv_degree": "float64", + "vm_mv_pu": "float64", + "va_mv_degree": "float64", + "vm_lv_pu": "float64", + "va_lv_degree": "float64", + "va_internal_degree": "float64", + "vm_internal_pu": "float64", + "loading_percent": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_impedance_est": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_from_mw\",\"q_from_mvar\",\"p_to_mw\",\"q_to_mvar\",\"pl_mw\",\"ql_mvar\",\"i_from_ka\",\"i_to_ka\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_from_mw": "float64", + "q_from_mvar": "float64", + "p_to_mw": "float64", + "q_to_mvar": "float64", + "pl_mw": "float64", + "ql_mvar": "float64", + "i_from_ka": "float64", + "i_to_ka": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_switch_est": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"i_ka\",\"loading_percent\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "i_ka": "float64", + "loading_percent": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_bus_sc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[],\"index\":[],\"data\":[]}", + "orient": "split", + "is_multiindex": false, + "is_multicolumn": false + }, + "res_line_sc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[],\"index\":[],\"data\":[]}", + "orient": "split", + "is_multiindex": false, + "is_multicolumn": false + }, + "res_trafo_sc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[],\"index\":[],\"data\":[]}", + "orient": "split", + "is_multiindex": false, + "is_multicolumn": false + }, + "res_trafo3w_sc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[],\"index\":[],\"data\":[]}", + "orient": "split", + "is_multiindex": false, + "is_multicolumn": false + }, + "res_ext_grid_sc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[],\"index\":[],\"data\":[]}", + "orient": "split", + "is_multiindex": false, + "is_multicolumn": false + }, + "res_gen_sc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[],\"index\":[],\"data\":[]}", + "orient": "split", + "is_multiindex": false, + "is_multicolumn": false + }, + "res_sgen_sc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[],\"index\":[],\"data\":[]}", + "orient": "split", + "is_multiindex": false, + "is_multicolumn": false + }, + "res_switch_sc": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[],\"index\":[],\"data\":[]}", + "orient": "split", + "is_multiindex": false, + "is_multicolumn": false + }, + "res_bus_3ph": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"vm_a_pu\",\"va_a_degree\",\"vm_b_pu\",\"va_b_degree\",\"vm_c_pu\",\"va_c_degree\",\"p_a_mw\",\"q_a_mvar\",\"p_b_mw\",\"q_b_mvar\",\"p_c_mw\",\"q_c_mvar\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "vm_a_pu": "float64", + "va_a_degree": "float64", + "vm_b_pu": "float64", + "va_b_degree": "float64", + "vm_c_pu": "float64", + "va_c_degree": "float64", + "p_a_mw": "float64", + "q_a_mvar": "float64", + "p_b_mw": "float64", + "q_b_mvar": "float64", + "p_c_mw": "float64", + "q_c_mvar": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_line_3ph": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_a_from_mw\",\"q_a_from_mvar\",\"p_b_from_mw\",\"q_b_from_mvar\",\"q_c_from_mvar\",\"p_a_to_mw\",\"q_a_to_mvar\",\"p_b_to_mw\",\"q_b_to_mvar\",\"p_c_to_mw\",\"q_c_to_mvar\",\"p_a_l_mw\",\"q_a_l_mvar\",\"p_b_l_mw\",\"q_b_l_mvar\",\"p_c_l_mw\",\"q_c_l_mvar\",\"i_a_from_ka\",\"i_a_to_ka\",\"i_b_from_ka\",\"i_b_to_ka\",\"i_c_from_ka\",\"i_c_to_ka\",\"i_a_ka\",\"i_b_ka\",\"i_c_ka\",\"i_n_from_ka\",\"i_n_to_ka\",\"i_n_ka\",\"loading_a_percent\",\"loading_b_percent\",\"loading_c_percent\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_a_from_mw": "float64", + "q_a_from_mvar": "float64", + "p_b_from_mw": "float64", + "q_b_from_mvar": "float64", + "q_c_from_mvar": "float64", + "p_a_to_mw": "float64", + "q_a_to_mvar": "float64", + "p_b_to_mw": "float64", + "q_b_to_mvar": "float64", + "p_c_to_mw": "float64", + "q_c_to_mvar": "float64", + "p_a_l_mw": "float64", + "q_a_l_mvar": "float64", + "p_b_l_mw": "float64", + "q_b_l_mvar": "float64", + "p_c_l_mw": "float64", + "q_c_l_mvar": "float64", + "i_a_from_ka": "float64", + "i_a_to_ka": "float64", + "i_b_from_ka": "float64", + "i_b_to_ka": "float64", + "i_c_from_ka": "float64", + "i_c_to_ka": "float64", + "i_a_ka": "float64", + "i_b_ka": "float64", + "i_c_ka": "float64", + "i_n_from_ka": "float64", + "i_n_to_ka": "float64", + "i_n_ka": "float64", + "loading_a_percent": "float64", + "loading_b_percent": "float64", + "loading_c_percent": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_trafo_3ph": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_a_hv_mw\",\"q_a_hv_mvar\",\"p_b_hv_mw\",\"q_b_hv_mvar\",\"p_c_hv_mw\",\"q_c_hv_mvar\",\"p_a_lv_mw\",\"q_a_lv_mvar\",\"p_b_lv_mw\",\"q_b_lv_mvar\",\"p_c_lv_mw\",\"q_c_lv_mvar\",\"p_a_l_mw\",\"q_a_l_mvar\",\"p_b_l_mw\",\"q_b_l_mvar\",\"p_c_l_mw\",\"q_c_l_mvar\",\"i_a_hv_ka\",\"i_a_lv_ka\",\"i_b_hv_ka\",\"i_b_lv_ka\",\"i_c_hv_ka\",\"i_c_lv_ka\",\"loading_a_percent\",\"loading_b_percent\",\"loading_c_percent\",\"loading_percent\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_a_hv_mw": "float64", + "q_a_hv_mvar": "float64", + "p_b_hv_mw": "float64", + "q_b_hv_mvar": "float64", + "p_c_hv_mw": "float64", + "q_c_hv_mvar": "float64", + "p_a_lv_mw": "float64", + "q_a_lv_mvar": "float64", + "p_b_lv_mw": "float64", + "q_b_lv_mvar": "float64", + "p_c_lv_mw": "float64", + "q_c_lv_mvar": "float64", + "p_a_l_mw": "float64", + "q_a_l_mvar": "float64", + "p_b_l_mw": "float64", + "q_b_l_mvar": "float64", + "p_c_l_mw": "float64", + "q_c_l_mvar": "float64", + "i_a_hv_ka": "float64", + "i_a_lv_ka": "float64", + "i_b_hv_ka": "float64", + "i_b_lv_ka": "float64", + "i_c_hv_ka": "float64", + "i_c_lv_ka": "float64", + "loading_a_percent": "float64", + "loading_b_percent": "float64", + "loading_c_percent": "float64", + "loading_percent": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_ext_grid_3ph": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_a_mw\",\"q_a_mvar\",\"p_b_mw\",\"q_b_mvar\",\"p_c_mw\",\"q_c_mvar\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_a_mw": "float64", + "q_a_mvar": "float64", + "p_b_mw": "float64", + "q_b_mvar": "float64", + "p_c_mw": "float64", + "q_c_mvar": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_shunt_3ph": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[],\"index\":[],\"data\":[]}", + "orient": "split", + "is_multiindex": false, + "is_multicolumn": false + }, + "res_load_3ph": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_mw\",\"q_mvar\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_mw": "float64", + "q_mvar": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_sgen_3ph": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_mw\",\"q_mvar\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_mw": "float64", + "q_mvar": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_storage_3ph": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_mw\",\"q_mvar\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_mw": "float64", + "q_mvar": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_asymmetric_load_3ph": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_a_mw\",\"q_a_mvar\",\"p_b_mw\",\"q_b_mvar\",\"p_c_mw\",\"q_c_mvar\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_a_mw": "float64", + "q_a_mvar": "float64", + "p_b_mw": "float64", + "q_b_mvar": "float64", + "p_c_mw": "float64", + "q_c_mvar": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "res_asymmetric_sgen_3ph": { + "_module": "pandas.core.frame", + "_class": "DataFrame", + "_object": "{\"columns\":[\"p_a_mw\",\"q_a_mvar\",\"p_b_mw\",\"q_b_mvar\",\"p_c_mw\",\"q_c_mvar\"],\"index\":[],\"data\":[]}", + "orient": "split", + "dtype": { + "p_a_mw": "float64", + "q_a_mvar": "float64", + "p_b_mw": "float64", + "q_b_mvar": "float64", + "p_c_mw": "float64", + "q_c_mvar": "float64" + }, + "is_multiindex": false, + "is_multicolumn": false + }, + "user_pf_options": { + "max_iteration": 30, + "trafo3w_losses": "star" + }, + "pf_converged": true + } +} \ No newline at end of file diff --git a/tutorials/hosting_capacity.ipynb b/tutorials/hosting_capacity.ipynb index 7af5641d0..f1e0bc1d0 100644 --- a/tutorials/hosting_capacity.ipynb +++ b/tutorials/hosting_capacity.ipynb @@ -19,7 +19,10 @@ { "cell_type": "markdown", "metadata": { - "collapsed": true + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } }, "source": [ "### Evaluation of constraint violations\n", @@ -169,21 +172,9 @@ "execution_count": 6, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\mmilovic\\anaconda3\\lib\\site-packages\\seaborn\\_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n", - " warnings.warn(\n", - "C:\\Users\\mmilovic\\anaconda3\\lib\\site-packages\\seaborn\\_core.py:1326: UserWarning: Vertical orientation ignored with only `x` specified.\n", - " warnings.warn(single_var_warning.format(\"Vertical\", \"x\"))\n", - "C:\\Users\\mmilovic\\AppData\\Local\\Temp\\ipykernel_20740\\1254395083.py:14: UserWarning: FixedFormatter should only be used together with FixedLocator\n", - " ax.set_xticklabels([\"\"])\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8sAAAHLCAYAAAD/bgqGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACbJklEQVR4nOzdd3xUZdrG8d+ZSU8oIbTQm/ReRMCCFCkqRRQQRcVX0EVUdHXtuq5t1RUVsSsWsNGkKkiRrhBKQGpogdACIYT0MjPn/SNmJBBgMkk4Kdf388luOHPOnCthiLnneZ77MUzTNBERERERERERN5vVAURERERERESKGxXLIiIiIiIiIudQsSwiIiIiIiJyDhXLIiIiIiIiIudQsSwiIiIiIiJyDhXLIiIiIiIiIudQsSwiIiIiIiJyjlJTLJumidPpRNtGi4iIiIiISEGVmmLZ5XIRGRmJy+WyOoqIiIiIiIiUcKWmWBYREREREREpLCqWRURERERERM6hYllERERERETkHCqWRURERERERM6hYllERERERETkHCqWRURERERERM6hYllERERERETkHCqWRURERERERM6hYllERERERETkHCqWRURERERERM6hYllERERERETkHCqWRURERERERM6hYllERERERETkHCqWRURERERERM6hYllERERERETkHCqWRURERERERM6hYllERERERETkHCqWRURERERERM6hYllERERERETkHCqWRURERERERM6hYllERERERETkHCqWRURERERERM6hYllERERERETkHCqWRURERERERM6hYllERERERETkHCqWRURERERERM6hYllERERERETkHCqWRURERERERM6hYllERERERETkHCqWRURERERERM6hYllERERERETkHCqWRURERERERM6hYllERERERETkHCqWRURERERERM6hYllERERERETkHCqWRURERERERM6hYllERERERETkHCqWRURERERERM7hY3UAEREREZGzmaaJy8z+f9ME86/jxl//YwCGAYZhYDMM64KKSKmmYllEREREioRpmjhcJgbgY889oTE9y0mGw5X9/1ku0rIcpGU5SclwkpbpJC3LSXpWzv+7cJkm/j42/Ow2fP/6fz8fG0F+dsoH+FIuwIdg/+yPQF87fj42j3KIiFyIimURERER8VqW04XdlnuENznDwfEz6cTEp3IkIY2jCWkcO5POsTNpHElII/ZMBplOV5HmCvKzE14hkJoVA6hRMZDwitmf1woNonZoEFXL++N7VuHsdJmYmPjYVEyLSDYVyyIiIiLikSynCx+bgWEYZDld7D2RzJbDCWw/ksjBUykcPZPOsYQ0UjKdVkclNdPJvpPJ7DuZnOfjhgGVg/2p8VcxXS8smBY1y9O2dkVqhQYBfxXQpqnRaJEySsWyiIiIiOSSM205Z+Q1LdPJzuOJbIlJYMfRRLYfTWTPiSSynOYlnqn4Mk04mZzByeQMthw+k+uxcv4+NKtRnpY1ytOiZgXa1a5IvbBgbDYDl2niPOt7IyKll4plERERkTLu7OI4y+kiMiaBjdGn2X70DNuOJhJ9KgWz5NbF+ZaU4WD9gXjWH4h3HwvwtdG0+t8FdOf6lWhQJQTzr+JZo88ipY+KZREREZEyKMvpwtduw+Uy2XEskZVRJ1m77xQbDsaTnlW064lLovSs7DcRImMS3Meqlw/gmisqc23jKlzXpArlA3xxuFzY1KVbpFQwTLN0vE/odDqJjIykbdu22O12q+OIiIiIFCuuv7ZhstsM4pIzWLIzluW7T7J2bxyJ6Q6r45V4NgNa1qzANVdUoUeTKrStUxG7zeZ+U0JESh4VyyIiIiKlVE6BbACbYxJYsiOW5VEn2HksyepopV6Ivw9dGoZxzRWV6dG0KrVCg3A4XZquLVKCqFgWERERKWUcLhc+Nhs7jyUyY+Nh5m05yomkDKtjlWlNqpVjQNsaDG5XkxoVA1U4i5QAKpZFRERESoGc4uv4mTRmbDzC7Mgj7D2R97ZJYq22tSsyoE0NBratQViIvwpnkWJKxbKIiIhICZVTZCWlZzEn8iizNx9h46HTZapzdUlmM+DqRpW5rWNt+rSojq/dwPXXunIRsZ66YYuIiIiUME6Xics0WbwjllmbDrMi6mSJ3vO4rHKZsHJPHCv3xFE+wIebWtdgWKfatKldUaPNIsWARpZFRERESgCny8RuM4hPyeSL1Qf4bt1BTqdmWR1LikDjaiH839UNuKV9TWyGoZFmEYuoWBYREREpxnJGGPfEJvHJyv3MjTxKplP7IJcFVUL8GdmlLvd0rUe5AB9ME2wqnEUuGxXLIiIiIsVQTpG8Muokn67cz+q9cVZHEosE+Nq4tX0txlzXkDqVgtzdzkWkaKlYFhERESlGctYjz9p0mM9XHWCPOlrLXwwDejWrxv3XNqBjvUpa1yxSxDxq8DVp0qSizgHAuHHjLst9RERERIobp8skOcPBV2sOMOWPg8QlZ1odSYoZ04TFO2JZvCOW1rUqMObaBvRrGY5pmiqaRYqARyPLTZs2xTCKfn3Ezp07vb5WI8siIiJSEjlcLhxOk4+W7+PzVftJyXRaHUlKkDqVgvhX3ybc1LqGRppFClm+to4qyhnbl6MYFxERESkuHE4XhmHw3bpDTFy6RyPJ4pVD8amM+24zn67cz3M3NuPK+mE4XS7sWtMsUmD5KpY3b95MYGBgoQZISUmhQ4cOhfqcIiIiIsVVzujfrztieXPhLqJPpVodSUqBrYfPMPSTP+jepArP39ichlVDcLlMdc8WKYB8FctFQSPKIiIiUhbk7JO86VACry7YwZbDZ6yOJKXQ8t0nWRm1giHta/Gvvk0JC/ZTwSziJY+K5ZCQEAzDKJLC1jAMQkJCsGmqiIiIiJRCOaN7B+JSeGXBDpbvPml1JCnlXCZM33iYeVuPMqprfcb1aESArx27imaRfPGowVdmZiZ+fn6XI4/X1OBLREREihuny+R0aib//WUXszYdxlUqNuyUkiY0yJdxPRpxd5d6AGoCJuIhj4rldu3aceWVV9K1a1e6detGo0aNLke2fFGxLCIiIsWFw+nCZjOY8vtB3lq0m+QMh9WRRGhcLYS3b2tDy5oVtBRSxANebR1VtWpVd+HctWtXKlWqVKQhPaFiWUSk+Jg1axZPP/10vq+78sormTJlShEkuvxM0+Srr77ixx9/5MiRIwQFBdGrVy9effVVq6NJETNNkz0nkvnXjK1ExiRYHUckF5sBo7rV5199m2A3DI0yi1yER2uWb775ZjZu3MjRo0cBiI2NZfbs2cyePRvDMGjSpAndunWjW7dudOjQodhP2RYRkaIVFhZG+/btzzt+7Ngxjh07hp+fHy1btjzv8caNG1+OeJfFl19+yRtvvAFAzZo1qVixIrVq1bI4lRQlh9OF0zR5+9coJq8+gENzrqUYcpnwxeoDLN4Ry5u3tuaqBmGYpqmRZpE8eDSynOPo0aNERESwYcMGIiIiiI6O/vuJ/voHFhAQQIcOHdzF8+X6xUcjyyIixd/777/PpEmTqFmzJsuWLbM6TpG67bbb2Lp1KzfeeCMTJkywOo4UoZxCY/2BeB6fvoVD8doKSkqOoR1r8+LNzfH3sWmUWeQc+do6qkaNGgwcOJCBAwcCcOrUqVzF8549e0hLS2P16tWsWbMGgMqVK7unbHfr1o2wsLDC/ypERESKmdOnTwPZU8ul9HI4XThcJq8u2MnUdQfxfAhCpHiYtiGG5btP8NrgVvRqXg2XaWLTKLMIUMB9lsPCwujbty99+/YFICkpiY0bN7qL5+3bt3Py5EnmzJnD3LlzAWjSpAmzZ88ucHAREZHizOVyAWhpUim38dBpHp++hZj4NKujiHjtRFIG932zgRtbhfPq4JaEBPjgo21dRfI3DTu/MjIyWLlyJT/++CNr167F5XJhGAY7d+4s9HtpGraISPHn6TTsJk2aALBmzRr++9//snTpUmw2Gy1atGDy5Mn4+PjgcDiYP38+CxcuZPv27SQkJODj40PVqlXp3Lkzo0aNon79+rmed+TIkaxfv57PPvuMqlWr8tFHHxEREUFiYiLVqlWjZ8+ePPDAA3k2rpw/fz4zZ85k+/btpKamUq5cOZo3b87AgQO56aabsP31i2XOPc517tccGxvLV199xYoVKzhy5Ag2m406derQu3dv7rrrLsqXL5/n92706NG0bduWt956iyNHjlC1alX++c9/0qZNG3r27Em1atVYvnw533//PdOnT+fAgQMEBgbSoUMHHnvsMRo2bEh8fDwffPABS5cuJS4ujrCwMHr27Mmjjz5KuXLlzsuenJzM119/zeLFizl48CCmaVK7dm169+7NPffcc17WnAZv/fv358477+Q///kP+/bto2LFitx3333cc889F/y7LwkcLheY8OrPO/lqbbRGk6VUqRjkyyuDWnJT6xpayyxlXoFGlvOya9cu1q9fz/r169m2bRuxsbFA9noegMDAwMK+pYiIlFIPPfQQmzdvpnHjxsTHx1OlShV8fHxIT09nzJgxrFu3DsguRBs3bsypU6eIjo4mOjqaefPm8e2339K8efPznnflypX88MMPmKZJvXr1CA4O5tChQ3z99dcsX76cWbNmERIS4j7/9ddf56uvvnLfq3bt2pw4cYLVq1e7P958800gu0mZw+Fg27ZtZGZmUq9ePSpVqkSVKlXcz/f777/z0EMPkZSUhK+vL40aNcLhcBAVFcWuXbuYMWMGn3zyiftNg7NFREQwefJkKlSoQMOGDdm3bx/NmjVzP+5yuXjkkUf49ddfqVatGnXr1mX//v0sWbKEiIgIPvnkEx5++GHi4uKoW7cuNWrU4ODBg3z77bfs2LGD77//Ptcvx/v27WP06NEcOXIEu91O7dq1CQgIYO/evXzwwQfMnj2bzz77jIYNG56Xdf/+/dx3333Y7XauuOIK9u3bVyy3n8wPh8tFXFImD0zdqE7XUiolpGYx7rvNrNoTx8sDW2IzTK1lljKrwMXyiRMnWLVqFatWreKPP/7gzJkzwN/FsWEYNG3alKuvvtrdLVtERMQT27ZtY8qUKXTq1AmXy0ViYiIAn332GevWrSM0NJRPP/2U1q1bu6/ZunUrY8eO5eTJk3z88cdMnDjxvOedMmUK3bt35+WXX6Zq1aoALF26lIceeoiDBw8yY8YM9+jnvn37+Oqrr/D39+ezzz6jc+fO7ueZPXs2Tz/9NHPmzGHEiBG0bduW559/HoAePXpw5MgR7r//fm655Rb3NUeOHGHs2LGkpqbSo0cPXn75ZSpXrgxATEwMTzzxBJs3b+aBBx5g7ty55430RkZG0rt3byZMmICfnx/x8fFUqlSJw4cPA3Dy5EmWLVvGf//7XwYNGoRhGERFRTF06FDOnDnDiBEjaNq0KVOmTKFevXoAzJw5k2eeeYbNmzcTERHhXmedmprKP/7xD44cOULPnj158cUXqVatmvs+zz33HMuXL2fs2LHMmTOHgICAXFl37dpF27Zt+fzzzylXrhynT5+mYsWKnr8AiqFVUXGM/zGSM2lZVkcRKVI/RsQQeSiBj0d2oE6lIOw2jTBL2ZPvt4kcDgd//PEHb731FgMGDOC6667jueeeY9GiRSQkJGCaJmFhYQwcOJC33nqLNWvW8NNPP/HPf/6Tq666Cl9f36L4OkREpBTq168fnTp1AsBms7kLrbVr12Kz2Rg3blyuQhmgdevW3H777QBERUXl+bxhYWFMnDjRXSgD9OzZk2uvvRaATZs2uY/v3r0bgPr16+cqlAEGDRrE7bffzk033URmZqZHX9Mnn3xCamoqjRs35r333nMXygC1a9fmk08+oUqVKhw9evSCe04/+eST7rXQeU0Zv/XWWxk8eLB7hLhx48b07NkTyH4z+7333nMXygBDhgyhZs2aAOzYscN9fPr06Rw8eJAWLVrw/vvvuwtlgCpVqvDee+9Rs2ZNoqOjmTVrVp5Zx48f7y74Q0NDS+SUTqfLhctl8sYvu7j36wgVylJm7I5Nov97q/hp8xHg78EwkbLCo5HlmJgY9+jxunXrSEvLbmKR8w/Gz8+Pjh070q1bN66++uo8p42JiIjk14VmI33//fdkZWVdsPDKWfKTnp6e5+NdunTB39//vOMNGzbkt99+IykpyX2sbt26QPYo6RtvvMGwYcNyFZovvPCCR19LjuXLlwNw++2359n8q0KFCgwZMoSPP/6YJUuWMHbs2FyPV6lShdq1a1/0Ht27dz/vWE4xXL9+ferUqXPe41WrVuXIkSMkJye7jy1ZsgSA/v3759kPJCAggD59+jB58mR+++03RowYketxm81Gu3btLpq1uHM4XSSkZfHgt5tYdyDe6jgil11alpPHp29h3f5TvDa4FYamZUsZ4lGx3Lt3b/cvJDkFcqNGjdxTq6+88so8f+kQEREpiLPX+Z7L19eXM2fOEBkZSXR0NDExMURHR7Nz507i4uKAvztSn+vsEdKz5Uwjdjgc7mMtWrTg5ptvZt68eUyePJnJkydTs2ZNunTpwtVXX80111yTa33zxSQnJ7t7ebRs2fKC57Vo0QKAAwcOnPfY2aPhFxIeHn7esZyZXXmNRJ/9+NkjRzkj89OnT2fp0qV5Xpfzvd6/f/95j5UvX/68qdkliWmabDh4mnHfbSIu2bOZAyKl1fSNh9lxLJHP7+5IlRB/FcxSJuRrzXJoaCijRo1i4MCBHv3HWkREpCAuVGglJyfz6quvMm/ePLKy/p4S6+vrS4sWLWjWrBmrVq264PPmd0nQW2+9xVVXXcX06dPZsmULR44cYcaMGcyYMQN/f3+GDh3Kv/71r0tuE5WSkuL+/GIFds5jqamp53Wj9eTN6Ys107TlYzuYnFHmnKZpF3P2aHyOkvpGutNlYhjw/rK9vLckCpdmnooAsP1oIv3eW8Wk29vRrVHlErmsQiQ/PC6WTdPk9OnTTJgwgQULFuRq2KU9JEVE5HIaO3Ys69atIyAggDvvvJM2bdpwxRVXULduXXx9fZk2bdpFi+X8MgyDW2+9lVtvvZX4+HjWrVvH+vXr3ds+5awtfu655y76PMHBwe7Pz57ufK6cZplBQUGW/jIaGBhIUlISH3/8Mddff71lOS4nh9NFWpaTcd9tZkXUSavjiBQ7CalZ3DV5PY/2bsxDPa7Q9lJSqnn09vKkSZMYNmwYNWpk77e2a9cuvvjiC+699146d+7MmDFj+Prrr9m3b19R5xURkTIuMjLSvWXUJ598wlNPPUW/fv1o1KiRe8T4+PHjhXa/5ORktm3b5p5mXKlSJfr168eLL77I0qVL3c3E5syZc8nnCgkJcU8t37Zt2wXPy3ns7LXRVsjZp3rPnj0XPCc6Opo///yT+PiSv57X4XQRl5zJoA/WqlAWuQiXCW//GsWjP0biMrNnY4iURh4Vy7169eKll15i6dKl/PLLLzzzzDNcffXV+Pv7k5aWxsqVK/nvf//LTTfdxPXXX89zzz3HwoUL3Vt8iIiIFJacLZIg73W/aWlpLFiwAACn01ng+02cOJEhQ4bwxhtvnPeYYRh06dIlX/fq0aMHkN2kLK8O2mfOnGH27NkA7u7cVskZTZ4xY0aezdIcDgdjx47l1ltvzfP7U5I4XC72nUxhwKTV7Dt54VF/EfnbT5uPcPfk9WQ6XDicefeIECnJ8r0yv379+tx111189tlnrF+/ni+++IJ77rmHBg0aYJomx44dY+bMmTz66KN06dKFYcOG8f7777Np06YLNloRERHxVIMGDdyff/DBB7nWLO/du5fRo0e719fm7N5QEAMGDMAwDJYvX87nn3+e635Hjx7l448/BuC6667z6PlGjx5NcHAwUVFRPPLII5w6dcr9WExMDPfffz9xcXFUq1aNu+++u8D5C+KOO+6gSpUqHDx4kH/84x8cPXrU/Vh8fDzjx49n3759+Pr6cu+991qYtGBcLpOIA/EM+WgtJ5IyrI4jUqKs3hvHrR+vJTHdoYJZSp18Nfg6l5+fH926daNbt2489dRTHD9+3L3F1O+//05SUhJbtmxh69atfPjhh4SEhNClSxcmTpxYWPlFRKSMad68Of369eOXX35h8uTJzJo1i1q1apGQkOAede7WrRtr1qwhJSWF5ORkj7tV56Vly5aMHz+ed955h7feeotPPvmEWrVqkZaWRkxMDA6Hgzp16vDUU0959Hy1a9dm4sSJPPLIIyxbtozrrruORo0a4XQ62bt3Ly6Xixo1ajBp0qQLdq6+XCpUqMBHH33EP/7xD9auXUvPnj1p1KgRhmFw4MABMjMz8fHxYcKECSV628i5W47yxIwtZDk1lVTEG9uPJjJg0mq+va8zNSsGqlO2lBoFKpbPVb16dW677TZuu+02XC4XO3bsICIigrVr17JmzRqSkpJYvHhxYd5SRETKoLfffpuuXbsybdo0Dh06xO7duwkNDeX6669n+PDhdO/eneuvv56jR4+ybNkyBgwYUKD7PfDAAzRq1Ihp06axfft2oqKiCAgIoFmzZvTu3ZuRI0cSFBTk8fNdffXVLFiwgC+//JIVK1Zw4MABfH19adasGX379mX48OGUL1++QJkLS6tWrZg3bx5Tpkxh2bJlHDx4kKysLKpUqcKVV17JqFGjaNq0qdUxvfbR8r28uWg3pupkkQI5fDqNQR+s4atRV9KyZgXsNjX9kpLPMM3C/8/D3r17iYyMZNu2be5fKjIzM93d8nbu3FnYt8TpdBIZGUnbtm2x2+2F/vwiIiJSOrhcJhjw77nb+eb3g1bHESlVAnxtfDCiPdc3rYpNXbKlhCvwyHJmZiZbt25l06ZNbNq0ic2bN7sbe+XU4TabjWbNmtG1a1d3IxQRERGRy83pcuFywbjvN7Noe+F1TReRbOlZLsZM2cgrg1py+5V1rI4jUiD5Lpbj4+PZtGkTGzduZPPmzWzfvh2HwwH8XRwD1K1bly5dutC1a1c6d+5MhQoVCi+1iIiISD45XS7SMl3c8+V6Nhw8bXUckVLL6TJ5etafHE1I4583lNx+BiIeFcvTp093jxwfOnTIffzs4rhy5cp06dLF/REeHl74aUVERES84HS5yHC4uOPzP9hy+IzVcUTKhPeX7SU9y8WzNzazOoqIVzwqlp9//nkMw8hVHIeEhNCpUyf36HGjRo2KLKSIiIiIt5wukyynyV1frFehLHKZfbZqP4F+Nh7rrRFmKXk8nobt4+ND27Zt3euOW7dujc2mtvAiIiJSfLlcJk6XyaivIjT1WsQiE5fuJdDXzj+6a3BNShaPiuUvvviCDh06EBAQUNR5RERERAqFy2XiMk1Gf7OB3/edsjqOSJn2xsLdBPjauadrPQx1yZYSwqNiuVu3bkWdQ0RERKTQuEwTExj77SZWRJ20Oo6IAC/N20GAr53hnWqrYJYSwaNi+ejRo4V60xo1ahTq84mISMmXmZnJ7NmzWbZsGbt27SI+Ph6bzUaNGjXo0KEDgwcPpn379lbHvKTDhw/Ts2dPAH799Vfq1q1rcaK8vf/++0yaNIn27dvz/fffu4+PHDmS9evX88ADD/Doo49amNB7pmmCCY/8sJlfd8RaHUdEzvLsT38S4GtnYNsa2odZij2PiuUePXoU2rs/hmGwY8eOQnkuEREpHVavXs1zzz3HsWPHAAgNDaVRo0YkJydz6NAh9u3bx7Rp0+jTpw+vvfYaISEhFieW4so0TQzD4PHpkczfeszqOCJyDpcJj0/fQqCvjRuaV8dmU8EsxZfHDb7O7oQtIiJSWGbPns0zzzyD0+mkY8eOPProo3To0MH9Jm1ycjLTp0/ngw8+YNGiRezdu5evv/6aKlWqWJy8dHrjjTdIS0sjNDTU6iheMQyDZ2b9ycxNR6yOIiIX4HSZPPT9Zj4d2ZFrG1fBroJZiimPi+WcX1oqV65Mv379aNZM+6WJiEjBbN++neeffx6n08nw4cN58cUXz9tpISQkhFGjRnH11Vdz7733sm/fPp555hk+++wzi1KXbiV9qdQrC3bw3fpDVscQkUvIcpo8MHUjX426kk71Q/HRLjtSDHlULI8cOZKFCxdy8uRJTp48yZQpU6hfvz433ngjN954I/Xq1SvimCIiUhq9+eabZGZm0qpVK1544YWLbkl4xRVX8J///IcHHniAlStXMnv2bAYNGnT5wkqx5jJNvv3jIJ+vOmB1FBHxUIbDxf1TNjDvoaupWTEQH7sKZilePHpFPvvss6xcuZKvv/6aoUOHUqFCBfbv38+kSZPo168fQ4YM4csvvyQ2Vk00RETEM3v27OGPP/4A4P/+7/+w2+2XvOb666+nXbt2AEydOhWA1NRU2rVrR5MmTVi8ePEFrx01ahRNmjTh3XffzXU8Li6ON998k/79+9OmTRvatWvHkCFDmDx5MhkZGec9z/vvv0+TJk343//+x5IlS+jTpw8tW7akR48eLFiw4JJfw4EDB3jxxRfp3bs3LVu2pEOHDgwdOpSvvvqK9PT0PK9xOBzMnj2bBx54gGuuuYZWrVrRrl07+vTpwwsvvMCBA3kXiC6Xi5kzZzJ8+HA6duxIx44dGTNmDFu3br1gvpEjR9KkSRPeeecd97HDhw/TpEkTunXrhmmaTJ8+ndtuu4127drRrl07hg0bxsyZMy+4ZGv//v0888wz9OzZk1atWtGjRw/eeOMNkpKS3Pdbt27dJb93F+J0mazZG8e/56knikhJk5juYNSXEaQ7XDhdWvYpxUu+pmF37tyZzp0788ILL7BmzRoWLFjAsmXL2L59Ozt27OCtt96iQ4cO3HjjjfTp06fErncSEZGit3btWgBsNhvXXHONx9f17t2bzZs3s23bNk6dOkVYWBh9+/Zl1qxZzJ07l969e593TWxsrLswv+WWW9zHN27cyNixY0lISMDX15d69ephmibbt29n27ZtzJkzh88//zzP9dERERFMnjyZChUq0LBhQ/bt23fJJUpz587l2WefJTMzk4CAABo3bkxKSgpbtmxhy5YtzJw5k88++4zq1au7r0lPT2fMmDHuYrJmzZo0btyYU6dOER0dTXR0NPPmzePbb7+lefPm7usyMzN59NFHWbJkCQB16tQhJCSEtWvXsnbtWlq1auXx9zyHaZo8+eSTzJkzh/Lly1O/fn1iYmKIjIwkMjKSAwcO8Pjjj+e6ZtWqVTz88MOkpqYSFBRE48aNiY2NZfLkyfz222/4+Hj8q0ieHE4XB0+lMnbqJv2iLVJC7Y9L4R9TN/L1qCutjiKSi1dzHXx8fLjuuut48803Wbt2Le+//z433HADfn5+RERE8NJLL3HNNdcwZswY5syZQ0pKSmHnFhGREm7Xrl1AdvGXn+7WOQWhaZpERUUBMGTIEACWL19OUlLSedfMmzcPl8tFx44dqVOnDpBdQOcUykOHDmXt2rXMnz+fBQsW8Ouvv9KmTRt27drF+PHj88wRGRlJjx49WLFiBXPmzGHlypU0aNDggrm3bNnC008/TWZmJkOHDmXNmjXMmjWLRYsWMXv2bOrVq0dUVBRjx47F4XC4r/vss89Yt24doaGhTJ8+nWXLljFz5kyWL1/O9OnTqVKlCqmpqXz88ce57vfFF1+wZMkSypUrx5dffsnixYv56aefWLp0Ke3atWPTpk0ef89znDp1ivnz5/Pss8/yxx9/MGvWLFavXs2AAQMA+PLLL4mPj891/mOPPUZqaiqDBw9m9erVzJw5k1WrVvHaa69x+PBh9uzZk+8cOZwuk6R0B3d/uZ6kDMelLxCRYmvVnjheWaDZIVK8FHhhgJ+fH7179+a9995j7dq1vPXWW1x33XUYhsHKlSt56qmn6NatGw8//DC//vormZmZhZFbRERKuNOnTwNQsWLFfF0XFhbm/jynMOvYsSN169YlMzOThQsXnnfNnDlzgNyjyl988QUJCQn06NGDl19+mfLly7sfq1OnDh9++CEhISFs2LCBFStW5JnlySefxM/PD4BKlSpdNPfEiRNxOBxcffXVvPzyy7neIGjWrBmff/45AQEBbN++Pdd07rVr12Kz2Rg3bhytW7fO9ZytW7fm9ttvB3C/cQCQlZXF559/DmQvperatav7sWrVqjFp0qR8f99zjBgxgrvuuss9bd7f359nnnkGwzBwOBy5pnhPnjyZxMREWrduzWuvvUZwcDCQPVttyJAhPPLII15lgOw3S0zT5P++3sDh02leP4+IFB+T10QzLSIGl2aJSDFRqKvog4KCuPnmm/n4449Zs2YNr776KldffTUOh4PFixfzyCOP0K1bt8K8pYiIlFA564F9fX3zdd3Za5vPXiM7ePBgIHuq89l27txJVFQUQUFB9O3b1308Z3pyzqjouSpXruz+b9Zvv/123uNVqlShdu3aHmVOTU11T6O+66678jyndu3a9OrVC4ClS5e6j3///fds3bqV4cOH53ldYGAgQK71zhs2bCA5ORl/f39uvPHG866pUKEC/fv39yj7ua6//vrzjoWGhrrfLEhMTHQfz/keDxs2LM/mbSNGjMj3338OwzB4bvY2Nh067dX1IlI8PTd7G5ExCTicLqujiHi+Zjm/ypcvz5AhQ6hfvz5VqlThp59+wjRNkpOTi+qWIiJSguSMbJ45cyZf1+WMSEPu0dzBgwczceJEIiIiOH78uHvdb86ocp8+fdwjmykpKRw5kr0P74cffsg333yT571yztm/f/95j1WtWtXjzDExMWRlZQHQsmXLC57XsmVL5s+ff17DLl9fX86cOUNkZCTR0dHExMQQHR3Nzp07iYuLA7KbeeXIub5u3bruke9zebsFZLVq1fI8HhAQAIDT6QSy10xHR0cD0LRp0zyvCQ4Opn79+rlGxT3hcpl8t/4QP0TE5Os6ESn+Mp0uRn+zgQUPX0PlED91yBZLFUmxvGnTJn755Rd+/fVXTpw4AWS/+2+z2ejYsWNR3FJEREqYpk2b8vPPP3Po0CHS0tLcI6SXsnPnTvfnjRs3dn9evXp1unbtyurVq5k3bx6jR4/G6XQyf/58IPcU7LPfuPWkUMtrHbS/v79Hec+9X7ly5S54Xs7U7LN7fSQnJ/Pqq68yb948d8EN2QV0ixYtaNasGatWrcr1PDmju0FBQRe819nTzvPjUiPBOaP9Z7+pcbEc+VmvDtkNvbYcPsNL87bn6zoRKTlOpWRy71cRzBrbFZthYrMZVkeSMqrQiuVNmzaxcOFCFi1alKtANgyDtm3b0r9/f/r27ZtnR1ERESl7unfvzoQJE8jKymL58uX069fPo+typva2aNGCypUr53psyJAhuYrltWvXcvLkSWrXrk2nTp3c551dmM+bNy9X0V0Ucka0IbvwPnvd9dlyRtnPPn/s2LGsW7eOgIAA7rzzTtq0acMVV1xB3bp18fX1Zdq0aecVyzmj9hebzXWhbaoKy9kF8sVy5KcJqNNlcjo1i/unbCDLqTWNIqXZjmOJPPJDJJ+M7GB1FCnDClQsb9682T2CnLPHcs47yq1ataJ///7069cv1xYYIiIiAE2aNKFz586sW7eOjz/+mJ49e15wynCOiIgI9xZQd95553mP9+rViwoVKrB79273lkoAgwYNwjD+HpkoX748lStXJi4ujr17916wWN69ezcul4saNWpQoUIFb79U6tSpg4+PDw6Hg23btnHdddfled62bduA7OnTkN1xO2et8yeffMJVV1113jXHjx8/71j9+vUBOHjwoHvLpnPt3bvXuy/GQ+XKlSM8PJxjx46xe/fu85qTQfa69Zyp2p4wDBj33SbiktUsVKQsWLT9OB8t38v91zXEZmh0WS6/fC8C2Lx5M6+//jrdu3dnxIgRTJkyhePHj2OaJk2aNOGxxx5j8eLFTJ8+nVGjRqlQFhGRC3r55ZcJCgpi165dvPjii+71rnk5dOgQTzzxBADdunVzN/Q6m5+fHzfddBMAP//8M0uXLsUwjDzP7d69OwBTp07Ntd43R1JSEnfddReDBg3i66+/9ubLcwsKCnIXuhdaHx0TE8OyZcsAuPbaawE4fPiw+/G81jqnpaW5O2ef/b3r2LEjYWFhZGVlMX369Dyvy5meXpRy9ryeOXNmrmZsOX766Sd3o7dLcZkmHy/fx7oD8Zc+WURKjbd/jWL70UQ1/BJLeFQsR0ZG8vrrr3P99dczYsQIvvnmG3eB3LBhQx566CF++eUXZs+ezZgxYzzuDioiImVb3bp1efXVV/Hz82PWrFncfffdbN68Odc5qamp/PjjjwwdOpRjx45Rp04d3njjjVwjxWfLWZv8+eefk5ycTOfOnalZs+Z5540ZM4agoCA2btzIE088kWt/4CNHjjBmzBgSEhIoV64cd9xxR4G/1nHjxuHj48Pq1at5/vnnc01N3rVrF6NHjyYjI4OmTZsyaNAggFz7Nn/wwQe51izv3buX0aNHu0dm09L+3j7Jbre7t2V6++23c21Fdfr0acaPH8+xY8cK/DVdyr333ktwcDCbN2/m3//+d66Mixcv5o033vDoeRxOF7uOJfHOkvw1AhORks/hMnnw201kOU1cebzpJlKUPJqGPXz4cAzDcL8rXLduXfr378+NN95Io0aNijSgiIiUbv3796dmzZqMHz+eiIgIhg8fTlhYGOHh4WRkZHDw4EEyM7On3fbr149XXnnlok2hWrZsSePGjd2Nu85u7HW2unXr8u677/Loo48yf/58Fi1aRKNGjcjKyiI6OhqHw0FQUBCffvrpBdcY50e7du149dVXee6555g2bRpz586lYcOGpKamurtXN27cmEmTJrmnozdv3px+/frxyy+/MHnyZGbNmkWtWrVISEhwjzp369aNNWvWkJKSQnJysvt7M2zYMKKiopg6dSqPPfYY//vf/6hUqRJ79uwhMzOTXr16udd/F5Xw8HDefPNNxo8fzw8//OD+mk+dOsXRo0dp1qwZe/fuJSsrK9eWYGczTROnafLQ95u0TlmkjDoUn8ozP/3JO8PaWh1Fyph8rVk2DIPGjRvTvHlzjh8/zhdffJHvGxqGwWuvvZbv60REpPRq06YNixYtYs6cOSxevJgdO3awe/du7HY7derUoWPHjgwePJi2bdt69HxDhgzh9ddfJyQkhBtuuOGC51133XUsWLCAr776ilWrVnHgwAGcTic1a9akW7du3HvvvYU6W2rQoEG0atWKr776irVr17Jnzx6CgoJo3749N910E7feeut5XbbffvttunbtyrRp0zh06BC7d+8mNDSU66+/nuHDh9O9e3euv/56jh49yrJly3LtG/3888/TpUsXpkyZwq5du0hISKBVq1aMHTuWuLi4Ii+WIXsd+cyZM/n444+JiIhg165dVKtWjfvvv5/777+fzp07A1ywG7phGLw8bwf7TnreCExESp+fNh/husZVuLlNDezqji2XiWHmtYjoHE2bNr3gdLf8yOmOffa2H4XF6XQSGRlJ27ZtL/jutIiIiBQfqamptGvXDoCVK1eet4ezw+li1Z44Rn0VYUU8ESlmyvn7sPix66hSzg+7TfsvS9HzaGS5Ro0aRZ1DRERESplnn32Wbdu2cffdd+c5HX7FihUAVK5c+bxC2ekySc5w8MSMLZclq4gUf0kZDh6dFsn3o8/fGUCkKHhULOd05xQRERHxVJMmTZgxYwYTJkygadOmNG/e3P3Yhg0bePnllwEYMWLEedfabQaPTduibaJEJJff953iyzUHuKtLPU3HliLn0TTskkDTsEVERIqXjIwMRo4cyZYt2aPDtWrVomLFisTFxbn3h+7Tpw8TJkzAx+fv9++dLpPv1x/iudnbLMktIsVbgK+NReOvpWZoID6aji1FyKNi+emnn8YwDF566SV8fX0LNUBmZiYvvvhigRt/qVgWEREpfjIzM5k/fz4//fQTBw8eJD4+ntDQUJo2bcrgwYPp379/rvMdLhdHTqfR592VpGdpX1URyVu72hWZ+Y+u2DS6LEUoXw2+Nm3adMFuld5KTU2lffv2BW78pWJZRESkdLj90z/4ff8pq2OISDH3/E3NuKdrfU3HliKTr3kLhdERW0RERCQvDqeL+VuPqlAWEY+8u3gPZ9KycLlKxapSKYbytc/yfffdh62Q1wW4XJpiJSIiIuBwmbwyv/C3lxSR0ikpw8ErC3YwYWhbq6NIKZWvYnnDhg2FHkCj1SIiIuIyTd5ZHMXxxHSro4hICfLT5iOMvKourWpWwMeuZl9SuDwqljt16lTUOURERKSMcrpMYk6nMnnNAaujiEgJY5rw3OxtzHvoaqujSCnkUbE8ZcqUos4hIiIiZZTdZvDcT9vIcmrdoYjk3/ajiXy77hAjrqyNXVtJSSHSq0lEREQs43C6WLjtGKv3xlkdRURKsP8t2k1yhhMPNvoR8ZiKZREREbGM0zT5z7wdVscQkRLuTFoW//1lp/ohSaFSsSwiIiKWcJkmE5fu5egZNfUSkYL7MSKG7UfP4HBqtx0pHCqWRURE5LJzulwcOZ3GZyv3Wx1FREoJlwnP/rRNXbGl0OiVJCIiIped3Wbj5fk7yNQIkIgUosiYBGZsjNHoshQKFcsiIiJyWTldLnYdT+TXHbFWRxGRUmji0r1auyyFQsWyiIiIXFZ2m413FkdZHUNESqlD8an8tPmwRpelwDzaZ1lERESkMDhdLvaeSCl2o8o+G7/HfigiX9dkXj0Ws0qjcw6mYt+3EtuxbRjJcWC6MANDMas2xnFFdwgO8y6gMwv7rkXYD0dC2hnwD8EV3gJHs37gH3zBy3xXf4Tt5B4yr30IM6y+d/cWKYEmLdvLLe1qWR1DSjivR5Z37dpVmDlERESkDLDbbExYHEWp2ArVxz/XH43EWPyW/Q+fXb9iO3MUw5mJ4XJgSzmJ/cAa/Ja+he3Ydu9utf4bfKKWYaTGY5hOjPQz2A+sxXfFe5CZmuc1tuM7sJ3cgzO8pQplKXOiT6UyO/KIRpelQLweWR48eDCNGjViwIAB3HzzzVSvXr0wc4mIiEgp43SZ7D+ZzK87jlsd5TyOtrfhaHPLRc+xndiDz7ovMTBxNO6BGVr77wedDnz++AIjLQHT5oOzaW9cNdpg2n2xxe3FZ9t8jIwkfNZ/TVaPxzHLVfU4m3EiCvvx7ZiGDUf74biqNsFIOo7vxu+xpcRh37sCZ/N+uS8yXdi3L8A0bDhb3Jifb4VIqTFp2V4Gta1pdQwpwbweWTZNkz179jBhwgR69OjByJEjmTlzJsnJyYWZT0REREoJu83g7eI6qmz3yR4pvtCHIwOfzT9iYOKq3BBn8/65LrcdicSWEgeAo91QnE16ZxfEQaG46nQi6+oHMG0+GC4H9r3L8xXNdmI3AK4arXHV6QgB5TCrXIGjSa+/Hj9//bft0AZsicdw1b0Ss1w1L74hIiXf/rgU5m09qtFl8ZrXxfLUqVMZNmwYFStWxOVyERERwXPPPUe3bt0YP348S5cuxeFwFGZWERERKaGcLpO9J5JZtL34jSp7wmfTjxiZKZg+/mR1GAFG7l+hjNOHADB9/HHVbn/e9Wb5cPdUaCP+YL7ubfw1zdoMrpT7OYNCsz/JTMl9gTMLn50LMe1+OJr1zde9REqbiUv3YrOpM7Z4x+tiuWPHjrz00kusXr2aTz75hJtuuonAwEAyMjJYuHAh48aN4+qrr+all15i8+bNhZlZREREShi7zWDC4t3Fc1T5EmyHI7HH7gTA0eJGyClSz5azTY3LeZEnsv91bv5+/TL9Q7IvS03IfcuU+OxP/no8h33vSoy0BJyNroWA8vm6l0hps+9kMj//eUyjy+KVAm8dZbfbue666/jf//7H2rVrmTBhAt27d8fHx4eEhAS+//57RowYQe/evXn//feJjo4uhNgiIiJSUjhdJvtOJPPLthI4quzMwmfbPABc5cNx1e+a52lmaB2A7IZeMZvOPyH5JEbc/uxz89lsy1XlCuCvqd6HNkBGEkbcPnyilmU/Xq3J3ydnpGDfsxTTLxjnFT3ydR+R0uq9JXvwsWvHXMk/wzSL5j3exMREVqxYwfLly1m1ahWJiYnuzcFbtWrFoEGDuPnmmylXrlyh3M/pdBIZGUnbtm2x2+2F8pwiIiJSOB78dhML/jxmdYx8s+9Zjs+2uQBkdbkPV/XmeZ/ocuK7YiK2hBhMux/OpjfgCm+J6eOH7VQ0PtvnYaSexgysSOZ1j0BghXzl8Pn9c+zHd5x/23LVyLruEfANyM67dTY++1biaD0IZ8Nr8/fFipRiH93Rnt7Nq6lolnwpsmIZ4PTp06xYsYIlS5awdOlSILsxGIBhGAQEBDB06FAeeughQkJCLvZUl6RiWUREpPgxTZMjCWlc8+ZvJW8KtsuJ36+vYqQl4KpQk6we/7z4+Vlp+Pw5B9uhDRjm+VM+nbU7ZE/jDqzoRRYH9qil2A9tgNQE8A/GWaM1zmb9wC8w+5yUU/gt+S8EViSz15Ng83rTE5FSp3l4eX5+5BqrY0gJU+g/RePj41m4cCE///wzmzdvxuXK/o+FaZqEh4dz8803YxgG8+fP58iRI3zzzTcsW7aMqVOnUq2aujWKiIiUJibw5Zroklcokz3t2UhLAMDZpOelL8hKyy5QbT7gzDzvYePMEWzxh3DVrOhFGB+cTfvgbNrngqf47PgZw+Ukq1k/d6FsxO3HHrMR0hMxgyvhqncVZvnw/N9fpITbcSyRLTEJtKxZAbsafomHCqVYTk5O5tdff2XBggWsW7cOp9PpHkEODg6mT58+DBw4kM6dO7uvefTRR5k7dy7PPPMMhw8f5rXXXuO9994rjDgiIiJSTGQ5XUzfGGN1DK/Y964AwBVcBVeN1hc910g8ju/qjzAykjCDw8hqcROuKo3B7oORcBif3Yuxxe7Ctv6rIpkibZyOwXY4ElfFWrhqtQPAtn8NPltmYfD3OxXm/jU4Ot7hPkekLPnm92jeHtrW6hhSgnhdLKenp7Ns2TIWLFjAqlWryMrKArJHkH18fOjWrRsDBw6kZ8+e+Pv75/kcAwYMYOvWrUydOpXff//d2ygiIiJSDDmcLn7adITEtJK3laSRdAJbwmEAXHU7XrKDtU/k9OxCOTA0e03yWR2qzbD6ZHUZjc/G77HHbMD+51yc1VtAcFih5fXZPh8Dk6wWN2V35k5LwOfPOWDYyGo/DFd4C2zHtuOz6Ud8Nv1IZliDfK+bFinp5m89xksDWhISoCUK4hmvXyldunQhPT0d+HsdcosWLRg4cCA33XQTlSpVutjlbjVq1PA2goiIiBRjPnYb3/yevz2Fiwvb0a3uz501Lz4KayTGYjt1AABHk17nbeWUfZKBo/VAbEc2Y7ic2KPX4WzRv3CyHt+J7eQeXFWbYFZtDID90EYMlwNn7Y646nQEwFWnI64TUdkFe8xGnI3VLVvKlgxH9kyXkVfVVaMv8YjXxXJaWhqQXezefPPNDBgwgIYNG+Y/gI8Pffr0oX379t5GERERkWLG6TLZejiBHccSrY7iFdvRPwFwhdaGkMoXPddIPun+/KLbQvkFY5YPx0g4jJEcWyg5MV3Yt8/HxMDR8qa/MyVkT303K9bKfXpoLYjZgPHXqLlIWfPtukOM6pa/7duk7PK6WB4yZAgDBw7kyiuvLFCAu+66i7vuuqtAzyEiIiLFi91mMOWPkjmqTEayu5h0hbe69PnmWdPMXR5OOXc6vQh2PtuhDdgSj+Gs3QGzQk33cSMre1DD9Mm9FM60+2U/nplaKPcXKWn2nkhm48HTtK1dAbtNo8tycV6/QgYNGoRhGHi681RmZiazZ8/myy+/9PaWIiIiUkKkZDj4uQTuqwxgOxXtborlqlT3kuebIVX/vvZE1IVPzEzDSDyefU25qhc+z1POLHx2LsS0+eBo3i93pr+KZMOZkeu44cj+s2n3Lfj9RUqob36PVqEsHvH6VTJy5Ejuvvtu97rlS0lPT+epp57ik08+8faWIiIiUgI4nC5+2nyE9Kzz9xouCdxTmDEwK9a+5PlmhRq4ymVvf2nf8xukxud5ns+2ORguByYGrtoFX35m37sSIy0BZ4NuEJS7V0xOAW+cPpTreM6fzXLarlPKroXbjpOYlmV1DCkBCvSWimmaGIZn+5Rt27YNwOPiWkREREomH7uNHyIOXfrEYspI+ms9sX8I+AZ4dI2jzS2Yhg0jMwW/397Ftn81pJyCzBSMuH34/P459oPrAXDV73LeWuJ8y0jBvmcppm8gzia9znvYVSN7+rjtcCS2A2sh7Qy2A2uxHdmS/XittgW7v0gJluFw8eOGGBzOkvmGnlw+l1yz7HK5uO+++zh4MO91R/37979kwZyVlUVcXByGYVC37qWnM4mIiEjJ5DJNomKT2HakZDb2AjBSTwNg+gZ6fI1Z5QocHe/EZ9MPGJnJ+G6Zled5zjpX4mg9uMAZ7bsXY2Sl42hxI/gFn5+nUl2cda7Efmg9vpEzgBnuxxwNryl4sS5Swn2/7hCjr2lgdQwp5i5ZLNtsNu677z7uvffe8x4zTZOjR496fDO73c6DDz6Yv4QiIiJSovwYEWN1hIL5qzmWp6PKOVy12pIZVg/7vlXYYndhpMZnN/zyL4erUj2c9btgVrmi4PlSTmE/sAYzsCLOhtdc8DRH+6GYIZWxR/8B6WcwgyrhbHA1rgZXFzyDSAm3Py6F9QdO0aFuqNYvywUZpocduqZNm8aJEyfcf540aRKGYTBmzBh8fS/eJMLHx4eKFSvSqVMnr7aX8oTT6SQyMpK2bdtit9uL5B4iIiJyaV1eX8qxM1p2JSLF2+1X1ua1wa08XlYqZY/HxfK5mjZtimEYbNq0icBAz6cpFRUVyyIiItZymSY7jiZy0/urrY4iInJJYcF+RDzbC5tNxbLkzet9ll9//XUA/P39L3GmiIiIlAWmCQu2lsztokSk7DmVksn66Hg61auEXQWz5MHrYnnw4II3pxAREZHSw24zWLT9uNUxREQ8Nn/LUa6sX+nSJ0qZ5FGxHBERAWSPIrdu3TrXMW906tTJ62tFRESk+DFNkwNxKeyPS7E6ioiIxxZuP85/BrW0OoYUUx4VyyNHjsQwDOrUqcOiRYtyHcsvwzDYsWNHvq8TERGR4svpMlnwp6Zgi0jJEpecycaDp2lfJ1RTseU8HvdJz6sPmGmaXn2IiIhI6eJjt7Fwm6Zgi0jJo+UjciEejSx/8803AAQEBJx3TEREROT4mXS2H020OoaISL4t2RHLczc2tzqGFEMeFctXXnmlR8dERESk7HE4XSz486jVMUREvBJ9KpWDp1KoGxZsdRQpZjyehn0xx44dY9u2becd37p1K5999hmHDx8ujNuIiIhIMaQp2CJS0i3cdhyH02V1DClmClQsp6Sk8OSTT9KrVy8++OCD8x7ftGkTEyZMoE+fPrz66qs4nc6C3E5ERESKoYTU7AY5IiIl1ZKdsfjYC2UcUUoRr/dZdjqdjB49ms2bN2OaJtHR0eed43A4sNvtOBwOpk6dysmTJ3n33XcLEFdERESKE4fTxfKok7jUv1NESrBNhxJIyXAQ7O91eSSlkNdvn0ybNo1NmzYB2dtIffXVV+edc9999/HHH39w9913A7Bo0SL31lMiIiJS8tlsBhEH4q2OISJSIE6XycaDp3HpnT85i9fF8rx58zAMg5EjR/Lss89SrVq1PM8LCQnh6aef5rbbbsM0TX788Uevw4qIiEjxYjMMIqJVLItIybfuQDwuVCzL37wulqOiogAYPny4R+ePGDECgO3bt3t7SxERESlmktKz2HMi2eoYIiIFtiE6Hh+b1i3L37x+NWRlZQFQqVIlj86vXr06AKmpqd7eUkRERIoRp8skIvo0pgZiRKQU2HI4QR2xJRevi+Wc4nfPnj0enZ/TAMzT4lpERESKv/UHTlkdQUSkUKRnudh+LBFT7wDKX7wuljt06IBpmnz44YcevaA+/fRTDMOgQ4cO3t5SREREihG7zWD9AW0ZJSKlx7r98TjU5Ev+4nWxnLNW+Y8//mDcuHEcOXIkz/NOnDjB448/zrJly4C/1y6LiIhIyZbpcLHtyBmrY4iIFJoN0fH4ar9l+YvXG4m1bt2a0aNH89lnn7Fs2TJ+++03GjVqRL169QgMDCQtLY2YmBiioqJwubLn/t9xxx107Nix0MKLiIiINUzT5M/DCWRqfZ+IlCIbDmq2jPytQLtuP/bYY4SEhPDhhx+SkZFBVFRUrjXMOdOzfXx8uP/++xk3blzB0oqIiEix4HCZ/L5fW0aJSOkSn5LJwVMp1A0LtjqKFAMFKpYNw+D+++9n8ODBLF68mD/++IPY2FjOnDlDYGAg1atXp3379gwcOPCC+zCLiIhIyeNrt7FB+yuLSCn0+/5T1KgYqOnYUrBiOUfVqlW54447uOOOOwrj6URERKSYc5kmmw5puqKIlD4bok8zrGNtq2NIMaC3S0RERCTfYs+kk5jusDqGiEih23o4AcMwrI4hxcBlKZYzMzM5ffo0kZGRvPnmm5fjliIiIlJEXKZJVGyS1TFERIrEwVOpuLR9lFDAadixsbFMnDiRVatWER8fj9Pp9Oi6f/3rXwW5rYiIiFjI4TTZcyLZ6hgiIkUiw+HieGI6NSoGWh1FLOZ1sXzmzBmGDx/O8ePH3V2vPREcrM5yIiIiJZmP3WDfSRXLIlJ6RcUmUb1CADZNxy7TvJ6GPWXKFI4dO4ZpmjRv3py7776bnj17AtCpUyceeOABhg0bRr169YDsztn33nsva9asKZTgIiIiYg2bYbBXI8siUortPZGMw6mp2GWd1yPLK1euxDAMrrvuOj766CMMwyAqKoqlS5dit9sZP348kL3X8vvvv8+HH37IjBkzGDVqFAEBAYWVX0RERCyw72SK1RFERIrMvpPJ+Ng1qlzWeT2yfPDgQQDuvfded7e4K664gsDAQCIjI3G5XED2iPLDDz9M9+7dSUpK4rvvviuE2CIiImKVpPQs4lMyrY4hIlJk9p9M0RRs8b5YTknJfke5fv367mOGYdCwYUMyMjLYv39/rvPvvPNOTNNk5cqV3t5SREREigGtVxaR0k4/5wQKMA07ODiYxMTE847XrVuX7du3s3fvXho1auQ+3rhxYwBiYmK8vaVIiWGaJunp6UX6/ECp3QMwICCg1H5tIiVdltPF7uP6JVJESre45ExSMhwE+xdo8yAp4bz+2w8PDycxMZEDBw5QpUoV9/HatWtjmiZ79uyhb9++7uM5v9ynpqYWIK5IyZCenk6/fv2sjlFi/fLLLwQGarsGkeLIZqgTtoiUDftOJtO6VkWrY4iFvJ6G3bFjR0zT5NNPPyUrK8t9PGc0ecWKFbnOX79+PaCto0REREoyu03FsoiUDXtik3E4XVbHEAt5PbI8fPhwvv32W9asWcMtt9zCgw8+SN++fenSpQt2u53t27fz+uuvM3ToUPbu3ct///tfDMOgefPmhZlfpNhLbns7pq0Qp/A4syi35QcAktoMB7tv4T23hQyXg5DI762OISIe2K9O2CJSBuw7mQxaFVamef0bfKNGjXjwwQeZNGkSe/fuZcWKFfTt25ewsDBuvfVWfvzxR7755hu++eYbIHsatmEY3H777YUWXqQkMG0+RVfQ2n1LTbGsnQxFSo6jCWlWRxARKXKHT6fhY/N6Iq6UAgUa7ho3bhyNGjXiiy++oHbt2u7jzz77LCdPnmTZsmXuY4ZhMHr0aG644YaC3FJEREQslJrhIMOhaYkiUvppizwp8NzQvn370rdvX3cDLwA/Pz8+/PBDNm/ezObNm7Hb7XTr1i1Xd2wREREpeU7pl0cRKSNOp+rnXVlXaAsp89rmpV27drRr166wbiEiIiIWO5FUdNviiYgUJ6f15mCZV6gbh0VFRXH8+HGSk5MJDQ2lZs2a1KlTpzBvISIiIhZxukyOn8mwOoaIyGURr5HlMq/AxfKZM2f48MMPWbBgAadOnTrv8bp163LLLbcwatQofH1LRyMiERGRssjpMolLVrEsImVDepaLTIcLPx81+SqrCvQ3v3XrVm644Qa++eYb4uLiME3zvI/o6GjeeecdBg4cyPHjxwsrd6mV830TEfGGfoZIUTIMreETkbLlTFqW1RHEQl6PLMfFxTFmzBjOnDmDj48PN998M9dffz1169YlMDCQ1NRU9u/fz9KlS/nll184cOAA999/P9OmTcPf378wv4ZSwzRNHnroIQDef//9PNeBi4hciH6GSFGzGYZ+cRSRMuV0SiZVyql2Kau8Lpa//PJLEhISKF++PJ9++ilt27Y975ymTZvSv39/hg0bxgMPPEBUVBQzZszgjjvuKEjmUis9PZ1t27a5Pw8MDLQ4kYiUJPoZIkXNblOxLCJlS1xKBo0pZ3UMsYjX07BXrFiBYRg89thjeRbKZ7vyyit55JFHME2T2bNne3tLERERsZiKZREpS04lZ+J0aXlTWeV1sXz48GEAevXq5dH5ffv2BeDAgQPe3lJEREQslqhiWUTKkNOpmbjUC6TM8rpYDgkJASAjw7OumDZb9q18fAp1tyoRERG5jDSyLCJlifZaLtu8LpY7d+4MwE8//eTR+cuWLQOyp2SLiIhIyZSe5bI6gojIZZOY7sCmhpllltfF8kMPPURQUBAff/wxc+fOvei527dv5+2338bPz49x48Z5e8sitXbtWoYNG8batWutjiIiIiIiIsWA1iuXbV7PiTZNkxdffJEXX3yRJ598khkzZnDjjTfSuHFjypcvT0ZGBjExMaxcuZK5c+ficDjo27cvO3bsYMeOHXk+56BBg7yNUyDp6elMmDCBuLg4JkyYQPv27QkICLAki4iIiIiIFA8Ol4kGlssur4vl/v375/pzREQEEREReZ5rmiaGYbBw4UIWLlyY5zmGYVhWLH/77becOnUKgFOnTvHdd99x7733WpJFRESkODPRKIuIlB0ul4lq5bKrQCPLRXn+5XL48GG+++47dz7TNPnuu++44YYbqFWrlmW50tPTLbu3FJz+/gpG3z/v6PsmIiJSuJx/DfpJ2eR1sbx06dLCzGEJ0zR57733Lnj8zTffvKz/OM5+Q2Hw4MGX7b5SxIrpG0XFjl7/haq4vkEpJZ9eWmKF5uHlGNy+ptUxpAxqXLW81RHEQl4XyzVrlvwfWIcOHcpz6rjT6SQiIoJDhw5Rt25dC5KJiIiISI7v/q8jFUOCrI4hZZTpcmLY7FbHEAuU6U2P69SpQ6dOndi0aRNOp9N93G6306FDB+rUqXNZ85w9iv3TTz+pyVgJlp6e/vfoqKbueEav/wI7+3WnKWMiUpokZ0GFo5EYX99kdRQpa1oPw7jxbatTiEUuS7GcmZlJSkoKBw8e5Ndff+Vf//rX5bjtJRmGwSOPPMLdd9+d53Erf9kMCAggMDDQsvuLWEmvfxEROVtUbBI1GzaBzGStBZDLy5lldQKxUIGK5djYWCZOnMiqVauIj4/PNTp7McWlWAaoVasWI0aMYOrUqe6u3SNGjCgV08xFREQKm+oUscL6A/H0aFoNKjWAU/usjiNlic0HTBcYNquTiAW8/ls/c+YMw4cPZ9asWZw4cQKHw4Fpmpf8CAoqfutN7rjjDsLCwgCoXLkyI0aMsDiRiIiIiORYtO149ifV21gbRMoem03vEpZhXhfLU6ZM4dixY5imSfPmzbn77rvp2bMnAJ06deKBBx5g2LBh1KtXD8ie2nzvvfeyZs2aQglemAICAnjssceoVq0ajz76qNZKioiIXIA6rYsVDpxKxenIhPDWVkeRssZWpls8lXle/+2vXLkSwzC47rrr+OijjzAMg6ioKJYuXYrdbmf8+PFA9n9U33//fT788ENmzJjBqFGjimUx2rVrV7p27Wp1DBERkWLNz0dTEcUap9OchIW3Re0L5bKy+QB6k7Cs8vq/eAcPHgTg3nvvdTfCuuKKKwgMDCQyMhKXywVkjyg//PDDdO/enaSkJL777rtCiC0iIiJWCA3yszqClFH74lKhRlurY0hZ4xOgadhlmNfFckpKCgD169d3HzMMg4YNG5KRkcH+/ftznX/nnXdimiYrV6709pYiIiJisYoqlsUimw6exggMhXLVrY4iZUlwZTSyXHZ5XSwHBwfnebxu3boA7N27N9fxxo0bAxATE+PtLUVERMRiocG+VkeQMmrpzhPZn1TXumW5jIKrgmG3OoVYxOtiOTw8HIADBw7kOl67dm1M02TPnj25juc0BElNTfX2lqVeQEAALVu2pGXLlsVyXbeIFG/6GSJFzekyNQ1bLLPh4GlMZ5aafMnlVa462FQsl1VeN/jq2LEju3bt4tNPP6Vdu3b4+ma/09yoUSMAVqxYwUMPPeQ+f/369cCFR6Qlexr7+++/7/5cRCQ/9DNEippLxbJYLCndSbnqbdTkSy6fkGpWJxALeT2yPHz4cAzDYM2aNdxyyy0sXLgQgC5dumC329m+fTuvv/46+/btY9GiRfz3v//FMAyaN29eaOFLI8Mw9EuuiHhNP0OkSBkQGqRp2GKdg6fToWYHq2NIWRJc2eoEYiGvi+VGjRrx4IMPYpome/fuZcWKFQCEhYVx6623Ypom33zzDTfddBPjx4/n1KlTANx+++2Fk1xEREQuK5thqMGXWGrr4TMYFWpCQAWro0hZYLPrtVbGFWizxHHjxvHuu+/SsmVLateu7T7+7LPP0qNHD0zTdH8YhsHo0aO54YYbChxaRERELj+7zSAsRMWyWGdF1F9Nvqq1tDaIlA1BYVYnEIt5vWY5R9++fenbt6+7gReAn58fH374IZs3b2bz5s3Y7Xa6devmXs8sIiIiJZOKZbHS8qg4TJcTI7w1HFxjdRwp7YKrWp1ALFbgYjlHXmvk2rVrR7t27QrrFiIiImIxNfgSK2U6XKRnOgjU9lFyOQRXsTqBWKxA07Av5vDhwyQlJRXV04uIiIgFygeowZdY6/CZTEw1+ZLLIUTFclmX75Hl2NhYPvjgA1wuF6+88soFz/vggw+YP38+N998Mw8//DDVq1cvUFCRkspwOTAvfZrnnFl5f17CGS6H1RFExAN+PjbKB/qQmKZ/s2KNHUcTadSmEfj4gyPD6jhSmgVXAZcDbIU2GVdKmHz9zS9ZsoR//etfpKWlUbnyxduor1u3jqysLH766SeWLFnC22+/zTXXXFOgsCIlUUjk90X23OW2/FBkzy0iciENKocQGZNgdQwpo9bui2Ngu5pQtTkc3Wx1HCnNgquA6bI6hVjI42nYq1ev5pFHHiEtLQ3TNKlYsSIpKSl5nutyuRg5ciStWrXCNE0SExMZN24cmzZtKrTgIiIiYo0GVYKtjiBl2KIdx7Mby1ZvZXUUKe2CqwDn92WSssOjkeW0tDSeffZZnE4nFStW5KWXXqJPnz4XPN9mszFq1ChGjRrFr7/+yjPPPENycjJPP/008+bNw89PzUGkdAsICOCXX34psufP6T6fV2O90iAgIMDqCCJyAVlOF/Urq1gW6ySkOnBkZeKrJl9S1MIaagp2GefR3/6cOXOIjY3F39+fqVOn5msLqBtuuIFKlSpx9913c+jQIX7++WcGDRrkbV6REsEwDAIDA62OISJS6GyGQcMqIVbHkDLueLKTWjXaa8xPilbVFlBKBybEMx5Nw166dCmGYXDbbbd5tVdyx44dGTx4MKZp8uuvv+b7ehERESke7DaDxtVULIu1dscmQbUWYBTZxi5S1pWrDgHlrU4hFvPoJ8zu3bsB6N+/v9c3GjBgAAA7duzw+jlERETEenUqBWuwRSy1bv8pDN+A7GmyIkWhagurE0gx4FGxfPr0aQDq1Knj9Y1yRqTj4+O9fg4RERGxnp+PjZoVtdRErPPrjtjsT7RuWYpKtebgclqdQizmUbFst9uzT7Z5P9XF6cx+sZXWhkQiIiJlSQM1+RILHTyVitORqWJZik7V5to2SjwrlqtWrQrA4cOHvb7RoUOHAKhQoYLXzyEiIiLWc7lMGqjJl1jsVKoTs0Zbq2NIaRXeBuy+VqcQi3lULLds2RKAFStWeH2jxYsXA3jVIExERESKD6dpaq9lsdz+uFQIb2t1DCmNbHaofIXVKaQY8KhY7tWrF6ZpMnXqVK/WHJ84cYJZs2ZhGAZdu3bN9/UiIiJSfPjYDBpV1ciyWGvDwdMYgRWhfA2ro0hpE1of7H5Wp5BiwKNi+YYbbiA8PJzExERGjRrFmTNnPL5BcnIyDzzwAImJiQQEBDB48GCvw4qIiIj1DMOgWXVtqSLWWrrjePYnWrcsha2aOmFLNo+KZR8fH5599llM0yQqKooBAwbwww8/kJGRccFrUlNTmT59On379mXnzp0YhsHDDz9MWFhYoYUXERERa4QG+1GjQoDVMaQM2xxzBtPpgHAVy1LIqjYHZ5bVKaQY8PH0xF69evHwww8zceJETpw4wUsvvcRrr71G69atadCgAaGhoWRmZpKQkMChQ4fYsmULTqcT0zQBuPPOOxk1alSRfSEiIiJyebWrE8rRP49ZHUPKsMR0B+Wrt0Z7rUihqtYCDO93AZLSw+NiGWDs2LHUrFmT1157jTNnzpCZmcnGjRvZuHHjeefmFMmVKlXi8ccf55ZbbimcxCIiImK5LKeLdnUqskDFslgoOj6d1jU7WB1DSpvwNtlNvqTMy1exDDBw4ECuv/56fvjhBxYuXMjOnTvdhXEOf39/2rZtS9++fRk4cCBBQUGFFlhERESs52Mz6FivktUxpIzbcjiBNrXrQUBFSE+wOI2UCn4hUKGW1SmkmMh3sQxQvnx5xowZw5gxY0hPTycmJoakpCRsNhuVKlWiZs2a2O16N0ZERKS0MgyD5uHl8bPbyHS6rI4jZdTy3Se5q0s9qN4KoldZHUdKg3rdNAVb3Lwqls8WEBDAFVdoHzIREZGyxs/HRsua5dl0KMHqKFJGrYw6gelyYoS3VrEshaNB9+zmXnZfq5NIMaC3TURERMQrTpfJlfU1FVus43BBeqZD20dJ4WnYS4WyuKlYFhEREa91aaAtIcVah89kYtZsb3UMKQ1CqkKVxlankGJExbKIiIh4xW4z6FS/EnabNu4R62w/mgiVGoKP9v2WAqp/ndUJpJhRsSwiIiJeC/LzoXl4eatjSBm2es9JDJsdqja3OoqUdDnrlUX+omJZREREvOZ0mXRuoHXLYp1fd8Rimi4I17plKaBGvbVeWXJRsSwiIiIFcl3jKlZHkDIsMd1BVlaWmnxJwYQ1gnLVrE4hxYyKZREREfGa3WbQpUEY5fwLvBuliNeOJzvV5EsKpkF3MLVnvOSmYllEREQKxMdu4/qmVa2OIWXY7uOJ2WuWDf1qK15q2EPFspxHP1FERESkQBxOF31aaPqiWGfdgXgMH//sqbQi+WWzZ3fCtmmGjOTm0Svi6aefLrQbGobBa6+9VmjPJyIiItbysdvo0bQafnYbmU6NzMjlt2jbcZ67sXl2k6+4KKvjSEkT3hb8Q6xOIcWQR8XyTz/9hGF4toeiaZruz8+9xjRNFcsiIiKlUKCfna6Nwli++6TVUaQMijmdhjMrE3v1NvDnDKvjSEnTsAe4HBpZlvN49Iro1KlTnsczMzPZsmULADabjVatWtGgQQPKlStHZmYmMTExbNq0ibS0NHx8fLjxxhsJCNCG8SIiIqVNltPFDc2rq1gWy8SlOalaoy2eDe+InKX1UK13lzx5VCxPmTLlvGMOh4NRo0YBcMMNN/Dss89Srdr565VSUlKYMGEC3377Lfv27eO7774rYGQREREpbnztNvq1qs5zs//EZV76fJHCtv9kClVrtrU6xnlWHPVj5v4gIuN8ic+w4WczqVvOyXU1MrircQqVAi78DyY+3WDqnmCWH/XnYJKdDKdBqL+LNmFZ3NYwletqZHqVKcMJk/4MYcGhAE6k2ank76JHzQweaZ1EqP+F89y9LJQ/Yv35rtcpOlTJ8urexU61llC5sdUppJjy+i2Ub775hoiICLp3787EiRPzLJQBgoODef755xkwYADbt2/nk08+8TqsiIiIFF+hQX60qxNqdQwpozYcPI0RUB7K17Q6CgAOFzy+tgJjVlRiUUwAsWl2slwGKQ4bO0778tH2EG76uTKb43zzvH7DCV/6/1yFD7aFsD3el+QsG1kugxNpdhYfDmDMiko89UcFvGkT8Miainy6M4QjKT5kuQxi0+x8vzeIYb+GcSYz77H5FUf9+CPWn1610ktPoQzQehg4HVankGLK62I5Zx3z2LFjPTr/3nvvxTRN5s+f7+0tRUREpBhzOF3c0FxdscUaS3bEZn8S3traIH95e0s55h0MBKBnzXS+73WKP26JZV6/OB5vk0SQj4tTGXYeWBFKbGruX8mPp9p4YGUopzNsVPRz8WLHMyy9+SSrB53gy+vj6Vgle0T5pwOBvLM1f42pfj/ux29HAvAxTN64KoE1g07wdY94woOcHEz24ctdwedd4zLhf5HlsBsmj7VJ8vI7UgwZNmgzHOxaqyx587pYjomJAaBu3boenR8eHg7A8ePHvb2liIiIFGM+dhs3tg63OoaUUVsOn8F0ZkF164vl2FQb3+wOAuDmuml8eG0C7atkEepv0riig9HNU/imRzw+hklCpo1PduQuUD/eHkJSlg1/u8k3PeMZcUUatUKcVAl00bV6JlN7xtO7VjoAX+0O5kSa57/Srz7uB8ANtdMZVD+dyoEurqqWyQMtkoHsYvpcPx0IJOqML7c2SKNheadX35Niqf61EKI94uXCvC6Wy5cvD/xdNF/Knj17AAgLC/P2liIiIlLM1QoNomn1clbHkDLqTLoTM7yN1TFYcsQfh5k9nfnRC4zEtgpz0Ouvgnf5Uf9cjy2Kyf7zjXXSaFLx/CnChgHjW2c/b5bLYM2x8wvcCzmTmf3rf63g3EVvjaDsP5/OyF0eZDhh4p8hBNpdjGuV7PF9SoTWw8BZiqaUS6Hzulhu1qwZAJ9++uklz3U4HLz33nsYhkHbtm29vaWIiIgUcw6ni1s71LI6hpRR0fFpULO91TE4kWYnwG5SOcBJzeALLyquW87pPj/H6YzsItvApHXYhQu5OiF/F7tnX38plfyz8xxNzX3N4ZTsP1cKyJ33693BHE+1c3fTVKoGlqJ91H0DocUgsOe9ZlwEClAs33HHHZimyeLFi/nnP/9JbGxsnudFR0dz//33ExERgWEY7g7aIiIiUvr42G0M7Vgbfx9twyKX35aYMxjlwiHQ2kZzj7ZOZsvQWBbdFHfR8w4mZReoFfz+LkJD/U1+v+UkW4fGckuDtAteeyj572K3vJ/nRWyXatnrnRceCmD2gQBOpduIOOHLZzuy1z5fHZ7hPvd0hsGnO4IJ9XcxulmKx/coEZr0B98gq1NIMef1avZrr72WoUOHMm3aNH7++WcWLlzIFVdcQZ06dQgMDCQtLY39+/ezb98+9zXjx4+nVatWhRJcREREiqfygb70bVmdOZFHrY4iZczy3Se5u2s9qN4KDqy0Og4hvhfehik21cZvRwMA8uwu7XeJweIf9v5d6OWnO3WX6plcXyOd344G8OQfFXM91qh8Fvc0SXX/+aO/1k4/2z7xol9LidR6eHYXbDX3koso0Kvj3//+N1WqVOGLL74gPT2dXbt2sXv3bvfjppn9j6pChQr861//YsiQIQVLKyIiIsWe0+XizqvqqliWy27VnhOYLidG9dbFoli+ENOEFyLKk+HMnnI94orUS1yR2+Y4X77bk10sd6qSSeM81jVfzMSrE/h0ZzBzDgRyLNVOqL+LPrXTebhVsrsojkm2892eIGqHOBjeKH/5ir2gMGjUE2yeT1+XsqlAxbLNZuOhhx5i2LBhLF68mHXr1nHs2DESExOpWLEiNWrU4Nprr6VXr16UK6dmHyIiImWB3WajU71KNKwSwr6TpawhkBRrDhekZToIKibbR13I65vLsfyvUeWb6qZx1V9Toz2xP9HOgysr4jQN/O0mz3VIzPf9/ewwrmUK41peeGr1u1tDyHIZjG+V7B7l3nDSl7nRgZxMs1Er2MltDdPyXagXCy2HZHdJE7mEQpl3ULVqVe644w7uuOOOwng6ERERKeEcThe3X1mbVxbstDqKlDExCZk0rtmB4lgKmSb8d3M5vt6dvVVU4wpZ/KeT58Xu3jN2Rv1WiVMZ2dXrSx3P0DS08IvVbfE+LDgYQIvQLG6sm92x+7s9gfxnQ3nMs76z3+0J4q0uZ+j/1zklRtsRYEKxfJFIsaLuGyIiIlLofOw2hnZSoy+5/LYdOQOhDbK7HRcjmU741x8V+OqvQrlheQeTrz9NsIdrgTec9OWOJWHuztfPtE9kcIOiKVLfiiyHicETbZMwDDieauO/m8vjY4M3r0pgw5BY3rgqAcOAZ9aVJza1BP07r3wF1GgHthKUWSxTKK+SnTt38tJLLzFgwACuvPJKWrRo4X7sySef5LPPPiM9vYS94yQiIiIFUj4gu9GXyOW0Zl8chs0GVZtZHcUtIcPg3t8qMTc6u4BvUSmLqT1PUcXDrZjmRgcwalklEjJt2AyTlzud4e4mRbOOeMVRP/6I9efq6hl0qZ751/0DyXAa9K+TzsD66ZTzMxlUP53+ddJJc9rcX1eJ0GVcdmMvEQ8UqFh2OBz8+9//5pZbbuGHH34gKiqKxMREXK6//+H//vvvTJgwgcGDB3P48OECBxYREZGSwelyMfKqulbHkDJm8Y5YTNMF1dtYHQWAQ0l2hi0OI+KkHwDXhGcwpUc8lQI8G1H+cFswT/xekUyXQaDdxaSrExja6MJbShWEy4T/RZbDZpg80TbJfXxbfPZexC0q5e663fKvP28/XUI6SodUhbZ3qAO2eKxAxfIzzzzDjz/+iGmahIeH07dv3/POCQkJwTRNDhw4wOjRo8nM9LyBgYiIiJRcdpuNjn81+hK5XJLSHWRlZUExaPK154wPwxZXIjopuzgb2jCVj6/1fOr1SxvK8d6f2U1yKwc4+abnaXrWyrjEVd6bfSCQqDO+3FQ3Pdda6MTM7MW9wT65cwf+9eczGSVkSnPnB9TYS/LF61f2ypUrmTt3LoZh8NRTT7FkyRJee+21885bsGABTz31FIZhEB0dzffff1+gwCIiIlJyOJwuRnSubXUMKWOOJTkwa7S3NENMsp1Ry0KJ/6sZ1yOtknj5ykQ8Xcb/5uYQvtuTvb65XjkHP/SOp3WY5/sp51eGEyb+GYKfzWR866RcjwX9VRSnOnIXmilZ2X8O8CkBezD7hcCVY8CmUWXxnNfF8rRp0zAMgxEjRnDPPfdgu8AiecMwuOeee7jrrrswTZOFCxd6HVZERERKFh+7jeGd6lA+UL+gyuWz+3hS9ppli/bRzXLB+DUVOZmeff+n2yUy9iLbNJ1rcYw/X+zKnpFRr5yDb3vGUzvEWSRZc3y9O5hjqXbuuCKVmsG511I3KJ89yrz1lG+u4zl/bli+BKwBbn8X+AVbnUJKGK+L5cjISABuu+02j84fMmQIAHv37vX2liIiIlICBfjaGdW1vtUxpAz5Y/8pDB9/CLvCkvv/uDfIvc63X500bmuYRkqWcdGPHJlOeHljeQD8bCZvXnWGQB/zotdmFrCOPp1h8OmOYMr7unigxfl7o/f+a+r3L4cC+GFvILGpNn7YG8jCmIC/vsZi3sjX5gPdHkF7RUl+ef0275kzZwAIDw/36Pxq1aoBkJZWNA0JREREpHiy2wxGX9OAyasPkJRRAkagpMRbtP04L9zcAqq3gpO7Lvv9v94d5P78l0OB/HLo0t2id99+/K/zA4j9a3uoTJfB0MVhl7x2XMtkHmp1fpHrqY+2h5CUZeOfbZKo6H/+lOo2lbO4pX4qsw4E8WJEBV4867G7GqfQolIx/3fdcgiUU2d+yT+vR5bLl89+x+vkyZMenZ/TCbtixYre3lJERERKqEA/O3d1rWd1DCkjjiSk48zKhPDL3xE7PsPgULL3yw62nDPVuajFJNv5bk8Q1YOc3NX4wlPFX7kykcdaJ1Er2IGvzaReOQfPdUjkmfZJF7ym2Ljmn+Aq2mnsUjp5/S+5RYsWrFq1irlz5/Loo49e8vzvvvsOgObNm3t7SxERESmh7DaD+69twFdrDpBS0DmjIh6IS3VSNbztZZ94W8nfdI8Se+OFjkm80PHyFaC1Q5xsGxZ7yfPsNri/RQr3t/B87XWx0KgXVGlidQopobweWR4wYACmafLFF1+wZMmSi547efJkZs6ciWEY3Hjjjd7eUkREREqwEH8fRnbRvstyeew9mWLJyLIUM1c/Bq5iPk1cii2vR5Zvuukmpk2bxvr163nooYfo1KlTrlHjH3/8kSNHjrBs2TL27dsHQOvWrRkwYEDBU4uIiEiJYxjwj+sa8fXag6RlaXRZitaG6Hi6NWoMFWrDmRir44gVarSHet2sTiElmGGaptcboyUlJTF27FgiIiIwLrDBd87TN2/enM8++4ywsEs3KfCG0+kkMjKStm3bYrdbs02AiIiIXJzLNHnt5518vuqA1VGklGtZozzzH74GfhgBuxZYHUescNvX0PRGsF/edeBSeng9DRugXLlyfP3117zyyiu0aNECwzAwTTPXR6NGjXj66af54YcfiqxQFhERkZLBAMZ2b0SAb4F+BRG5pG1HE3E5s7I7YkvZE94Gmg9QoSwF4n2rvr/YbDZuvfVWbr31VlJSUjhy5AjJyckEBgZSvXp1QkNDCyOniIiIlAKGYVAxyJfbr6zDl2uirY4jpdyZdCcVLWjyJcVAvzfB5cruTCbipQIXy2cLDg6mcePGhfmUIiIiUsoYwIPXN+K7dYfIcLisjiOlWPSpNNrWaGd1DLncmg2AOldZnUJKAb3VIiIiIpeVYRhUCvbj3m71rY4ipVxkTAJGueoQqJmOZYaPP/R9XfsqS6HwaGT5rrvuKrQbGobB119/XWjPJyIiIiWPzTB4uOcVzNh0mJNJGVbHkVJq+a4TjOpWP3v96v7lVseRy6HzP6B8DTA0JigF51GxvH79enfzLm/lXH+hrtkiIiJStvjaDf7VpwlPzNhqdRQppVbvi8N0OTGqt1axXBYEV4Hr/qVCWQqNR8Vyp06dijqHiIiIlDE+dhtDOtTi69+j2XYk0eo4Ugo5XZCakUWwOmKXDT2ey56GLVJIPCqWp0yZUtQ5REREpAxyuUz+M6Alt3y01uooUkrFnMmkSc0O6ohd2lVvBe3v0qiyFCq9mkRERMQyPnYb7euGMqBNDaujSCm17UgihNYH30Cro0hR6vtG9lZRIoVIxbKIiIhYymWavHhzc8r5F+qOliIArNpzEsNmg2otrI4iRaXpjVCvG9j1M0QKl0evqEmTJhXqTceNG1eozyciIiIll80wqBjkx2M3NOaleTusjiOlzJIdJzBNF0b1NnB4g9VxpLDZ/aDvf7O3irLZrU4jpYzHxXJhdrFWsSwiIiJns9sM7u5SjxkbD7P9qJp9SeFJyXSQmZmFf3hrq6NIUeh8P1SopbXKUiQ8flWZplloHyIiIiLncpkmr93SCu0yKYXtWJIDs0Y7q2NIYavUAK5/ToWyFBmPRpZ37dpV1DlERESkjPOx22hTqyJ3dK7L1D8OWh1HSpHdxxOp27Rp9jRdl9PqOFIYbHYY8jnYtE5Zio7ehhEREZFiwzRNnruxGfUrB1sdRUqR3/fHY/j4Q+XGVkeRwtJtPNRop6ZeUqRULIuIiEixYRgGPjaDibe3w8em+dhSOBZtO579SXWtWy4VqreG65/JNf368OHDNGnShCZNmrBu3TqPn2rWrFk0adKEa6+9tiiSSglXKG/FHDx4kPj4eJxO53lrkl0uF1lZWaSkpHDw4EF+/fVXZsyYURi3FRERkVLIx26jRY3yPNSjEe8s2WN1HCkFjiWm48jKwCe8NWz90eo4UhA+/nDrZFAbJLkMClQsr169mv/85z/ExMQUVh4RERERbIbBuB5XsHz3STbHJFgdR0qBuBQX1cLbofkKJVyP56FSQ7AVzgTZ3r1706ZNG3x9fQvl+aR08fpVtn//fsaOHUtMTIzHXbB9fX256qqrCjO/iIiIlFImJu+PaEeQn/ZOlYLbczIZtH1UyVa3G3R5sNAKZYBy5crRsGFD6tSpU2jPKaWH16+0b775hszMTOx2O3fffTcffPABY8eOBaB///58+eWXTJgwgdtuuw273Y5hGIwaNYovv/yy0MKLiIhI6eVjsxFeIZDnb2pudRQpBTZEn8bwLwcVVRSVSP7lYMhnoG1o5TLyulhev349hmEwYsQInn76aXr27MnQoUMBiI6OpkuXLvTv35+XX36ZTz/9FLvdzueff65tqERERMRjdpvB7VfWoVezqlZHkRJu8Q41+SrR+v4XQqplbxlViC7U4GvkyJE0adKElStXsmvXLh555BG6du1Ky5Yt6dmzJ6+99hrx8fEXfN4lS5YwZswYunTpQsuWLbnmmmv45z//yfbt2ws1vxQtr4vlEydOADBo0CD3serVqxMaGsru3btJT093H+/WrRvDhw/H6XTy3XffeZ9WREREyhyXy+R/t7Whcoif1VGkBNtxLAmXI0tTsUuiJv2h3Z2W7Km8cuVKbr31VpYsWUJoaCjh4eEcPnyYr7/+muHDh5OcnJzrfIfDweOPP86DDz7IihUrMAyDJk2akJmZyfz587ntttuYOnXqZf86xDteF8s5xXB4eHiu440aNcLlchEVFZXr+IABAwDYuHGjt7cUERGRMshmMwjx9+GtW9tYHUVKuIR0J2a4XkclSnBlGPQhuFyW3H7KlCl069aN3377jQULFrB48WI+/PBD7HY7Bw8ePG+Xn/fee4958+ZRvXp1Pv/8c9auXcvMmTNZu3Ytzz33HIZh8Morr7BmzRpLvh7JH6+L5QoVKgCQmpqa63jt2rWB7AZgeR0/duyYt7cUERGRMsrHbuP6plW5p2s9q6NICRZ9Kg1qtLc6hnjKsMHgz8CvXKE29cqPsLAwJk6cSNWqfy8F6dmzp3va9qZNm9zH4+Li+OqrrwD48MMPueaaa9yP2e12Ro4cyT333INpmrz77ruXJb8UjNevuvr16wOwbdu2XMfr1KmDaZrs3Lkz1/GkpCQAMjMzvb2liIiIlHHP39ScLg3DrI4hJdTmQ6cxQqpCkF5DJUKP56Fhd7Bf/unXObp06YK/v/95xxs2bAj8XeNA9pTtzMxMGjVqRIsWLfJ8voEDBwKwdetWTp06VQSJpTB5/crr2rUrGzZs4J133qFVq1bUqFEDgKZNmwKwePFi/vnPf+Lnl72+aMGCBQCEhoYWNLOIiIiUYZ/c2YGb3l/NofjUS58scpblUSf5v2saZDf52v+b1XHkYloMhmseszoF1apVy/N4QEAAkL1GOceePXsAOH78OLfffnue15lndfPev38/YWF646Y487pYHj58OJ9//jkHDx6kb9++jB49moceeoguXbpQrlw5jh07xsiRIxk4cCD79u3jhx9+wDAMOnXqVJj5RUREpAyx2wyC/Ox8OaoTAyetITnDcemLRP6yZl8cpsuBEa5iuVir1gIGfQymK3sqtoV8fX09PjdnlDk5OTnX9OwLSUxM9DqXXB5eF8uVKlXinXfeYfz48aSlpbmnEfj7+/PII4/wyiuvsHXrVrZu3Qpkv4vi4+PDfffdVzjJRUREpEzysduoFxbMe8Pbct83G7TtqnjM5YKUDAfB1VtjWB1G8hYYCiOmZXe+trhQzq/AwEAA+vTpw8SJEy1OI4WhQK/A6667jp9//pn/+7//o127du7jd955J0899RQhISGYpolpmlStWpVJkybRvHnzAocWERGRss1uM+jRtCr/7N3E6ihSwsQkZELNDlbHkLzYfOC2ryGkuqXrlL2V09MpZzp2XtLS0li/fj0xMTE4nc7LFU28VOBXYXh4OE888cR5x++55x5uv/129uzZg4+PD40bN8ZmURc7ERERKX0Mw2Bcj0ZExSYxd8tRq+NICfHnkTM07VAX/IIhM8XqOHK2/m9B/WtK3Ihyjuuuuw673c7+/ftZs2YN3bp1O++cr776infffZfg4GBWrlxJSEiIBUnFU16/EiMiIoiIiMi1SP1c/v7+tGzZkqZNm+JwOJg9ezZffvmlt7cUERERycVlmvzvtja0qlnB6ihSQqzacxLDsEFVzXYsVq4aCx3vLZRCOSkpifj4+It+XKyG8VbNmjW57bbbAHjsscdYtmyZ+zGXy8X06dOZNGkSAHfccYcK5RLA65HlkSNHYrPZ2Lhxo3t+/sWkp6fz1FNPUbFiRUaNGuXtbUVERETcbIaBzWYy+Z5O9J+4ipNJGVZHkmJu2c4TmKYLI7wNHI6wOo4ANOkHfV4ttKd78MEHL3lOREQE5cuXL7R75njmmWeIjY3lt99+4x//+AdVq1alWrVqHDlyhPj4eCB7TfP48eML/d5S+Ar01o1pmhiGZ+0RcvZjTk9PL8gtRURERHLxsdkIDfLl87s74u9TMqdvyuWTkukkMzMre/sosV54G7j1K6tTFBp/f38++ugj3nnnHa655hqysrLYuXMnTqeTzp0788Ybb/Duu+9it9utjioeMMxLzEFwuVzcd999HDx4MNfxI0eOYBgG4eHhlyyYs7KyiIuLwzRNGjduzJw5cwqe/BxOp5PIyEjatm2rF5+IiEgZ5HSZrNpzktHfbCDLqRbZcmG/Pd6deo79GB9fbXWUsq1cONy/EoIqZTf3EilmLvmqtNls3Hfffdx7773nPWaaJkePet5Qw263ezQtQkRERCS/7DaDa6+owvu3t+PB7zbjdKlglrztOpZIveZNsws0l/bqtkRIVRj1c/ZWUSqUpZjy6JXZtWtX/vOf/3DixAn3sUmTJmEYBmPGjLnkZt0+Pj5UrFiRTp060bBhw4IlFhEREbkAm83ghhbV+d9tbXhsWqT2YJY8rd0XR79W4VClCcRutzpO2RNcBUb9AhXqlMgtoqTsuOQ07Atp2rQphmGwadMmjxp8FTVNwxYREZEcpmny/fpDPPPTNqujSDFUrbw/657pBT/dD1t+sDpO2RIUBqMWQqUGKpSl2PP6Ffr6668D2YvYRURERIoTwzAY0bku6Vku/jN/h9VxpJiJTczAkZWBT/XWKpYvp6BKcM/PKpSlxPD6VTp48ODCzCEiIiJS6O69uj6pmU7+9+tuq6NIMXMyxUX1Gu3xbF8XKbDAULh7AYQ1UqEsJUaB91dITU1lyZIl520J9e2339KnTx/atWvHgAEDmDZtWkFvJSIiIpJv43o0Ymx39UyR3PacSIbqrayOUTYEVIS750OVxiqUpUQpULG8dOlSevTowUMPPUR0dLT7+OTJk3nllVc4dOgQaWlpREVF8eKLL/Kf//ynoHlFRERE8u1ffZtyb7d6VseQYiQiOh7DPwRC61kdpXQLqAB3z4WqTdX1Wkocr4vlmJgYxo8fT0JCQq4tpNLS0vjggw8wTZPy5cszcuRIOnXqlN1o4/vv+eOPPwotvIiIiIinXri5BXd2rmN1DCkmFm+Pzf6kemtrg5Rm/uXhrjlQrYUKZSmRvC6Wv/nmG7KysqhSpQpTpkyhR48eAPz222+kpKRgGAbvvPMOzz77LFOmTKF///6YpsmMGTMKLbyIiIhIfrwyuBUPXt/I6hhSDOyKTcLlyNRU7KLiFwIjf8r+/hazQjkzM5Np06bxwAMP0L17d1q3bk3btm3p378/zz//PJs2bbI6okcOHz5MkyZNaNKkCQcPHrQ6zgW9//77NGnShNtvvz3X8ZEjR9KkSRPeeecdi5JdmtfF8h9//IFhGDz55JN06tTJfXz58uUAVKtWja5du7qP33PPPQAl5sUnIiIipdMTfZrw/E3NMNTZqcxLSHdhhre1Okbp418+u1Cu0bbYFcqrV6/mhhtu4Pnnn+e3334jPT2dRo0aUbVqVQ4dOsS0adO4/fbbefjhh0lOTrY6rljM61fvsWPHAOjYsWOu42vWrMEwDLp165breK1atQCIi4vz9pYiIiIiheLebvWpFOzPE9O34HCZVscRixw4lUpojXZWxyhdKtaBO2dBpfrFrlCePXs2zzzzDE6nk44dO/Loo4/SoUMHjL/eOUtOTmb69Ol88MEHLFq0iL179/L1119TpUoVi5OXTm+88QZpaWmEhoZaHeWCvB5ZzsjIAMDPz899bOfOnZw6dQog16gyQEpKCgB2u93bW4qIiIgUCsMwGNimBp/f3ZFAX/1uUlZtOnQaI6QKBFe2OkrpUKsjjFkBocWvUN6+fTvPP/88TqeT4cOHM2XKFDp27OgulAFCQkIYNWoU33//PVWrVmXfvn0888wzFqYu3WrUqEHDhg2pVKmS1VEuyOtiOecdlrO7YP/222/ZT2qznVcsb9y4EYDw8HBvbykiIiJSaGw2g2uuqML0B7pQOcTv0hdIqfPbrpPZn1RvY22Q0qDFYLjnZwgoXyy3h3rzzTfJzMykVatWvPDCC9hsFy6DrrjiCvcuPitXrmT27NmXKaUUN14Xyx07dsQ0TT755BMcDgexsbF8//33GIZB+/btcw2nx8TEMHHiRAzDyLW+WURERMRKdptB0+rlmDvuahpWCbY6jlxmfxw4helyQLg6YhfINf+E274Cu2+xG1EG2LNnj3tHnv/7v//zaKbr9ddfT7t22VP0p06dCkBqairt2rWjSZMmLF68+ILXjho1iiZNmvDuu+/mOh4XF8ebb75J//79adOmDe3atWPIkCFMnjzZPWv3bDmNsf73v/+xZMkS+vTpQ8uWLenRowcLFiy45Ndw4MABXnzxRXr37k3Lli3p0KEDQ4cO5auvviI9PT3PaxwOB7Nnz+aBBx7gmmuuoVWrVrRr144+ffrwwgsvcODAgTyvc7lczJw5k+HDh9OxY0c6duzImDFj2Lp16wXz5dXgK6dpWbdu3TBNk+nTp3PbbbfRrl072rVrx7Bhw5g5cyammffymf379/PMM8/Qs2dPWrVqRY8ePXjjjTdISkpy32/dunWX/N7l8PrVfOeddzJv3jxWrlzJlVdeidPpJCMjA8MwuOuuu9zn/fOf/+S3334jNTUVX1/fXI+JiIiIWM3HbqNqOX9mP9iN//t6A+sPxFsdSS4TlwuSMxyEVG+F+r15we4LN70H7e7I/rPh9ThckVq7di2QPfv1mmuu8fi63r17s3nzZrZt28apU6cICwujb9++zJo1i7lz59K7d+/zromNjXUX5rfccov7+MaNGxk7diwJCQn4+vpSr149TNNk+/btbNu2jTlz5vD555/nuT46IiKCyZMnU6FCBRo2bMi+ffto1qzZRbPPnTuXZ599lszMTAICAmjcuDEpKSls2bKFLVu2MHPmTD777DOqV6/uviY9PZ0xY8a4i8maNWvSuHFjTp06RXR0NNHR0cybN49vv/2W5s2bu6/LzMzk0UcfZcmSJQDUqVOHkJAQ1q5dy9q1a2nVKv8d503T5Mknn2TOnDmUL1+e+vXrExMTQ2RkJJGRkRw4cIDHH3881zWrVq3i4YcfJjU1laCgIBo3bkxsbCyTJ0/mt99+w8cn/6Wv16/o1q1b8+9//xsfHx9SU1Pd74bceeeduV4427dvJzU1FT8/P1577TUaNmzo7S1FREREioSP3UaQn51v7+vMwLY1rI4jl1HM6Qyo2cHqGCVPYCjcNRfa3H7pcy22a9cuILv4CwkJ8fi6nILQNE2ioqIAGDJkCJC9A1BSUtJ518ybNw+Xy0XHjh2pUyd7X/fY2Fh3oTx06FDWrl3L/PnzWbBgAb/++itt2rRh165djB8/Ps8ckZGR9OjRgxUrVjBnzhxWrlxJgwYNLph7y5YtPP3002RmZjJ06FDWrFnDrFmzWLRoEbNnz6ZevXpERUUxduxYHA6H+7rPPvuMdevWERoayvTp01m2bBkzZ85k+fLlTJ8+nSpVqpCamsrHH3+c635ffPEFS5YsoVy5cnz55ZcsXryYn376iaVLl9KuXTuvdkM6deoU8+fP59lnn+WPP/5g1qxZrF69mgEDBgDw5ZdfEh8fn+v8xx57jNTUVAYPHszq1auZOXMmq1at4rXXXuPw4cPs2bMn3zkK9PbPsGHDWLRoEc8//zxPPfUUM2bM4Nlnn811ztVXX80dd9zB3LlzufnmmwtyOxEREZEiY7fZsNsM3hvejpcGtMDPXjxHyaRw/XnkTHYHZz9Nw/dYpQYwejnUvhIusva3uDh9+jQAFStWzNd1YWFh7s9zCrOOHTtSt25dMjMzWbhw4XnXzJkzB8g9qvzFF1+QkJBAjx49ePnllylfvrz7sTp16vDhhx8SEhLChg0bWLFiRZ5ZnnzySXdj5Us1xJo4cSIOh4Orr76al19+OdcbBM2aNePzzz8nICCA7du355rOvXbtWmw2G+PGjaN169xLE1q3bu3eJznnjQOArKwsPv/8cwCeffbZXH2rqlWrxqRJk/L9fc8xYsQI7rrrLve0eX9/f5555hkMw8DhcOSa4j158mQSExNp3bo1r732GsHB2f+eDcNgyJAhPPLII15lKPCru0aNGtxxxx3cc889tGzZ8rzHn3vuOZ5//nnq1atX0FuJiIiIFCnbX51xR15Vl5n/6ELNioEWJ5KitioqDsOwQbXzf4+VPNTpAmOWQ4VaxXJ9cl5yZsD6+vrm67qz1zafvUZ28ODBQPZU57Pt3LmTqKgogoKC6Nu3r/t4zvTknFHRc1WuXNm97W5Ow+SzValShdq1a3uUOTU11T2N+kLLX2vXrk2vXr0AWLp0qfv4999/z9atWxk+fHie1wUGZv88PHu984YNG0hOTsbf358bb7zxvGsqVKhA//79Pcp+ruuvv/68Y6Ghoe43CxITE93Hc77Hw4YNy7N524gRI/L99w8FWLMsIiIiUlrZbAbNwsvzyyPX8ND3m1kRddLqSFJElu2OxTRdGOGtIcbzxj9lUruRcNO7YBhgKzlbruWMbJ45cyZf1+WMSEPu0dzBgwczceJEIiIiOH78uHvdb86ocp8+fdwjmykpKRw5cgSADz/8kG+++SbPe+Wcs3///vMeq1q1qseZY2JiyMrKAshzIDNHy5YtmT9//nkNu3x9fTlz5gyRkZFER0cTExNDdHQ0O3fuJC4uDshu5pUj5/q6devm2lL4bJdaX30h1apVy/N4QEAAAE6nE8heM52zQ1PTpk3zvCY4OJj69evnGhX3RKEUyzt27ODw4cOkpaVdsDPZ2QYNGlQYtxUREREpMj52G8H+Bl+O6sSkZXt5d0kUrkv/miMlTGqmi4zMTAKqqyP2BQVUhJvfgxaDwDSzi+USpGnTpvz8888cOnSItLQ09wjppezcudP9eePGjd2fV69ena5du7J69WrmzZvH6NGjcTqdzJ8/H8g9BTs5Odn9uSeFWl7roP39/T3Ke+79ypUrd8HzcqZmp6Sk5Lr21VdfZd68ee6CG7IL6BYtWtCsWTNWrVqV63lyRneDgoIueK+zp53nx6VGgnPqzrPf1LhYjvysV89RoGJ53bp1vPDCCxw6dMjjawzDULEsIiIiJYLdll0UPNSjEZ3qhTLuu82cSsm0OJUUtqOJDurXaK+O2Hmp2w1u/QKC/+rSXMIKZYDu3bszYcIEsrKyWL58Of369fPoupypvS1atKBy5cq5HhsyZEiuYnnt2rWcPHmS2rVr59oq9+zCfN68ebmK7qKQM6IN2YX32euuz5Yzyn72+WPHjmXdunUEBARw55130qZNG6644grq1q2Lr68v06ZNO69Yzhm1P7tIP9eFtqkqLGcXyBfLcfYbA57yes3y/v37GT16NIcOHcI0zXx9iIiIiJQkhmHQqV4lFo2/lg51Q62OI4Vs57EkqNKkxKzBvSxsPtDjebhnPgRXLdHfmyZNmtC5c2cAPv74YzIzL/2GV0REhHsLqDvvvPO8x3v16kWFChXYvXu3e0slyJ5Ba5z1hkL58uXdhfbevXsveL/du3ezc+fOfE8VP1edOnXcWyRt27btguflPFa3bl0gu+N2zlrnTz75hKeeeop+/frRqFEj9wjv8ePHz3ue+vXrA3Dw4EFSU1PzvNfFvu7CUK5cOcLDw4Hs72NeMjIy3FO188PrYvmzzz4jMzMTu93Offfdx9SpU/nll19YunTpRT9y3qERERERKUl87DZCg/2Ydn8X/u/q+lbHkUL0+744DLsvVMl7vWOZU6kB3LcUrnkse+/kErQ++UJefvllgoKC2LVrFy+++KJ7vWteDh06xBNPPAFAt27d3A29zubn58dNN90EwM8//8zSpUsxDCPPc7t37w7A1KlTc633zZGUlMRdd93FoEGD+Prrr7358tyCgoK46qqrAC64PjomJoZly5YBcO211wJw+PBh9+N5rXVOS0tzd84++3vXsWNHwsLCyMrKYvr06XlelzM9vSjlbF08c+bMPAdnf/rpJ3ejt/zwulj+/fffMQyDsWPH8vjjj9OxY0fq169PzZo1L/khIiIiUhLZbQZ2m8HzNzVn6v9dqW7ZpcSi7cezf8EO17pl2t4B/1ib3R3cKP7bQnmqbt26vPrqq/j5+TFr1izuvvtuNm/enOuc1NRUfvzxR4YOHcqxY8eoU6cOb7zxRq6R4rPlrE3+/PPPSU5OpnPnznnWOmPGjCEoKIiNGzfyxBNP5Nof+MiRI4wZM4aEhATKlSvHHXfcUeCvddy4cfj4+LB69Wqef/75XFOTd+3axejRo8nIyKBp06bu5bFn79v8wQcf5FqzvHfvXkaPHu0emU1LS3M/Zrfb3dsyvf3227m2ojp9+jTjx4/n2LFjBf6aLuXee+8lODiYzZs38+9//ztXxsWLF/PGG2949bxez6c4deoUoGZdIiIiUjZd1SCMpf+8jtd+3smUPw6ilWYl18nkTJxZmfhUbw18Z3Uca5TwJl6e6N+/PzVr1mT8+PFEREQwfPhwwsLCCA8PJyMjg4P/3969R0dV3v8e/+yZ3Ei4hBAuSSBcwyVCuBhAioUiFxusFRUoIHhCu/Dan0ut64eAcFYFF60ohVJ+B23hgEoryE0JoYAgIUZAOBBRkSQaCCHhlhuBJOYyk/PHkCnZAQxJYJjJ+7VkkezZe893spwsPvM8z/fJyHBO0Y6JidGCBQtu2hSqd+/e6t69u7Nx17WNva7VsWNHLVmyRC+99JLi4uK0Y8cOdevWTeXl5Tp16pQqKirk7++vd99994ZrjG9F//799cYbb+i1117T+vXr9cknn6hr164qLi52dq/u3r27/va3vzk7WEdGRiomJkbbt2/XqlWrtGnTJrVv314FBQXOUeehQ4cqKSlJRUVFunLlivNn85vf/Eapqan64IMP9PLLL+utt95SUFCQ0tLSVFZWplGjRt322cUhISF688039eKLL+rDDz90vubc3FxlZ2erV69e+v7771VeXl5tS7CfUuePi6oWc1e17gYAAGhMvKwW+XpZ9PojvbXhmZ+pS3DAT1+Eu9aFYpsqQ/u7ugzX6DhUev6g1MsxrdgTg3KVvn37aseOHVqwYIGGDx8ui8WilJQUZWZmKjw8XJMmTdK6deu0ZMmSWnVPfvzxxyU5Oi2PGTPmhucNHz5c27ZtU2xsrMLDw3Xy5EllZGQoLCxMU6ZM0SeffKIBAwY02OscN26cPv74Y02cOFHBwcFKS0tTfn6+BgwYoHnz5mnDhg019m5+++23NX/+fPXp00eVlZVKSUlRWVmZRowYoXfeeUerVq1SaGioJDmncVeZO3euli9frvvuu0/FxcVKT09Xnz59tHLlypv+XBrSqFGjtHHjRo0dO1YBAQE6ceKELBaLnn76aa1du9Z5Xm27oUuSUVnHjlsvvviiduzYoWXLljk3tXYlm82m5ORk9evX75Y+LQAAAKivCptdlZXS27tS9PfEk7Kxx5TbWT19oIZ3DpCxMEyNZpqAt7/0i1eln/2X4zV7wNpk4HqKi4vVv7/jw7B9+/bdcA9nszqPLP/2t7+VxWLR0qVLb9j5DAAAoDHwslrk7WXRzF/21Nbf369eITfe3xR3p0On8mX4BEiBnVxdyp1xz2PSC0elIb/3mCZeaLzmzJmjRx55RJs2bbru4wkJCZKk4ODgWgdlqR5hOSoqSvPmzVN6erqzc1tycrJOnz6t7Ozsm/4BAADwRIZhqHvbpor7r5/r5dHd5WP1nAZJnm7X8avb4nh6k682kVJsvDTh/17dEoqQDPfXo0cPnThxQosXL9bx48erPXb48GHNnz9fkjRlypRbum+dp2GPHDlSknTx4sVq3dJ+8gkNo8YLaAhMwwYAAHcTu71Sp3KLNHPjMR06le/qclAL6QtGy/LFX6U9811dSsPzayH9YpY06CnHlGur++6bDJiVlpZq2rRp+uqrryRJ7du3V2BgoHJycpz7Qz/44INavHixcx/q2qjzuyQrK6uulwIAAHg8i8VQeJC/PnrmZ9r57Tn9afsJpecUubos3ET+j3YFhfSTR7W3MgzHdlCjF0h+zRhJhkfy9fXVBx98oLi4OG3evFkZGRlKSUlRy5YtNWzYMD366KMaO3bsLd+3ziPLmzdvrstlknTdzbrri5FlAABwt6qw2WUYhv755Wkt/TRVOVfKXF0SruOjZ4YourVdxqKuri6lYYQNkB5aLIX2lyrtHrVvMnAn1Hlk+XYEXgAAAE/kdXXt8uRBHTR+QHv9n4Tv9Y/Ekyous7m4MlzrSEa+BnbqKgW0loouurqcugsIlkb+b2nAk5KtwnGMoAzcMt41AAAAd4iXxaImPla9OLK7Ev97hCYP6iCrxaMm/bq1PScuOL5w1yZfPgHSz16QXvhK6ne1kRFrk4E6IywDAADcYRaLoZYBPlr4WJR2vTRMI3u1cXVJkHQoI0+VtgqpXV9Xl3Jr/AKl4f8tvfydNPqPjtBsISQD9VWrd9GhQ4ca9EkHDhzYoPcDAABwNxbDMaLcsVWAVv6vgTp0Kk9v70zRgfQ8F1fWeNnt0pXSCjUNiXKPJl8BraUhz0uDnpa8fGneBTSwWoXladOmyTAa5lfG7do6CgAAwB1VTcPu3yFQHz41RMfOFGj5Z99r5/HzqlsbVtTH6fxSRYbd6+oybq55mDT0Bene6Y4RZEIycFvUen5GHZtmAwAAoBaqmoDdE9pC70yL1smcIv3PZ99rS3KWym38O+xOOXamQPcM7ij5NJXKrri6nOqCukj3vyT1nSIZYqo1cJvV6h22cOHC210HAAAA9J+R5o5B/lo0oa9mxvTUqs9P6l9fnlZ+cbmLq/N8+9JyNHlwR6ldb+n0AVeX49Cml3T/H6Q+jzvmitO0C7gj6rzP8t2GfZYBAIAnqqyslL1SstkrtenIGa1KOqnU83fZiKcH8fOy6LvXH5Tx75nSl++6rhCLVeo2Wro3VuoRI9nKJau36+oBGiE+lgIAALiLGYYhq+EYcR5/b3tNGhSu/T/k6L39Gdpz4oJKK+yuLtGj/FhhV2l5ufxctX1U6x5Sv6lS/yck/1b/2SeZoAzccYRlAAAAN1G1rnlgpyAN6RqsotIKffJVtjYfzdKhU3k0BGsgWYXl6hJ2753riO3XQur9uDTgSSm0vyMgV021Zso14DK8+wAAANxMVWgO8PXShHvba/KgcJ27VKIN/y9Lm4+e0Q8Xi1xcoXs7nl2oLr27O0ZzbbdpnbhhkToPl/pPlXo9LFl9pMqrswQIyMBdgXciAACAG6sKzu1aNNEzv+ii3z/QTd9mXdKGI2f0SXK2covKXFyh+/nih1w93DdUat1TOvd1w968ZWep3xTHKHKzdtXXIhv03QHuJjT4AgAA8DD2ykrJ8Z8S0y5q89EsJaReVAHdtGsluKmPDs0ZJePj56XktfW7mWFI7fpKEaOk7jFS+2jJXsG2T4Ab4F0KAADgYSyGoaoFt/d3C9YverSRvbJSx7MLtefEBe1LvaijmQWy2T1izKTB5VwpU0V5mbxDouoWlv2DpK4PSN3GSN3HSE1aOgKy4ZgFQFAG3APvVAAAAA9WNU3bYhi6J7S5erZrphdGRqiotEKff5+jvSkXtC81R1kFJS6u9O5yocim0NABtWvyZViksHulbldHj0P6OI5dO8WagAy4Hd61AAAAjYRhGPKyOuJfgK+XRvZqo9GRbWUxDGXkFmnPiQtKSL2oL0/mqbjM5uJqXSv1whWFduntmEZ9vVWLTds6Ro8jxjhCsl9zRxdri9VxjcR2T4CbIywDAAA0Ul4Wi/Prjq0CNPW+jpo+tLPslZXKyC3W0dP5+ja7UN9kXdK32YW6UlrhwmrvrC9P5mlEjzaOhlxFOVJoPyl0gGNrpw6DpOahjhBtt7HNE+CheEcDAABAkuR9zZTtzsEB6tCyiR7pFyarxTFSmplXrOTMAn2ddckZoC+VeFbTsHbN/dQzpJmCm/o4DvxulxQQ7PjafvXDgqop1YZBQAY8GO9uAAAAXFfVeucqHYL8FRLop7F9QpwBOrugRMezC3U6r1in84qVmV+s07mOv38st7ui7JvysVrUroWfQlr4KaRFE4UG+ik0sIl6tGumXu2aq6mf45/HNnulbHa7rFVBWWLdMdDI8I4HAABArV07dVuSQgObqF0LP1XYKuVlMWSx/KclVkFxmc4XliqroETnLv2o84U/6lzhj8q5UqriMpt+LLOpuMymknKbSq7+XVxWodo26faxWuTnbZGvt1V+3hb5eVnl522Vv49VbZtfDcSBTRTSwk/hQf4KaeGnQH+faveosNlVKcnLYsgw/lO748OAWrX3AuChCMsAAACoF4thyMerZrAM9PdRoL+PurdtqoqrCdgcSq+n3GbXj+U2lZbbVVJuU2mFXb5eFvl5W+XrZZHP1T+Wn7hPhc0ue6XkZTVueK559BwAqhCWAQAAcFsZhiFva+1Hab2tFnlbLWrmV7/nJQgDqA9+gwAAAAAAYEJYBgAAAADAhLAMAAAAAIAJYRkAAAAAABPCMgAAAAAAJoRlAAAAAABMCMsAAAAAAJgQlgEAAAAAMCEsAwAAAABgQlgGAAAAAMCEsAwAAAAAgAlhGQAAAAAAE8IyAAAAAAAmhGUAAAAAAEwIywAAAAAAmBCWAQAAAAAwISwDAAAAAGBCWAYAAAAAwISwDAAAAACACWEZAAAAAAATwjIAAAAAACaEZQAAAAAATAjLAAAAAACYEJYBAAAAADAhLAMAAAAAYEJYBgAAAADAhLAMAAAAAIAJYRkAAAAAABPCMgAAAAAAJoRlAAAAAABMCMsAAAAAAJgQlgEAAAAAMCEsAwAAAABgQlgGAAAAAMCEsAwAAAAAgAlhGQAAAAAAE8IyAAAAAAAmhGUAAAAAAEy8XF1AQ6msrJQk2Ww2F1cCAO7NYrHIMAxXlwEAAOBSHhOW7Xa7JOnrr792cSUA4N769esnq9Xq6jIAAABcyqisGpJ1c3a7XRUVFYyIAEA98XsUAADAg8IyAAAAAAANhQZfAAAAAACYEJYBAAAAADAhLAMAAAAAYEJYBgAAAADAhLAMAAAAAIAJYRkAAAAAABPCMgAAAAAAJoRlAAAAAABMCMsAAAAAAJgQlgEAAAAAMCEsAwAAAABgQlgGAAAAAMCEsAzUk81mc3UJAAAAABoYYRlu48yZM+rRo4d69OihTZs2ubocXblyRa+//rq2bt3aoPddtmyZ83Ve6+DBg87jBw8ebNDn/CnXPveZM2fu6HMDAAAAruDl6gIAdxUTE6MLFy6od+/eri4FAAAAQAMjLMNteHt7Kzw8XJLUtGlTF1cjXbhwwdUlAAAAALhNCMtwG23bttWuXbtcXQYAAACARoA1ywAAAAAAmDCyDLdx5swZjRw5UpK0cOFCPfbYY5KkBx54QFlZWVq4cKF+9atfafXq1YqPj1dGRoYMw1BERITGjRunCRMmyMur5v/yJSUl+te//qWdO3cqLS1NpaWlCgwMVGRkpMaOHauHH35YVqvVeX7V81WZNWuWZs2apUGDBun999+vdu99+/YpLi5OycnJysnJUVlZmZo3b66ePXsqJiZG48aNk7e3d4P9jLKzs7V69WolJibq7NmzMgxDHTp00IgRIxQbG6uWLVve8Nq8vDy999572r17t86cOSM/Pz8NHDhQzz33XIPVBwAAALgLwjI8xqVLlzR+/HilpKRUO56cnKzk5GTt3r1b77zzTrXgW1BQoGnTpik1NbXaNRcvXlRCQoISEhK0ceNGvfvuu2rSpEmtaykpKdFLL72kzz77rMZjubm5SkpKUlJSkuLi4rRq1apqNdXVtm3bNGvWLJWWllY7npKSopSUFH344Ydavny5oqOja1z7zTff6KmnnlJubq7zWHFxsXbs2KE9e/ZoypQp9a4PAAAAcCdMw4bHWLp0qdLS0jR9+nTFxcXpwIEDWrNmjSIjIyVJiYmJNbZ5Wrx4sVJTU+Xv76958+Zp165dOnDggDZv3qxf//rXkqQvv/xSa9ascV6zbds2HTlyxPn9H//4Rx05ckR///vfnccWLVrkDMpTp07V5s2btX//fu3atUtLlixRt27dJEkHDhxokK2nkpKS9Morr6i0tFQ9e/bU8uXL9cUXXygxMVF/+ctf1KlTJxUUFOipp57SqVOnql2bn5+v3/3ud8rNzVVgYKDmz5+vffv2KSEhQfPmzZOfn1+11w8AAAA0BoRleIySkhLNmTNHr776qiIiItSyZUvdd999Wrlypfz9/SVJ//73v6tds3PnTknSjBkz9MQTTyg8PFwtW7ZUZGSk3nzzTQ0ePFiSIyBXadKkiQICApzf+/j4KCAgQH5+fpKky5cva/369ZKkCRMmaO7cuYqMjFRQUJDCw8MVExOj1atXO89PTEys1+u22WyaO3eu7Ha7oqKitH79eo0aNUqtWrVSmzZtNHbsWK1bt05hYWEqKirSn/70p2rXL1++XAUFBfL29tbq1as1ceJEtW3bVu3atdMTTzyhVatWNehUcQAAAMAdEJbhMQIDAzVp0qQax4OCghQVFSXJse75WmVlZZKknJycGtcZhqG5c+dqzZo1WrFiRa3ruHz5smJjYxUTE6Pp06df95zWrVurc+fOkhxrhesjMTHRuYb6D3/4g3x9fWucExgYqGeffVaStHfvXl28eFGSVFlZqfj4eEnSo48+ql69etW4Nioqyrk+HAAAAGgsWLMMj3HPPfdct4GXJLVq1UqSY/T5WgMHDtTevXu1du1anT9/Xg899JCGDh2qFi1aSJIiIiIUERFxS3WEhobqlVdeueHjZWVlOnbsmLOWioqKW7q/2cGDB51fd+/eXUVFRdc9r3fv3pIcAfnIkSN68MEHlZqa6lynPGzYsBs+x6hRo7Ru3bp61QkAAAC4E8IyPMbNOj37+PhIcgTFa7366qv66quvlJ+fr08//VSffvqprFar+vTpo5///OcaPXq0evToUeeafvjhBx0+fFgnT57U6dOnlZGRoVOnTtU7IF/r2tHyIUOG1Oqas2fPSpLOnTvnPBYeHn7D87t27VrH6gAAAAD3RFiGx6jLutrOnTsrLi5OK1asUHx8vHJzc2Wz2ZwdtJctW6bo6Gi98cYb6tSpU63vm5WVpdmzZ+vAgQM1HgsMDNTgwYN1/PhxZWZm3nLNZleuXKnzNYWFhc5jN+v23axZs1svDAAAAHBjhGU0esHBwXrttdc0e/Zsff3110pKStIXX3yho0ePqqKiQocPH1ZsbKy2b99eq+2jCgsLNW3aNGVlZclisWjYsGGKjo5WRESEunbtqg4dOkiSJk+e3CBhuapRWHBwsJKSkm7p2qrp5pJjq6gbqVrbDQAAADQWhGXgKovFor59+6pv37567rnnlJeXpz//+c/asmWLzp49q127djm3k7qZf/7zn86GW0uXLtWYMWOue15+fn6D1B0aGuq8X3FxsbPzd22EhYU5v05PT1fPnj2ve15DhHoAAADAndANG43WsWPHNHnyZA0aNEhpaWk1Hg8KCtLs2bOd358/f75W9z169KgkxxrqGwXlc+fOOfc7ttvtt1h5ddHR0ZIcW0jt3bv3hudt3bpV/fv310MPPaTDhw9LcqxFrgrMu3fvvuG1+/btq1eNAAAAgLshLKPRCgkJ0bFjx3Tp0iW9//771z3nu+++c35tboBV1Xm7vLy82nGr1SpJunTpknOLpmuVlpZqzpw5zmZj5utv1ciRIxUcHCxJeuutt667FVVeXp7++te/qri4WDk5OdW2iKraFio+Pl779++vcW1mZqbee++9etUIAAAAuBvCMhqt1q1bO6dVr1u3TrNmzdKxY8eUl5enzMxMbdy40bkFVEhIiEaMGFHt+sDAQEmOEdm8vDzntOr7779fkmPE+Omnn9b+/fuVm5urzMxMffzxxxo/frw+//xz531utNVTbfn4+GjOnDmSHI3Fxo8fry1btuj8+fM6f/68du7cqWnTpun06dOSHHsxBwQEOK+fMWOGOnXqJLvdrmeffVb/+Mc/lJ2drZycHG3ZskWTJ0+useUWAAAA4OlYs4xGbfbs2UpPT1dycrI2bdqkTZs21TgnODhYK1ascG4/VWXw4MHatm2bEhISNGTIEIWFhWnPnj0aP3684uPjdejQIX377beKjY2tcc8uXbooMjJScXFxysrKUnl5eZ26eVcZO3asCgsLtWDBAmVlZWnmzJk1zjEMQ88//7wmTpxY7bivr69WrlypGTNmKD09XYsWLdKiRYucj1ssFs2cOVMLFy6sc30AAACAuyEso1Fr1qyZ1q5dq48++kjbt29XamqqLl++rICAAIWHh2vEiBF68sknr7t10rx58+Tl5aWEhARnJ+nS0lL5+vpq1apVWrNmjeLj43Xy5EmVl5erefPm6tatm375y1/q8ccf1zfffKO4uDiVlJTo888/rzFyfasmTZqkoUOHas2aNdq/f7+ys7NVXl6uNm3aKDo6WlOnTlVUVNR1r23fvr02bNig9evXa+vWrTp16pSsVqv69u2rZ555Rh07diQsAwAAoFExKqsWTgIAAAAAAEmsWQYAAAAAoAbCMgAAAAAAJoRlAAAAAABMCMsAAAAAAJgQlgEAAAAAMCEsAwAAAABgQlgGAAAAAMCEsAwAAAAAgAlhGQAAAAAAE8IyAAAAAAAmhGUAAAAAAEwIywAAAAAAmBCWAQAAAAAwISwDAAAAAGDy/wHn1imKpgg0/gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8AAAAHLCAYAAAAHjvFxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4RUlEQVR4nOzdd3hU1dbH8e+ZmVRC7zXU0HuTIl16BxELKL6CiKjovdeGXq9ee70igoCiIIqA9CJIka703kJJIJTQCaRnZs77R8xITALpk/L7PA+P4Zx99l4JA86avffahmmaJiIiIiIiIiJ5nMXdAYiIiIiIiIhkByXAIiIiIiIiki8oARYREREREZF8QQmwiIiIiIiI5AtKgEVERERERCRfUAIsIiIiIiIi+YISYBEREREREckXlACnk2maOBwOdIyyiIiIiIhI7qAEOJ2cTid79+7F6XS6OxQRERERERFJBSXAIiIiIiIiki8oARYREREREZF8QQmwiIiIiIiI5AtKgEVERERERCRfUAIsIiIiIiIi+YISYBEREREREckXlACLiIiIiIhIvqAEWERERERERPIFJcAiIiIiIiKSLygBFhERERERkXxBCbCIiIiIiIjkC0qARUREREREJF9QAiwiIiIiIiL5ghJgERERERERyReUAIuIiIiIiEi+oARYRERERERE8gUlwCIiIiIiIpIvKAEWERERERGRfMHm7gBEJOPOnz9PeHh4hvrw8/OjXLlymRSRiIiIiEjOowRYJJe7ceMGjzzyCE6nM0P9WCwWFixYQJEiRTInMBERERGRHEYJsEguV6RIEWbNmpXiDPDp06d55513GD9+PP7+/in24+fnp+RXRERERPK0PJEA//TTT7zxxhu8/fbb3H///al6xm63M3ToUA4cOMB7773HwIEDszhKkayTmqXL/v7+BAQEZEM0IiIiIiI5U64vgrV//34+/PDDND83ZcoUDhw4kAURiYiIiIiISE6UqxPgbdu28cQTTxAREZGm544cOcLkyZOzKCoRERERERHJiXLlEuiYmBimTp3K5MmTcTgcaXo2NjaWF198EYfDgaenJ7GxsVkUpYiIiIiIiOQkuW4G+PTp03Tr1o2JEycCMG7cOMqXL5/q57/44gsCAwMZNmwYJUuWzKowRUREREREJIfJdQlwaGgoFy5coFGjRsydO5ennnoq1c/u3buXb775hsqVK/PCCy9kYZQiIiIiIiKS0+S6JdBlypRh6tSptG/fPk3PRUdH89JLL2GaJu+99x7e3t5ZFKGIiIiIiIjkRLkuAfb397/jWaYp+fjjjwkODubxxx+nSZMmWRCZiIiIiIiI5GS5bgl0emzbto1Zs2ZRtWpVxo0b5+5wRERERERExA3yfAIcHh7OK6+8gsVi4f3338fLy8vdIYmIiIiIiIgb5PkE+P333+fcuXOMGDGChg0bujscERERERERcZM8nQBv2LCBefPmUa1aNZ577jl3hyMiIiIiIiJulOuKYKXFL7/8AsDJkyepX79+iu1eeeUVXnnlFVq0aMH333+fXeGJiIiIiIhINsrTCXDlypXvWPH54MGDxMbGUrlyZYoVK0ZAQEA2RiciIiIiIiLZKU8nwKNHj2b06NEp3u/UqRPnzp3jySefZODAgdkYmYiIiIiIiGS3PL0HWERERERERCSBEmARERERERHJF5QAi4iIiIiISL6QJ/YAr1u3LlufExERERERkdxHM8AiIiIiIiKSLygBFhERERERkXxBCbCIiIiIiIjkC0qARUREREREJF9QAiwiIiIiIiL5ghJgERERERERyReUAIuIiIiIiEi+oARYRERERERE8gUlwCIiIiIiIpIvKAEWERERERGRfEEJsIiIiIiIiOQLSoBFREREREQkX1ACLCIiIiIiIvmCEmARERERERHJF5QAi4iIiIiISL6gBFhERERERETyBSXAIiIiIiIiki8oARYREREREZF8QQmwiIiIiIiI5AtKgEVERERERCRfUAIsIiIiIiIi+YISYBEREREREckXbO4OQERExF0WLFjAK6+8kubnWrRowffff58FEWU/0zT57rvvmDNnDufOncPX15cuXbrwzjvvuDs0ERGRTKcEWERE8q3ixYvTpEmTJNcvXLjAhQsX8PT0pF69eknuBwQEZEd42eLbb7/lgw8+AKB8+fIUKVKEChUquDkqERGRrKEEWERE8q327dvTvn37JNe/+OILJk6cSMmSJZk9e7YbIss+v/zyCwC9evXi008/dXM0IiIiWUt7gEVERPKx69evA/HLukVERPI6JcAiIiL5mNPpBMDT09PNkYiIiGQ9LYEWERFJp5o1awKwZcsW3n//fdauXYvFYqFu3bpMnz4dm82G3W5n2bJlrFy5kkOHDnHjxg1sNhulSpWiZcuWjBgxgipVqiTqd9iwYWzfvp1p06ZRqlQpJk+ezI4dO7h58yalS5emc+fOjB49mmLFiiWJadmyZcyfP59Dhw4RGRlJwYIFqVOnDv369aN3795YLJZEYyR45ZVXeOWVVyhfvjzr1q1zXb948SLfffcdGzZs4Ny5c1gsFipVqsR9993H8OHDKVSoUKLxE5aPjxw5kkaNGvHRRx9x7tw5SpUqxT/+8Q8aNmxI586dKV26NOvXr2f27NnMmzePoKAgfHx8aNq0KS+88ALVqlXj2rVrfPnll6xdu5YrV65QvHhxOnfuzPPPP0/BggWTfO/h4eHMmDGD1atXc/r0aUzTpGLFitx333089thjSWJNKILWs2dPHnnkEd566y1OnjxJkSJFeOKJJ3jsscfS9oIQEZEcTwmwiIhIBj3zzDPs2bOHgIAArl27RsmSJbHZbERHRzNq1Ci2bdsGxBeZCggI4OrVqwQHBxMcHMzSpUv54YcfqFOnTpJ+N27cyE8//YRpmlSuXJkCBQpw5swZZsyYwfr161mwYAF+fn6u9u+99x7fffeda6yKFSty6dIlNm/e7Pr14YcfAvGFvOx2OwcPHiQ2NpbKlStTrFgxSpYs6erv999/55lnnuHWrVt4eHhQvXp17HY7gYGBHD16lJ9//pkpU6a4Pgi43Y4dO5g+fTqFCxemWrVqnDx5ktq1a7vuO51OnnvuOX799VdKly6Nv78/p06dYs2aNezYsYMpU6bw7LPPcuXKFfz9/SlXrhynT5/mhx9+4PDhw8yePRvDMFz9nTx5kpEjR3Lu3DmsVisVK1bE29ubEydO8OWXX7Jo0SKmTZtGtWrVksR66tQpnnjiCaxWKzVq1ODkyZNUr149ja8CERHJFUxJF7vdbu7cudO02+3uDkXkjo4dO2a2b9/ePHbsmLtDEck1JkyYYAYEBJgdO3a8Y7uAgAAzICDArFevnrl9+3bTNE3T4XCY169fT9RPy5YtzX379iV6dt++fWabNm3MgIAA85lnnkl075FHHnH1PWrUKPPixYuue2vWrDFr165tBgQEmN9++63r+okTJ8yAgACzfv365h9//JGov4ULF5q1atUyAwICzD179iS617FjRzMgIMCcP39+outnz541GzVqZAYEBJijR482L1++7Lp35swZ84EHHjADAgLMDh06mDdv3kzyswsICDCffvppMyYmxjRN07x69appmqYZEhLiul+nTh1zwYIFptPpNE0z/t+rhg0bmgEBAWatWrXM/v37m0FBQa6+f/75Z9ez27Ztc12PiIgw77vvPjMgIMB86qmnzNDQUNe9S5cumaNGjTIDAgLMrl27mlFRUa578+fPd/U3ZMgQ1/dx7do1V0yS9RxOpxlrd5ixdocZ53BkWr92R3y/MXEOM87uMB36MxUR0zQ1AywiIpJBPXr0oHnz5gBYLBaKFCkCwNatW7FYLIwdO5YGDRokeqZBgwY8+OCDTJgwgcDAwGT7LV68OBMmTMDLy8t1rXPnzrRr147ffvuN3bt3u5bpHjt2DIAqVarQsmXLRP3079+f/fv3ExYWRmxsbKq+pylTphAZGUlAQACff/55oj3CFStWZMqUKfTq1Yvz58/z/fffM2bMmCR9vPTSS67nkluuPXjwYAYMGOD6fUBAAJ07d2bZsmWYpsnnn39OpUqVXPcHDRrEl19+yblz5zh8+LCrcNe8efM4ffo0devW5YsvvsBqtbqeKVmyJJ9//jk9e/YkODiYBQsW8NBDDyWJZdy4ca5l1UWLFk3Vz0hSx+50YprgYf2r9Ex0nIPrEbFcDo8hNCyaK+ExXIuIIywq4VcsYVFxRMc5cZomDqeJaeL62vnn1wm/t1kMCnp7UNDbRkFvDwr52Cjk+v2f17w9KO7nScWivpQq6IXFEr+CwDRN7E4TwwCbReVxRPI6JcAiIiIZ1LRp02Svz549m7i4uERLdW/n4+MDQHR0dLL3W7VqlSj5TVCtWjV+++03bt265brm7+8PwNGjR/nggw944IEHqFy5suv+v//971R9LwnWr18PwIMPPphsgazChQszaNAgvvrqK9asWZMkAS5ZsiQVK1a84xgdOnRIcq18+fJAfCJ/e/KboFSpUpw7d47w8HDXtTVr1gDQs2fPRMlvAm9vb7p168b06dP57bffkiTAFouFxo0b3zFWubOEJNJmMVyv98hYO8FXIjl+6RZBVyI4dTmCoCsRnL4awc1ou1vjtVkMyhbxpmJRXyoW8/3zvz5ULlGASkV9KVog/jXvdMYn2TarEmORvEIJsIiISAbdvm/27zw8PAgLC2Pv3r0EBwcTEhJCcHAwR44c4cqVK8BflZj/rnTp0sle9/b2BsBu/yuJqFu3Ln369GHp0qVMnz6d6dOnU758eVq1akXbtm259957E+0XvpPw8HAuXrwIQL169VJsV7duXQCCgoKS3CtVqtRdxylbtmySax4eHkDyM8a33zdN03UtYQZ93rx5rF27NtnnEn7Wp06dSnKvUKFCrp+ppI7d4cRiGFgsBrF2JwfOhbHnzHWOXwon6EoEQZcjuBwe4+4wU2R3moRciyLkWhScvJrkvq+nlTplC1GvfGHqly9M40pFqFy8ABaLoaRYJJdTAiwiIpJBKSVP4eHhvPPOOyxdupS4uDjXdQ8PD+rWrUvt2rXZtGlTiv0mJHup9dFHH3HPPfcwb9489u3bx7lz5/j555/5+eef8fLyYsiQIbz44ot3PfIoIiLC9fWdkuaEe5GRkZimmWimO7mZ679LmAFPjiUNS1ETZoMTCovdye2z5glSE2t+ljC7m7CE+dyNKLYHXWPPmevsOXODIxduYnead+kld4mMdbDz9HV2nr7uuubjYaV22ULUr1CY+uUL0bhiUaqUiE+K4xzOREu8RSTnUgIsIiKSRcaMGcO2bdvw9vbmkUceoWHDhtSoUQN/f388PDyYO3fuHRPgtDIMg8GDBzN48GCuXbvGtm3b2L59u+sIo++//x6A11577Y79FChQwPX17UuN/y4sLAwAX1/fFJd5ZwcfHx9u3brFV199RceOHd0WR16SkNDZnU72nLnB9qBr7D5znb1nbnA1InX7yPOaqDgHu89cZ/eZv5JiX08rLaoUo12NknSoWZKqJf0wE/YlKyEWyZGUAIuIiGSBvXv3uo4/mjJlCvfcc0+SNqGhoZk2Xnh4OMHBwfj6+lK1alWKFStGjx496NGjB6Zp8uabbzJ79mwWL1581wTYz8+PkiVLcvnyZQ4ePJikgFeCgwcPAiTaa+wOVapUYf/+/Rw/fjzFBDg4OJhbt25Rvnz5FJdX52e3J23XI2NZc/givx27xKbAK9yKce9+3ZwsMtbB+mOXWX/sMm8tgzKFvGlbowT31ihB+4CSFPH1xPHn7LjV4r4PiUTkL6lKgCdOnJjVcQAwduzYbBlHREQkq509e9b1dXL7aKOioli+fDkADocjw+NNmDCBGTNm0KFDB6ZMmZLonmEYtGrVitmzZ6d6rE6dOjFnzhxmz57N4MGDkyybDgsLY9GiRQC0a9cuw/FnRMeOHdm/fz8///wzw4cPT7Ik3W63M2bMGE6ePEn//v354IMP3BRpzmJ3OLH+WbTq8IWbrD58kXVHL3HgXBhm3lrRnG1Cb0bz866z/LzrLIYBdcoWom31EnSuXZpmlYuCCRhgceOKCZH8LtUJcHYsbVICLCIieUXVqlVdX3/55Ze88MILrj29J06c4D//+Y9rv2pUVFSGx+vbty8zZ85k/fr1fP311zz66KOu8c6fP89XX30FQPv27VPV38iRI1m2bBmBgYE899xzvP322xQvXhyAkJAQ/vWvf3HlyhVKly7No48+muH4M+Lhhx/mxx9/5PTp0zz11FO88847lCtXDoBr167x73//m5MnT+Lh4cHjjz/u1ljdzflnZmuaJhsCL7PyYCjrj13O0QWrcivThEPnb3Lo/E2mbDxFqYJe9G5QlgGNK1C/QmEcThOLgVu3D4jkR2laAm1m4ceB+ssvIiJ5SZ06dejRowe//PIL06dPZ8GCBVSoUIEbN264ZofbtGnDli1biIiIIDw8PNVVmpNTr149xo0bx2effcZHH33ElClTqFChAlFRUYSEhGC326lUqRIvv/xyqvqrWLEiEyZM4LnnnmPdunW0b9+e6tWr43A4OHHiBE6nk3LlyjFx4kS3LykuXLgwkydP5qmnnmLr1q107tyZ6tWrYxgGQUFBxMbGYrPZ+PTTT6lZs6ZbY3UXu8OJzWrh6IVbzNkZwtJ957mWT/fyusulWzFM3xLM9C3BVCzmQ58G5RjYpALVS/lhdzp1BrFINklTArxnz547VmxMj4iIiBTPTxQREcnNPvnkE1q3bs3cuXM5c+YMx44do2jRonTs2JGhQ4fSoUMHOnbsyPnz51m3bh19+/bN0HijR4+mevXqzJ07l0OHDhEYGIi3tze1a9fmvvvuY9iwYfj6+qa6v7Zt27J8+XK+/fZbNmzYQFBQEB4eHtSuXZvu3bszdOhQChUqlKGYM0v9+vVZunQp33//PevWreP06dPExcVRsmRJWrRowYgRI6hVq5a7w8xWCUnvlfAYft55lvm7z3L8UspFzST7hFyLYtL6k0xaf5KA0n70aViOgY0rUL6oj+vPTUSyhmGmYlq3Vq1aGIbB7t27Mz0BjoyMpEmTJhiGwZEjRzK176zkcDjYu3cvjRo1wmq1ujsckRQFBgYyatQopk6dSkBAgLvDERGRLJSwxDnO4eSXA6HM332WLSeukMdOKcqzWlYpxog2lbmvThlMTM0Ki2SBVM0A+/n5YRhGlixTNgwDPz+/NJ33JyIiIiJ/cTidWC0WQsOimbbpFPN2niVc1ZtznW1B19gWdI2yhb155B5/HrnHn8I+HjicpqpIi2SSVCXAW7duTVL9MbP4+Piwc+fOLOlbREREJC9LWC576PxNvtpwklWHLrqO3ZHc60JYNB+tOsaEtcfp07Acj7epQp1yhbQ8WiQTpCoBbtmyJS1atKB169a0adOG6tWrZ3VcIiIiIpICu8OJxWKw7uglpmw8xa7T190dkmSBGLvTdaxSk0pFGdGmMj3rl9XyaJEMSFUCHBUVxcaNG9m4cSMApUqVciXDrVu3dnv1RxEREZH8wOE0iXM4mbMjhOlbgjh9NdLdIUk22X3mOrvPXOed5Ud4sn1VHmnpj2FBibBIGqUqAe7Tpw+7du3i/PnzAFy8eJFFixaxaNEiDMOgZs2atGnThjZt2tC0adMsWy4tIiIikh/ZnU7sDpMpG08xfXMQYVFx7g5J3CT0ZjRvLj3M5PUnGd2+Go/c449FibBIqqWqCnSC8+fPs2PHDnbu3MmOHTsIDg7+q6M/C2R5e3vTtGlTV0KcV6vOqgq05BaqAi0iknvZHU4AZm07w8R1x7kSrrN7JbGSfl6M6RifCBugPcIid5GmBPjvrl69mighPn78OE5n/D/UCQlxiRIlXMul27RpQ/HixTMncjdTAiy5hRJgEZHcJ2GP75K95/lk9TFCrkW5OyTJ4coV9ua5LgHc37QCTtNUIiySggwlwH9369Ytdu3a5UqIDx06hN0eX4I/ISGuWbMmixYtyqwh3UYJsOQWSoBFRHKPhCq/G45d4v2VRzly4Za7Q5JcpmqJAvyzW0161i+L3enU0miRv0nVHuDUKliwIB06dKBDhw4AxMTEsHHjRubMmcPWrVtxOp0cO3YsM4cUERHJVrGxsSxatIh169Zx9OhRrl27hsVioVy5cjRt2pQBAwbQpEkTd4d5V2fPnqVz584A/Prrr/j7+7s5ouR98cUXTJw4kSZNmjB79mzX9WHDhrF9+3ZGjx7N888/78YIM4fTNLEYBofO3+TdFUfYFnTN3SFJLnXqSgRjfthNq6rFeWdAPaqUKOCaiBKRTE6AAY4ePcr27dvZvn07Bw8e5OLFiwAkTDT7+Phk9pAiIiLZYvPmzbz22mtcuHABgKJFi1K9enXCw8M5c+YMJ0+eZO7cuXTr1o13330XPz8/N0csuYHDaRIWFccbiw+ydP8Fd4cjecTvp67S9bONPNamMv+4ryYeVkPLokXIhAT40qVLbNq0iU2bNvHHH38QFhYG/JXwGoZBrVq1aNu2ratKtIiISG6zaNEiXn31VRwOB82aNeP555+nadOmrpmV8PBw5s2bx5dffsmqVas4ceIEM2bMoGTJkm6OPG/64IMPiIqKomjRou4OJd0Slqf+tOMMH/xylJvRdneHJHmM3Wny9aYglu47z/hedejbsJyWRUu+l+YE2G63s3PnTlfSe/z4cde9hKS3RIkStGnTxpX06pxgERHJzQ4dOsTrr7+Ow+Fg6NChvPHGG1j+9gbSz8+PESNG0LZtWx5//HFOnjzJq6++yrRp09wUdd5Wrlw5d4eQIU7T5PSVSP718352n7nu7nAkj7t4M4ZnZ+9h9rYzWhYt+V6qEuCQkBBXwrtt2zaiouIrESYkvJ6enjRr1syV9NasWTPrIhYREclmH374IbGxsdSvX59///vfSZLf29WoUYO33nqL0aNHs3HjRhYtWkT//v2zL1jJ0ewOJ04TPlsdyNebTxHnyLRapCJ3pWXRIqlMgO+77z7Xp0QJSW/16tVdM7wtWrTAy8sr66IUERFxk+PHj/PHH38A8H//93+pqvzfsWNHGjduzJ49e5g1axb9+/cnMjKSNm3aEBkZycSJE7nvvvuSfXbEiBFs3bqVp556inHjxrmuX7lyhenTp7N+/XrOnTuHxWKhatWq9OrVi4cffjjJ/4cTikeNHDmSRo0a8dFHH3Hu3DlKlSrFP/7xDxo2bHjH7yEoKIjvvvuOrVu3cuHCBby8vKhWrRo9e/Zk6NCheHt7J3nGbrezbNkyVq5cyaFDh7hx4wY2m41SpUrRsmVLRowYQZUqVZI853Q6WbhwIfPmzePEiRMANGnShLFjx6YYX3JFsBIKe5UoUYLNmzfz888/M3fuXFefAQEBDBkyhIEDByY7+3Xq1Cm+/vprtm3bxqVLlyhZsiTdunVjzJgxjBkzhu3btzNz5kxatmx5x59dcpxOE4vF4I9TV3l14UHOXItMcx8imSFhWfQvB0L57IFGNK9cVLPBkq+kaQl00aJFGTFiBP369aNUqVJZFZOIiEiOsXXrVgAsFgv33ntvqp+777772LNnDwcPHuTq1asUL16c7t27s2DBApYsWZJsAnzx4kVXsj1w4EDX9V27djFmzBhu3LiBh4cHlStXxjRNDh06xMGDB1m8eDFff/11svuNd+zYwfTp0ylcuDDVqlXj5MmT1K5d+46xL1myhPHjxxMbG4u3tzcBAQFERESwb98+9u3bx/z585k2bRplypRxPRMdHc2oUaPYtm0bAOXLlycgIICrV68SHBxMcHAwS5cu5YcffqBOnTqu52JjY3n++edZs2YNAJUqVcLPz4+tW7eydetW6tevn+qfeQLTNHnppZdYvHgxhQoVokqVKoSEhLB371727t1LUFAQ//znPxM9s2nTJp599lkiIyPx9fUlICCAixcvMn36dH777TdstvSXTbE7nETGOnht0UGW7Duf7n5EMtO5G1EMnfo7/9e2Ki92r4kBmg2WfCHVr3LTNLl+/Tqffvopo0aN4uOPP+b3338nNjY2K+MTERFxq6NHjwLxCV1aqjonJHmmaRIYGAjAoEGDAFi/fj23biU933Xp0qU4nU6aNWtGpUqVgPikOCH5HTJkCFu3bmXZsmUsX76cX3/9lYYNG3L06NFEs8W327t3L506dWLDhg0sXryYjRs3UrVq1RTj3rdvH6+88gqxsbEMGTKELVu2sGDBAlatWsWiRYuoXLkygYGBjBkzBrv9r6JN06ZNY9u2bRQtWpR58+axbt065s+fz/r165k3bx4lS5YkMjKSr776KtF433zzDWvWrKFgwYJ8++23rF69moULF7J27VoaN27M7t27U/0zT3D16lWWLVvG+PHj+eOPP1iwYAGbN2+mb9++AHz77bdcu3YtUfsXXniByMhIBgwYwObNm5k/fz6bNm3i3Xff5ezZs4lqnqTVjuBr3PfZBiW/kuM4TZi26RR9vthM8NUInE4tyZe8L1UJ8MSJE3nggQcoV64cpmly9OhRvvnmGx5//HFatmzJqFGjmDFjBidPnszqeEVERLLV9evxBYqKFCmSpueKFy/u+joh2WrWrBn+/v7ExsaycuXKJM8sXrwYSDz7+80333Djxg06derEf//7XwoVKuS6V6lSJSZNmoSfnx87d+5kw4YNycby0ksv4enpCXDXwpQTJkzAbrfTtm1b/vvf/yZK+mvXrs3XX3+Nt7c3hw4dYvny5a57W7duxWKxMHbsWBo0aJCozwYNGvDggw8CuD4MAIiLi+Prr78GYPz48bRu3dp1r3Tp0kycODHNP/cEDz30EMOHD3ctWffy8uLVV1/FMAzsdjv79+93tZ0+fTo3b96kQYMGvPvuuxQoUACIP8li0KBBPPfcc2ke3+5wYnc4eXv5YR76ehsXb8ak6/sQyQ5HQ2/Ra8Jmvt4chNM0cTid7g5JJMukKgHu0qULb775JmvXruWXX37h1VdfpW3btnh5eREVFcXGjRt5//336d27Nx07duS1115j5cqV3Lx5M6vjFxERyVIxMfGJi4eHR5qeu32vcEL9DIABAwYA8cuMb3fkyBECAwPx9fWle/furusJS4MTZi//LuHkBYDffvstyf2SJUtSsWLFVMUcGRnpWsI8fPjwZNtUrFiRLl26ALB27VrX9dmzZ7N//36GDh2a7HM+Pj5A/FLpBDt37iQ8PBwvLy969eqV5JnChQvTs2fPVMX+dx07dkxyrWjRoq4PAG5/j5LwM37ggQeSLXD20EMPpenP3+E0OXs9ir4Tt/D1piBMTapJLhBjd/LuiiM8PG0bV8JjcWg2WPKoNG9oqVKlClWqVGH48OHExsayY8cOV4XokydPcuHCBebPn8/8+fOxWCzUq1fPVSyrUaNGd6ycKSIiktMkzEAmnHOfWgkzx5B41nXAgAFMmDCBHTt2EBoa6tpHmzD7261bN9cMZEREBOfOnQNg0qRJzJw5M9mxEtqcOnUqyb201OwICQkhLi4OgHr16qXYrl69eixbtoygoKBE1z08PAgLC2Pv3r0EBwcTEhJCcHAwR44c4cqVK0B8wasECc/7+/u7Zqj/7m77lVNSunTpZK8nFO9yOBxA/B7k4OBgAGrVqpXsMwUKFKBKlSqJZq+TY5omhmGweO85Xlt0kMhYR7piF3Gn309d5b5PN/BWv3r0b1ze3eGIZLr0V3Qg/vijNm3a0KZNG15++WVCQ0NdyfDvv//OrVu32LdvH/v373ct0WrVqhUTJkzIrPhFRESyVK1atVixYgVnzpwhKirKNZN5N0eOHHF9HRAQ4Pq6TJkytG7dms2bN7N06VJGjhyJw+Fg2bJlQOLlz+Hh4a6v75Z8AcnuK07LKQ23j1ewYMEU2yUsi46IiEj07DvvvMPSpUtdSTTEJ8V169aldu3abNq0KVE/CbOwvr6+KY51+5LvtLjbjG3CrPztH1TcKY677f+2O5zYnSbjFx5g/u5zaYhUJOe5GW1n3Jy97Ay+xpv96gEmVk1iSR6RoQT478qUKcP999/P/fffj9Pp5PDhw+zYsYOtW7eyZcsWbt26xerVqzNzSBERkSzVoUMHPv30U+Li4li/fj09evRI1XMJy2rr1q1LiRIlEt0bNGhQogR469atXL58mYoVK9K8eXNXu9uT7aVLlyZKpLNCwswzxCfTt+9jvl3CbPjt7ceMGcO2bdvw9vbmkUceoWHDhtSoUQN/f388PDyYO3dukgQ4YXb99sT7725fMp0Vbk967xTH7cn+39mdTs5ci2TU97s4cSnlPkRym1nbznDs4i2mDmtGQW+bqkRLnpAlr+ITJ06wYMECfv75Z1asWMH27dsT7X8SERHJLWrWrOk69/Wrr75K1ekHO3bscB1n9MgjjyS536VLFwoXLsyxY8dcxwMB9O/fP9F5nIUKFXIlzwln2Sbn2LFjHDlyJM3LtP+uUqVKruN+Dh48mGK7hHv+/v5AfKXphL3DU6ZM4eWXX6ZHjx5Ur17dNRMbGhqapJ+EM4FPnz5NZGTy5+Le6fvODAULFqRs2bJA/M8xOTExMa5l0n/nNE22nrhKv4lblPxKnrQj+Do9J2ziWOgt7QuWPCHDCXBsbCw7d+5k6tSpjB49mpYtW9KnTx9ef/11fvrpJw4cOEBcXBy1a9fmiSeecFV7FBERyS3++9//4uvry9GjR3njjTdc+0eTc+bMGf71r38B0KZNG1fRq9t5enrSu3dvAFasWMHatWsxDCPZth06dABg1qxZifbPJrh16xbDhw+nf//+zJgxIz3fnouvry/33HMPQIr7jUNCQli3bh0A7dq1A+Ds2bOu+8ntHY6KinJVjL79Z9esWTOKFy9OXFwc8+bNS/a5hKXhWSnhTOb58+cn+4H9woULXcXQEiS0+25LMCO+28GtGHuS50Tyigth0QycvJXFe7W8X3K/NCfA165dY82aNXzwwQcMHTqUpk2bMmzYMD777DPWr19PWFgYpmlSqVIlhg4dyoQJE/j9999ZsGAB//znP12VKkVERHILf39/3nnnHTw9PVmwYAGPPvooe/bsSdQmMjKSOXPmMGTIEC5cuEClSpX44IMPEs3o3i5hr+/XX39NeHg4LVu2pHz5pAVnRo0aha+vL7t27eJf//pXovNrz507x6hRo7hx4wYFCxbk4YcfzvD3OnbsWGw2G5s3b+b1119PtCz46NGjjBw5kpiYGGrVqkX//v0BEp0r/OWXXybaA3zixAlGjhzpmkGNiopy3bNara4jhj755JNExypdv36dcePGceHChQx/T3fz+OOPU6BAAfbs2cN//vOfRDGuXr2aDz74IFF7h9PEacKrCw7w1rLDmhWTfCHG7uSFuft4c+khHE5Tr3vJtVK1B3jevHns3r2b3bt3c+bMGdf12z8lLVGiBK1atXL9SlhOJCIikhf07NmT8uXLM27cOHbs2MHQoUMpXrw4ZcuWJSYmhtOnT7uWR/fo0YO33377joWT6tWrR0BAgKu41e3Fr27n7+/P//73P55//nmWLVvGqlWrqF69OnFxcQQHB2O32/H19WXq1Kkp7tlNi8aNG/POO+/w2muvMXfuXJYsWUK1atWIjIx0VW0OCAhg4sSJrsrNderUoUePHvzyyy9Mnz6dBQsWUKFCBW7cuOGaHW7Tpg1btmwhIiKC8PBw18/mgQceIDAwkFmzZvHCCy/w8ccfU6xYMY4fP05sbCxdunRx7afOKmXLluXDDz9k3Lhx/PTTT67v+erVq5w/f57atWtz4sSJ+MTesBAV62DU9zvZevJqlsYlkhN9uyWYo6G3+OqRphTwtGpfsOQ6qUqAX3/9dQzDSJTw+vn50bx5c1q1akXr1q2pXr16lgUpIiKSEzRs2JBVq1axePFiVq9ezeHDhzl27BhWq5VKlSrRrFkzBgwYQKNGjVLV36BBg3jvvffw8/Oja9euKbZr3749y5cv57vvvmPTpk0EBQXhcDgoX748bdq04fHHH0/1Wb+p0b9/f+rXr893333H1q1bOX78OL6+vjRp0oTevXszePDgJNWlP/nkE1q3bs3cuXM5c+YMx44do2jRonTs2JGhQ4fSoUMHOnbsyPnz51m3bl2ic41ff/11WrVqxffff8/Ro0e5ceMG9evXZ8yYMVy5ciXLE2CI35c9f/58vvrqK3bs2MHRo0cpXbo0Tz75JE8++aRrH3i43UKfiZsJupJyUSyRvO73k1fpNWETP468h3KFvZUES65imKmoTlWrVi08PDxo1KgRrVu3plWrVjRo0CBfn+nrcDjYu3cvjRo1wmq1ujsckRQFBgYyatQopk6dmuUVZEVE8qLIyEgaN24MgFf/t7lppHxckkh+UsLPk1lPtKR6KT9s+TgvkNwlVTPA33zzDU2bNnUdHi8iIiKSV4wfP56DBw/y6KOPJrsUfcOGDQCYXgWV/Irc5kp4LPdP/p3pI5rTpFJRrJbkax6I5CSp+qimTZs2Sn5FREQkT6pZsyZHjx7l008/5fDhw4nu7dixg/H//g8Ajqoq5Cnyd7di7Dzy9TbWH7uEU8eeSi6Qqhng8+fPZ+qg5cqVy9T+RERERNLrgQceYNmyZezbt48BAwZQoUIFihQpwpUrV1znFzvKNcAR0NnNkYrkTDF2J09+v4uPBjegf+PyKVa/F8kJUpUAd+rUKdNeyIZhJPl0VURERMRdvLy8mDVrFsuWLWPhwoWcPn2aY8eO4VmgEI7StXBWaoGzQiN3hymSo9mdJi/M28f1yDgeb1vF3eGIpChVCTCQ7MHwIiIiInmBp6cnAwcOdO0B/t+aQP635riboxLJXUwT3lp2mOuRsfyja013hyOSrFQnwAkzwCVKlKBHjx7Url07y4ISERERcZf3fznCVxtOuTsMkVzri3UniI5zMr6X8gXJeVKVAA8bNoyVK1dy+fJlLl++zPfff0+VKlXo1asXvXr1onLlylkcpoiIiEjWe2PJIWZsDXZ3GCK53rRNp/DztvFc5xruDkUkkVRVgR4/fjwbN25kxowZDBkyhMKFC3Pq1CkmTpxIjx49GDRoEN9++y0XL17M6nhFREREssTriw4q+RXJRJ+tDuTbLUHaSik5imGm4xVpt9vZsmULy5cvZ926dYSHh2MYBoZh0LRpU3r16kW3bt0oWrRoVsScIzgcDvbu3UujRo2wWq3uDkckRYGBgYwaNYqpU6cSEBDg7nBERHKkz9cE8pn2/IpkOsOADwc1YFDTClhUHVpygFTvAU70kM1G+/btad++PbGxsWzYsIFly5axYcMGduzYwc6dO3n77bdp3bo1vXr1okuXLhQoUCCzYxcRERHJEKdp8tP2M0p+RbKIacJL8/fj52WjW90yWCxKgsW90pUA387T05P77ruP++67j8jISNauXcvy5cvZsmULGzduZNOmTXh5edGuXTt69+5Nhw4d8PT0zIzYRURERNLN4TRZe+Qiry066O5QRPI0pwnP/rSHbx5tTpvqJbAqCRY3StUe4NTy9fWlT58+fPXVV2zZsoV33nmHtm3bYrfbWb16Nc899xxt2rTJzCEB+Omnn6hZsybz5s1LsU1oaCjvvvsuPXr0oGHDhjRs2JBevXrx0UcfcfXq1UyPSURERHIuu9PJ7jPXeWb2HpzaniiS5eIcJqO+38meM9exO53uDkfysQzPAKekUKFCDBo0iCpVqlCyZEkWLlyIaZqEh4dn6jj79+/nww8/vGObnTt38tRTT3Hz5k2sViuVKlXC6XQSFBTEiRMnWLx4MV9//TW1atXK1NhEREQk57E7nARdieD/vttBjF1vxEWyS3Sck8e+3cG80a2oUcoPmzVT5+JEUiVLEuDdu3fzyy+/8Ouvv3Lp0iUATNPEYrHQrFmzTBtn27ZtPPPMM0RERKTY5ubNmzzzzDPcvHmTe++9l3fffZdSpUoBEBISwosvvsju3bt5+umnWbFiBV5eXpkWn4iIiOQsdoeTy+ExPPz1Nm5G290djki+Ex5j5/HvdrD82Xsp7OOh5dCS7TItAd69ezcrV65k1apViZJewzBo1KgRPXv2pHv37pQsWTLDY8XExDB16lQmT56Mw+G4Y9sFCxZw7do1SpUqxf/+9z/8/Pxc9ypWrMiXX35J9+7dOXv2LCtXrqRfv34Zjk9ERERyHofTJCLWwcPTtnHpVoy7wxHJty6ERfPEjB3MebIVFhMMVYeWbJShBHjPnj2umd6EM4ATTlWqX78+PXv2pEePHpQpUybjkf7p9OnTPProo1y4cAGr1cq4ceOYN28e586dS7b9tm3bAOjYsWOi5DdBsWLFaNy4MevXr+fAgQNKgEVERPIoAxj9/S5OXUl55ZiIZI/dZ27w8vz9fDKkkbtDkXwmzQnwnj17XDO9f096a9Wq5Up6K1asmLmR/ik0NJQLFy7QqFEjXn/9derVq3fH4ldPPfUU3bp1o0qVKim2SYjfqQ35IiIieda7vxzh91MqfCmSU8zffY5aZQvxf22r6IxgyTapSoD37t3rmukNDQ0F/koaq1evTo8ePejZs+cdk8zMUqZMGaZOnUr79u1T1b5BgwY0aNAgxfvXrl1j+/btQPz3IpLTXLx4kbCwsHQ/f/r06UT/zYjChQtTunTpDPcjIpKdHE6TlQcv8PWmIHeHIiJ/8/4vR6lVuiCtqhfHZlFRLMl6qUqAhw4dimEYrqTX39+fnj170qtXr2xPGv39/fH398+0/t555x2ioqLw8fGhW7dumdavSGa4ePEijwwbTlxsxveqvfPOOxnuw8PTi1nfz1QSLCK5ht3h5PS1SP718353hyIiyXA4TZ7+cTdLn2lL+SI+qgwtWS5NS6ANwyAgIIA6deoQGhrKN998k+YBDcPg3XffTfNzWWHSpEksW7YMgDFjxlC8eHE3RySSWFhYGHGxMURVbY/Tu7BbY7FEh8GpDYSFhSkBFpFcwek0ibE7eWLGTiJj71w0U0Tc52a0nRHf7mDJM23xMQxVhpYsleY9wIGBgQQGBqZrsISq0DkhAZ44cSJffPEFAJ07d2bkyJFujkgkZU7vwjgLlHB3GCIiuYrFYvDcT3sIUtErkRzv1JUIxv6wm+8eb+HuUCSPS1UCXK5cuayOI9vY7Xbeeust5syZA0Dbtm357LPPVH5dREQkDzFNkwnrTrDmyCV3hyIiqbQ+8DJfbzrF422qYNEssGSRVCXA69aty+o4skV4eDjPPvssW7ZsAaBnz5588MEHeHp6ujkyERERySx2h5OtJ6/y+Zr0rVgTEff5cOUx2gWUpGqJAtoPLFki37yqQkNDefDBB13J7//93//x6aefKvkVERHJQ5xOk/AYO8/P2YvTdHc0IpJWsQ4nY37YjdP869QZkcyUqgT4lVde4dVXXyUuLi7TA4iNjXX1n1UuXrzIsGHDCAwMxGq18p///IcXX3xRy55FRETyGIvF4KX5+7kaEevuUEQknU5cCuetZYf1Xl2yRKoS4IULF7Jw4ULsdnumB2C32139Z4XY2Fieeuopzpw5g4eHB59//jkPPvhglowlIiIi7uNwmizcfZZVhy66OxQRyaBZf5zmt6OXsDuc7g5F8pg0H4OU20ybNo1Dhw4B8MYbb3Dfffe5OSIRERHJbA6nybWIWN5YcsjdoaTItms21jM70vRMbNsxmCWrJ77odGAN2oIlZBfGzfhk3/QtirNcfRzV24NngfQF6IjDenQV1rN7ISoMvPxwlq2LvXYP8Eq5T4/Nk7FcPk5su2cwi1dJ39giyfjnvH2sfqE9hX08dDSSZJo0JcBPPPEEFkvmbht2OrPuU53Y2FhmzJgBgM1mY8GCBSxYsCDF9u3bt2f06NFZFo+IiIhkDavF4IW5e7kZnfmr1dzK5pX49444PLZOxXLlZKLLxq2LWI5dxHp6O3FtnsQsVDbtQ22fiTX0tg8QosOwBm3FuBRIXIdx4Omb5BlL6GEsl4/jKFtPya9kuqsRsTw/Zy8zdDSSZKI0JcA7d+7M9ACyclY5MDCQsLAwIH6p9e7du+/Y3t/fP8tiERERkazhcJr8uP0Mm45fcXcod2RvdD/2hgPv2MZy6Ti2bd9iYGIP6IRZtGKi+7bdP2G5chLTsOKo3Q1HhSZgtWEJPYzt4FKM6Jt4/P4NsZ3/lTR5vgPjUiDW0EOYhgV7k6E4S9XEuBWKx67ZWCKuYD2xAUedHokfMp1YDy3HNCw46vZK9VgiabEh8DLfbglieKvKmgWWTJGqBLh58+ZZHUeGpHRMU7169Th27Fg2RyMiIiLZxeF0ciEsmneXH3F3KHdntXHHt17RN7HtmYOBibNENRx1eia6bVwPwXp2DwD2hgNwVmntuuesfA9xRSrgseFzjMhrWE9uwlGzS6pDs1yKf7/kLNcAZ6VmAJjeBbHX7ILH3p+xXApMkgBbzuzEcvMCjsr3YBYsneqxRNLqw5XH6Fa3DKULeSsJlgxLVQL8/fffZ3UcIiIiImlmGAbP/bSXqDiHu0PJMNvuORixEZg2L+KaPgRG4m1n1hPrATB9i+GsfE+S580iFXBWbIb19DaswX+kKQE2YiPj+yhQLHGfvkXjv4iNSPyAIw7bkZWYVk/stbunehyR9IiKc/DKggNaCi2ZIt+cAywiIiJ5i8Np8t2WYHadvu7uUDLMcnYv1ovxs9j2ur0gIfFMYJpYLh4FwFGmTpLkOIGzbD0AjMhrGGHnUj2+6eX353M3El03Iq7Ff/Hn/QTWExsxom7gqN4OvAulehyR9NoQeJml+86rKrRkmBJgERERyXWcpsnNqDg+Wx3o7lAyzhGH7eBSAJyFyiZa2uwSeQ0jLgoAs0jFpPf/5CxS3vW1cf1sqkNwlqwBgOXcXixndkLMLYwrJ7EFxm8zc5au+VfjmAisx9diehbAUaNTqscQyag3lx4iOs6JaZruDkVysTQVwRIRERHJCSyGwbu/HOFWTO6v+mw9tQUjKn4W21G3V7Kzu0bkNdfXf1+mnIh3IUzDimE6Ej1zN2apABxl6mANPYzHrh8T3XMWLI2jWvu/4j22GiMuGnuD/uDhneoxRDLqSngs7/1yhHcG1Hd3KJKLaQZYREREchW7w8nBc2H8vCv1M5w5ltOB9eTG+C8Ll8dZpk6yzYzb9+B6+KTcn2FxVX824iLTFIq95WPYa3fDLFAc07BiehfCXrUtce2e/SvRjbiKNWgLZoHiOJKbqRbJYrO3n+Hw+ZtaCi3pphlgERERyVVsVguvLzpIXlgFaTm3FyPqBgCOmp1Tbuj4a6bbtHrcuVOrB8QlfiZ1wdhw1OqGo1a3FJvYDq/AcDqIq90DLPFvI40rp7CG7ILom5gF4gt0peccYpHUcJowfuEBFj7dxt2hSC6lBFhERERyDbvDyaK959gTcsPdoWQK64kNADgLlMRZrkHKDQ33H/1iXA/BcnYvziIVcFZoDIDl1BZs+xZg8NenEeapLdibPexqI5LZ9oTcYO6OEAY2LY/NogWtkjZ6xYiIiEiuEetw8sHKY+4OI1MYty5huRG/jNvp3yzFys4AWL3+es55l5ldR9yfz9xlpjiNbIeWYWBir9s7PiGPuoHtwGIwLMQ1fYiY3u/EH9+EgW33HIgKy9TxRW73/sqjxMRpGbSknRJgERERyRWcpslnq49z+VaMu0PJFJbz+11fO8rfebbU9Lyt2FRc9B0aOsEe8+czBTIU3+0soUewXD6Os1RNzFIBAFjP7MJw2nFWaIyzUjPw8MFZqRnOCo0xHLHxy6JFssi1iFgmbziJ05kH9kJItkp3Anz06NHMjENEREQkRQ6nk5BrkXy3NcjdoWQay/kDADiLVgS/Endsa/qVcn19x+rO0TcxTEf8M38/Szi9TCfWQ8swMbDX6/1XHDdC4m8XqZC4edEKf97PA0XKJEf7dnMQt6LtOhZJ0iTdCfCAAQPo06cP06ZNIzQ0NDNjEhEREUnEarHw7oojxDnyyBvdmHBXgugsm4ojXbwLuWZ0jRvnUmxmue2eWbh8iu3SwnJmJ5abF3BWbJKoT9e5xDavRO1Nq2f8/di0VaEWSauIWAcT1h0nj/yrINkk3QmwaZocP36cTz/9lE6dOjFs2DDmz59PeHh4ZsYnIiIi+ZzD6eRY6C1+PXzR3aFkGsvVYFfhKGcx/1Q94yxdO/7Z0MOkVALbcuEgAKZ3IczC5TIeqCMO25GVmBYb9jo9Et1KSHwNR+Il6UbCEuxM3oMskpxZf5zmangsTs0CSyqlOwGeNWsWDzzwAEWKFMHpdLJjxw5ee+012rRpw7hx41i7di12e+4/nF5ERETcy2qx8OnqwDxx7FEC1/JhDMwiFVP1jKNSMwAs4ZewBG1Nps+zWEJ2xret1i5TKkdbT2zEiLqBo2ob8C2W6F7Csmzj+pnEcfz5e7Ng6QyPL3I3MXYnn64+hvvrpEtuke4EuFmzZrz55pts3ryZKVOm0Lt3b3x8fIiJiWHlypWMHTuWtm3b8uabb7Jnz57MjFlERETyCYfTSeDFW/x6OG9ttzJu/Tmb7eUHHt53bvwns1QAjjJ1AbDtX4j10AqIuArRN7EEb8Nj81cYTgembzEcVVpnPMiYCKzH12J6+OCo2SXJbWe5+KXblrN74xPyqDAsQVuxnNsXf79Co4zHIJIK83ae5dyNKBXEklTJ8DnAVquV9u3b0759e6Kjo1m3bh1Llixhy5Yt3Lhxg9mzZ/PTTz9RoUIF+vbtS58+fahcuXImhC4iIiJ5XV6c/QUwIq8DYHr4pOk5e9MHMbZOwXI9BFvgGmyBaxLdN70KEtvmyVQn1XdiPbYaIy4ae91ekExFabOYP45KLbCe2Y7H3p+Bn/+Ks9q9SYpjiWQVu9Pko1XH+Hyozp6Wu8twAnw7b29vevbsSc+ePbl58yYbNmxg/fr1bNq0iZCQECZNmsSkSZOoX78+/fv3p0+fPhQsWDAzQxAREZE8wuE0CboSzqpDeWv2F4A/C0ilOVH19CWu3bNYg7ZgCdkdP5PstGP6FMNZtg6OgE7glQnvrSKuYg3agulTBEe1e1NsZm8yBNOvBNbgPyA6LH72uWpbnFXbZjwGkTRYuu88z3aqQeUSBbBatCBaUpapCfDtChUqRNu2bXE4HMTExLB27VogvnjW/v37OXDgAB999BFDhgzhmWeewc/PL6tCERERkVzIajH45Ne8N/sLENf11fQ/bLHiqNYufp9vVilQnNh+H929nWHBUbNLskukRbKT04QPVx1lyrBm7g5FcrhMT4CvXbvGypUrWbFiBXv27MHpdALxiW/ZsmXp06cPhmGwbNkyzp07x8yZM1m3bh2zZs2idGkVSxAREZGE2d8IVubF2V8RyRK/Hr5IyLVIyhfxwaJZYElBpiTA4eHh/Prrryxfvpxt27bhcDhcB1IXKFCAbt260a9fP1q2bOl65vnnn2fJkiW8+uqrnD17lnfffZfPP/88M8IRERGRXM5qMfh09bE8OfsrIlnDNGHaplP8p29dd4ciOVi6E+CEglfLly9n06ZNxMXFAfEzvTabjTZt2tCvXz86d+6Ml5dXsn307duX/fv3M2vWLH7//ff0hiIiIiJ5iNNpEnI9kl8OavZXRNLm511neal7LQp4ZdlOT8nl0v3KaNWqFdHR0QCu2d66devSr18/evfuTbFixe70uEu5cplwSLuIiIjkHQZ8szlIs78ikmaRsQ5+2HaGx9tUxmZN94mvkoelOwGOioqvXliuXDn69OlD3759qVatWtoDsNno1q0bTZo0SW8oIiIikodExzmYv+usu8MQkVxq5u/BPNG2irvDkBwq3QnwoEGD6NevHy1atMhQAMOHD2f48OEZ6kNERETyBrvDyZwdIUTEOtwdiojkUmevR/Hr4VC61C6tWWBJIt2viP79+2MYhmv5893ExsayaNEivv322/QOKSIiInmczWphxtZgd4chIrnc15uClPxKstI9Azxs2DAsFgu7du3Cx8fnru2jo6N5+eWXKVKkCCNGjEjvsCIiIpJH2R1O/jh1leCrke4ORURyuZ2nr3Pkwk0CShfEqiOR5DYZ+ljENE0MI3UvqIMHDwK4CmeJiIiI3M5mtfD9H2fcHYaI5BFTN55S8itJ3HUG2Ol08sQTT3D69Olk7/fs2fOuSXBcXBxXrlzBMAz8/f3TF6mIiIjkaVcjYlh75KK7wxCRPGL5/gv8t189/Lx1JJL85a6vBovFwhNPPMHjjz+e5J5pmpw/fz7Vg1mtVp5++um0RSgiIiJ5nsPpZPa2EOxOnX0kIpkj1uFkyb7zDGlWQfuBxSVVH4e0bt2at956i0uXLrmuTZw4EcMwGDVqFB4eHncexGajSJEiNG/ePF1HJYmIiEjeZrVY+GmHlj+LSOZatPccD7Ws5O4wJAdJ9XqAIUOGJPr9xIkTARg9enSqimCJiIiIJMfhNNl39gZnr0e5OxQRyWN2BF/j4s1oShfydncokkOke0H8e++9B4CXl1emBSMiIiL5j2HAkr2p31IlIpJapgnzd51lVLuqWgYtQAYS4AEDBmRmHCIiIpKP/XLwgrtDEJE8atHec4zpWN3dYUgOkaoEeMeOHUD8bG+DBg0SXUuP5s2bp/tZERERyTscTpO9Z65z8WaMu0MRkTwq8GI4x0JvUaO0H5ZUHuEqeVeqEuBhw4ZhGAaVKlVi1apVia6llWEYHD58OM3PiYiISN5jGLB4n5Y/i0jW+nnXWV7pUQuU/+Z7qV4Ib5pJjyUwTTNdv0REREQS/HIw1N0hiEget2TfOSW/AqRyBnjmzJkAeHt7J7kmIiIikh4Op8nuM9e5fEvLn0Uka128GcP2oGs0r1wMq0WZcH6WqgS4RYsWqbomIiIiklqq/iwi2Wn14Ys0r1zM3WGIm2VKLfALFy5w8ODBJNf379/PtGnTOHv2bGYMIyIiInnMSi1/FpFssv7YZc3+SsYS4IiICF566SW6dOnCl19+meT+7t27+fTTT+nWrRvvvPMODocjI8OJiIhIHuE0TXafvs7lcC1/FpHscfJyOBdvRrs7DHGzdCfADoeDkSNHsmTJEhwOB8HBwUna2O12rFYrDoeDWbNm8Y9//CMjsYqIiEge4TRN1gdedncYIpLPrD1ykTiH091hiBulOwGeO3cuu3fvBuKPRPruu++StHniiSf4448/ePTRRwFYtWqV6xglERERyb9sFgtbT1x1dxgiks+sP3YZD2um7AKVXCrdf/pLly7FMAyGDRvG+PHjKV26dLLt/Pz8eOWVV7j//vsxTZM5c+akO1gRERHJG6JiHew/e8PdYYhIPrP15FXsTs0A52fpToADAwMBGDp0aKraP/TQQwAcOnQovUOKiIhIHuBwmvxx6ip2p+nuUEQknwmPsbPn9A2cpv79ya/SnQDHxcUBUKxY6kqJlylTBoDIyMj0DikiIiJ5xOYTV9wdgojkU+uOXkL5b/6V7gQ4IaE9fvx4qtonFMlKbcIsIiIieZPVYrD1pBJgEXGPDYE6Dik/S3cC3LRpU0zTZNKkSZip+Ahl6tSpGIZB06ZN0zukiIiI5AFhUXEcDb3l7jBEJJ86fOEm1yNj3R2GuEm6E+CEvb9//PEHY8eO5dy5c8m2u3TpEv/85z9Zt24d8NdeYBEREcl/7A4nm45f1vJDEXGr3aev41AdgnzJlt4HGzRowMiRI5k2bRrr1q3jt99+o3r16lSuXBkfHx+ioqIICQkhMDAQ55+V1h5++GGaNWuWacGLiIhI7mKxGDr+SETcbk/IDdoHlAS0FDq/SXcCDPDCCy/g5+fHpEmTiImJITAwMNGe4ISl0TabjSeffJKxY8dmLFoRERHJ1SyGwR+nlACLiHvtD7mBTecB50sZSoANw+DJJ59kwIABrF69mj/++IOLFy8SFhaGj48PZcqUoUmTJvTr1y/Fc4JFREQk/4iOcxB0NcLdYYhIPrfvbJi7QxA3yVACnKBUqVI8/PDDPPzww5nRnYiIiORRRy7c1P5fEXG7sKg4zl2PonxRH3eHItlM8/4iIiKSLeIcTg6c06yLiOQMO09fw+5wujsMyWbZkgDHxsZy/fp19u7dy4cffpgdQ4qIiEgOY7MYHDp/091hiIgAsC/kBoahIlj5TYaWQF+8eJEJEyawadMmrl27hsPhSNVzL774YkaGFRERkVzIMAwOKwEWkRxi39kwrBYlwPlNuhPgsLAwhg4dSmhoqKvac2oUKFAgvUOK5FuWqBvuDiFHxCAiuZvDaRJ48Za7wxARAeDQ+TAcTlNJcD6T7gT4+++/58KFCwDUqVOH5s2bc/bsWdauXUvz5s1p2rQp169fZ9u2bQQHB2MYBiNGjODZZ5/NtOBF8gufoI3uDkFEJMNOX40gxq79diKSM0THOQm6Ek71UgXdHYpko3QnwBs3bsQwDNq3b8/kyZMxDIPAwEDWrl2L1Wpl3LhxQPxZwF988QWTJk3i559/ZsSIEXh7e2dW/CL5QlSVdjh9irg1BkvUDSXiIpJudoeTvSE33B2GiEgixy+GU6WEn2aB85F0J8CnT58G4PHHH3dtHq9RowY+Pj7s3bsXp9OJxWLBMAyeffZZDh8+zIYNG/jxxx957rnnMid6kXzC6VMEZ4ES7g5DRCTdDMPg8AXt/xWRnOX01UicWgadr6S7CnRERPwh9lWqVHFdMwyDatWqERMTw6lTpxK1f+SRRzBNk40bNYMkIiKS31gtBsdCtf9XRHKW4KsR2KxKfvOTdCfAKRWz8vf3B+DEiROJrgcEBAAQEhKS3iFFREQkFzt7PcrdIYiIJHL6WqSOQspn0p0Aly1bFoCgoKBE1ytWrIhpmhw/fjzR9YRK0ZGRkekdUkRERHKx8zeUAItIznLmqnKT/CbdCXCzZs0wTZOpU6cSFxfnul69enUANmzYkKj99u3bAR2DJCIikh/diIxVBWgRyXEuhEUR59C/TflJuhPgoUOHYhgGW7ZsYeDAgaxcuRKAVq1aYbVaOXToEO+99x4nT55k1apVvP/++xiGQZ06dTIteBEREckdzmn2V0RyIKep1Sn5TboT4OrVq/P0009jmiYnTpxwzfgWL16cwYMHY5omM2fOpHfv3owbN46rV68C8OCDD2ZO5CIiIpIrOJymlhmKSI518nIEzj+3a0rel+4EGGDs2LH873//o169elSsWNF1ffz48XTq1AnTNF2/DMNg5MiRdO3aNcNBi4iISO7hcJqaARaRHOv01QgcDiXA+UW6zwFO0L17d7p37+4qcgXg6enJpEmT2LNnD3v27MFqtdKmTRvX/mARERHJP6wWQ0sMRSTHOnMtUucA5yMZToATJFc+vHHjxjRu3DizhhAREZFcyGoxNAMsIjnW1fBYLEqA841MS4ABAgMDCQ0NJTw8nKJFi1K+fHkqVaqUmUOIiIhILqQEWERyqhuRse4OQbJRhhPgsLAwJk2axPLly12Frm7n7+/PwIEDGTFiBB4eHhkdTkRERHKh0LBod4cgIpKssKi4uzeSPCNDRbD2799P165dmTlzJleuXElU9CrhV3BwMJ999hn9+vUjNDQ0s+IWERGRXORmlN3dIYiIJOuGEuB8Jd0zwFeuXGHUqFGEhYVhs9no06cPHTt2xN/fHx8fHyIjIzl16hRr167ll19+ISgoiCeffJK5c+fi5eWVmd+DiIiI5GB2h5NYh9PdYYiIJOtGpBLg/CTdCfC3337LjRs3KFSoEFOnTqVRo0ZJ2tSqVYuePXvywAMPMHr0aAIDA/n55595+OGHMxKziIiI5CJRcQ53hyAikqJb0XE4TRNLMkV9Je9J9xLoDRs2YBgGL7zwQrLJ7+1atGjBc889h2maLFq0KL1DioiISC4UGasEWERyLqcJkTHappFfpDsBPnv2LABdunRJVfvu3bsDEBQUlN4hRUREJBeK0BtLEcnhbkbr36n8It0JsJ+fHwAxMTGpG8gSP5TNlqknL4mIiEgOpwRYRHI6HYWUf6Q7AW7ZsiUACxcuTFX7devWAfHLoUVERCT/0MyKiOR0VyOUAOcX6U6An3nmGXx9ffnqq69YsmTJHdseOnSITz75BE9PT8aOHZveIUVERCSXcZomt5QAi0gOF61ifflGutcjm6bJG2+8wRtvvMFLL73Ezz//TK9evQgICKBQoULExMQQEhLCxo0bWbJkCXa7ne7du3P48GEOHz6cbJ/9+/dPbzgiIiKSAzmdJhGxSoBFJGdzOOPzG0OVoPO8dCfAPXv2TPT7HTt2sGPHjmTbJryYVq5cycqVK5NtYxhGhhLgn376iTfeeIO3336b+++/P9k2UVFRfP311yxfvpyzZ89SoEAB6tWrx/Dhw2nfvn26xxYREZHkmUBkjGZWRCRnczhNTBOU/+Z9GZoBzsr2abF//34+/PDDO7aJjIzkscceY9++fXh4eFCjRg1u3LjB5s2b2bx5M88884yWZ4uIiIiI5ENO0yTrshXJSdKdAK9duzYz40i3bdu28cwzzxAREXHHdm+99Rb79u2jdu3aTJ48mbJlywKwaNEixo8fzxdffEGTJk1o3bp1doQtIiKSb1gtmlKRzFOlhC9zRrXCw2rB7lTKIpmjoLeN+DUr+vcqr0t3Aly+fPnMjCPNYmJimDp1KpMnT8bhuPPSqjNnzrBkyRIsFgsff/yxK/mF+H3HwcHBTJ48mS+++EIJsIiISCYyAA+r3lBK5vlH15oUKWDB0+oJwMkbJzlz64ybo5Lcrk7xOpSwlnB3GJINcuWhvKdPn+bRRx/lwoULWK1Wxo0bx7x58zh37lyy7RcvXozD4aBJkyZUr149yf0HH3yQyZMns3v3bs6fP0+5cuWy+lsQERHJFwzDwGZN96ETIkm0r14Mj+DNcPUU9ibDqFyoMttDt/PVvq+4Fn3N3eFJLvVhuw/p6t/V3WFINsiW/yPFxsZy/fp19u7de9e9uqkRGhrKhQsXaNSoEXPnzuWpp566Y/u9e/cC0LRp02Tvly5d2jWjvX379gzHJyIiIn/x0BJoySTVSxbAz8cL4+ACWPEPbB9Vx3piNUMC7mfloJWMrD8Sb6u3u8OUXMhqWFUBOp/I0AzwxYsXmTBhAps2beLatWt3XYqc4MUXX8zIsJQpU4apU6emunLz6dOnAahUqVKKbcqXL8+5c+cIDg7OUGwiIiLyF4uBZoAl04zpWB1MJxxbHn8h5ib8+ADWolXwuf87xjYey0O1H+Lz3Z+z5OQSnKbTvQFLrmEx9O9UfpHuBDgsLIyhQ4cSGhqapgrPBQoUSO+QLv7+/vj7+6e6/dWrVwEoVqxYim2KFCkCwPXr1zMUm4iIiPzFMAztAZZM0zGgOJzeCpF/W+p8PQimtsdSuS3F+k/mv23+y2N1H+OjHR+x5fwW9wQruYrVsGKoAFa+kO6POr7//nsuXLiAaZrUqVOHRx99lM6dOwPQvHlzRo8ezQMPPEDlypWB+P8BPv7442zZkv3/CEVHRwPg6emZYhsvL69EbUVERCRzeGgGWDJB+aLeFCnghXF4UcqNgjdj+V99WDSGyl7F+eq+r/i669fULFoz2+KU3KmgZ0Etgc4n0j0DvHHjRgzDoH379kyePBnDMAgMDGTt2rWuwlQQf/7vF198waRJk/j5558ZMWIE3t7ZuzfDarXidKZuCYxe+CIiIplLCbBkhrEd/ixkemTp3Rvv/QHr3h+g02s0bTWWuX3msvzUcibsmUBoRGjWBiq5UmGvwu4OQbJJuv+PlLCv9vHHH3cljTVq1MDHx4e9e/e6Ek7DMHj22Wfp0KEDt27d4scff8yEsNPG19cXiC/GlZKYmBiAbE/ORURE8jpPmz5cloy7r04pOLsTwi+m/qF1b2P7wB/Lgfn0qNydFQNWMK7JOPw8/LIuUMmVCnoWdHcIkk3SnQBHREQAUKVKFdc1wzCoVq0aMTExnDp1KlH7Rx55BNM02bhxY3qHTLeiRYsCd97fm3CvePHi2RKTiIhIflHQy8PdIUguV7qQF8ULeGEcWpD2h+0xsOAJbJ/VxSNkG4/VfYxVg1fxcO2HsVly5YmgkgX0oUj+ke4EOKViVgnFqU6cOJHoekBAAAAhISHpHTLdqlatCpDiOcG330vYsywiIiKZo7hfyjU4RFLjqQ7VMSyW1C1/Tkn4RfiuF9apHSgYFspLzV9i2YBlOvtVMDDw9fB1dxiSTdKdAJctWxaAoKCgRNcrVqyIaZocP3480fWEStGRkZHpHTLdGjZsCPx1HvDfhYaGcv78eQAaN26cXWGJiIjkC0V8PVGJDcmI7nVKYZ7fB2FnM95Z6H6ML5tj/PQQZfHgkw6fMLvXbBqXyp3vAZ1BTuJ+jiP281hi348l9rNY4n6Iw3HAkaaTWpL0e9ZJ3A9xxH4cS+yHscTNiMN57M41dZxnnMS+G0vc7Lh0j+sOvh6+OgYpH0n3n3SzZs0wTZOpU6cSF/fXi7x69fgCBRs2bEjUfvv27UDmHIOUVt27d3fF8Pel2QCzZ88GoEWLFlSoUCFbYxMREcnrrBaDwj5aBi3pU9TXg9KF0rn8+U6OrcDycQ1Y+Sq1C1VmZo+ZfN7xcyoXqpy542Qh+1o79tl2zEATIgAnEAXmaRPHUgf2n+yYcWlPgp1nndh/sGOeNiEWsIN5zsQ+345jhyPF5xzr4u9ZO1rT9w25ifb/5i/pToCHDh2KYRhs2bKFgQMHsnLlSgBatWqF1Wrl0KFDvPfee5w8eZJVq1bx/vvvYxgGderUybTgU6ty5cr07t0bh8PBM8884yrgBbB48WK+/vprAJ566qlsj01ERCQ/KOHn5e4QJJd6sn01DIsVjizJmgH++BLrexVh+1TalWvDov6LGN9yPMW8i2XNeJnEsdeBc9ufRWfLG9getOHxrAe2ETYsdePf4ptBJo5fU05YU+x7nQMcYFQ28BjpgcdYDyzN4/t0rHdgRidNqp1HnJjnTSx1LVjK5K7Z1EKehdwdgmSjdL86q1evztNPP41pmpw4ccI141u8eHEGDx6MaZrMnDmT3r17M27cOK5evQrAgw8+mDmRp9Frr71GQEAAJ06coEePHvTv359OnTrx4osvYrfbef7552ndurVbYhMREcnrSmgfsKRT7/plMC8dgWtJV/FlGtMJK/6F7aPqWAN/5f6AwawctJJRDUbhbc2ZJ4Q4fo9PbI2SBraHbViqWDD8DCxlLdj6/ZUEO/c5MW+lfhbYjDUxz8W3t3W1YZQ0MAoZWLtYwQ+IA/N84v5Mh4l9vR2sYG2fu2Z/QTPA+U2GPp4ZO3Ys//vf/6hXrx4VK1Z0XR8/fjydOnXCNE3XL8MwGDlyJF27uqfQQNGiRZkzZw5jx46lcuXKnDx5kuvXr9OiRQu++OILRo8e7Za4RERE8gPNAEt6FPC0Ub6IF8bB+dkzYMxNmD0U6xfN8Ll0lKcbPc3KQSsZUH1AjtojakaZ8OfhJpZ6FoxkjhqzNPkr3r8nrHcUAyQ0L/LXZcOIT4QBzMjE/Tn3OOF6/JhGkdy34b+Edwl3hyDZKMO137t370737t0TbbL39PRk0qRJ7Nmzhz179mC1WmnTpo1rf3BWWLdu3V3b+Pr68swzz/DMM89kWRwiIiKSmNNpKgGWdBnVrgqGxZZ1y59Tcj0IpnbAUqk1RQdO4a02b/FY3cf4aOdHbD63OXtjSc7tOWZKdaluz9fTkpN6/9neBG4Cf64EN00T82b8+33D968OzRgTx2YHeIG1Te6b/QUoX7A8dqddx2LlE5n2p2wkU96xcePGqqosIiKSzzmcpo5CknTp27Ac5tWTGJePuSeAM1ux/K8+NHwI/+7vMrnLZLZf2M7HOz/myLUj7okJMLyN+MT0GjgPObG0TDoL7Nz3Z2ZsBaNc6jNgw8PAKG9gnjWxr7Rju88G3uDY5oBwwCt+z3ECx+8OiARrB2uixDg3KedXLkMVsyV3ybK1HGfPnuXWrVtZ1b2IiIjkFoaWQEvaedssVC7mnX3Ln+9k349YP6gMGz6gSYn6zO0zl/favkfZAmXdFpKtgw0MMK+Y2GfbcQY7MSNMnBed2FfYce6NT4CtbawYfmlLTK2drGAFM9gkbloccV/E4dzudN0zvP5cCh1u4tzhhIK4imTlRhX8KqRp9nf06NHUrFmTbt26pfqZs2fPUqtWLWrWrJnktJzU2rZtGzVr1qRmzZrY7fYk90NDQwkPD09X3/lJmmeAL168yJdffonT6eTtt99Osd2XX37JsmXL6NOnD88++yxlypTJUKAi+ZklOszdIeSIGEQkd7JZDMoVzpmFhCTnGtG2CobVDcuf7+S3d7Ft/Bj6fUn3ugPoVrkb3x/5nq/3f82tuOyd+LHUsmAbZMO+zo4ZYmL/8W8JUaH4glTW+mlflmypYME23IZjowMzxAQnGGUMrK2tWKr/leg6NjogDqz3WTE8cufsL0ClQpWSXc2aksGDB/Pbb78RHBzMgQMHqF+//l2fWbRoEaZpUqZMGe69996MhJtEbGwskydPZvr06SxZsgQ/P79M7T+vSVMCvGbNGl588UWioqIoUeLOm8W3bdtGXFwcCxcuZM2aNXzyySeZ/octktcVLlwYD08vOJW+Twozm4enF4ULF3Z3GCKSyxiGQbVSekMmaTOwcXnMGyEYoQfcHUpijlhYMBLbr+Nh8HQerfMo9wfcz6S9k/jp2E/YnUln5rKKGWtieBiYJLN8NwLMsyZmVROjQNqTU0tZC5YHUp7VNa+YOPc5MUoYWBpYXPE4dztxnnNiWAyMyvH3DGvOTo5L+5ZOU/sOHTpQokQJrly5wtKlS1OVAC9evBiAgQMHYrFk7mz5pUuXmDRpUqb2mZelOgHevHkzzz33HE6nE9M0KVKkCBERERQoUCBJW6fTybBhw1ixYgUHDhzg5s2bjB07lm+//ZYmTZpk6jcgkpeVLl2aWd/PJCws/bOvp0+f5p133mH8+PH4+/tnKJ7ChQtTunTa/ichIgJQtrAPNouB3al9dnJ3NgtUK+GN8ccCd4eSsvBL8F1vrKXr4Td4Oi82f5FhdYbx6a5PWRW8KsuHt/9qx7kzflmypYkFazMrFAUiwXnUiWOjA+ceJ84zTjwe9kjzMui7jv+bHcw/9/5aDMwok7iZcRB/8ml8Un4EnPud2B60YXjmzCS4uHdxPK1pq1Fgs9no27cv06dPZ8WKFbz00ktYrSnPtO/atYszZ85gGAaDBg3KaMiSQalKgKOiohg/fjwOh4MiRYrw5ptv3nHNu8ViYcSIEYwYMYJff/2VV199lfDwcF555RWWLl2Kp6cKYYikVunSpTMl6fT39ycgICATIhIRSTurxaBiMV+CrkS4OxTJBR65pzIWqwccXuzuUO7u4kGML1tAzR6U6fM5H7f/mBF1R/Dhjg/ZfWl3lgzpDHK6kl9rRyvWVrclXwXB2tyKUcnAPtMOV8GxwYGtV+ZVOHaecWIeNzEqGFgC4mczHRsdcBUMfwNb7/ix7EvtmGfM+PHvy5kVlisUrJCu5wYPHsz06dO5fPkyf/zxB23atEmx7aJFiwBo3bo1FSqkbzzJPKmaf1+8eDEXL17Ey8uLWbNmpWnDd9euXfnqq6+wWq2cOXOGFStWpDtYERERyb2qlEi6akwkOUOaVcC8dRHOZ00CmSWO/YLl4wBY+Qo1C/ozo8cMJnSaQJVCVTJ9qIQCVxQCS8vk385bSltcZwE7Dzgx4zJv9YVjnQP4s1gWYDpMnAfiY7L1tGEUNjAKG66k27nPiZlDV3+U8yuXrueqVavmOu1m6dKlKbaLiYlh5cqVQHzSfLvo6Gi+++47hgwZQpMmTahfvz5dunTh3//+N8HBwamKY9iwYXTu3Nn1+65du1KzZk22bdvmuma321m0aBGjR4/m3nvvpX79+jRu3Jhu3brx73//m6CgoGT7ttvtzJs3jyFDhtC8eXOaNm3Ko48+yubNm10FuYYNG5bkOYfDwcKFCxk+fDgtWrSgXr16dOrUiddffz3V31dWSlUCvHbtWgzD4P7770/XWb7NmjVjwIABmKbJr7/+mubnRUREJHdzOE2qllQCLHdnsUCtUr4Yh+ZDbjya5o9J2N6vCNumcG/Z1izsv5DX73md4t7FM20I81r8z8VSzoJhSXlpsaXSn2/1nWBez5yfpfOIE/O8iVHTwFLhz72/V02IBbzBKPpXPEZRI/5c4VjgWqYMn+n8C/qne992wnLmX3/9lejo6GTbrF27lps3b1KkSBG6dOniuh4aGsqAAQN477332LdvHyVLlqRGjRpcvnyZOXPm0Ldv31RNHAYEBFCvXj3X7+vWrUuTJk0oWLAgEJ9kP/7447z00kv89ttveHh4EBAQQOHChQkODmbOnDkMHDiQw4cPJ+o3JiaGsWPH8tprr7Fv3z6KFi1KpUqV2LlzJ//3f//H999/n2w8ERERPPHEE7z88sts27YNb29vAgICuHHjBnPnzqVfv35uzwdTlQAfOxZ/9lrPnj3TPVDfvn0BkvxwRUREJO8zTZOA0gXdHYbkAkOaVsRi84DDOaj6c1qZTvjlRWwfVsV6bBWDagzkl0G/8GSDJ/Gx+WS8f8efwzjSkNQ6Mj6s6TCxr7eD5c9jmBLE/Pnf5HY5evz5bFTO/DCjVrFaGKRvf3LPnj3x9fUlIiKCdevWJdsmYflzv379XNtAHQ4Ho0eP5tSpU1SpUoXFixezatUqFixYwJYtW7j//vuJiYnhxRdfZN++fXeM4fXXX+fzzz93/f6zzz5j9uzZ1KlTB4Bp06axbds2ihYtyrx581i3bh3z589n/fr1zJs3j5IlSxIZGclXX32VqN8vv/yS3377jSJFijBz5kx+/fVXFi5cyLp162jevDmrV69OMZ6tW7dSo0YN5s2bx8aNG1mwYAG///47o0ePJjo6mn/+858EBgam6mecFVKVAF+/fh2ASpUqpXughJnja9dy6Mc/IiIikmVsVgt1yhZydxiSCzzYohJm5FUI2Xb3xjldbDj89CDWL5ric/EIYxqNYeXAXxhYYyAWIwOVgIvF/8c8a2LaU04snSF/LpW2JJ6ZTS/nHidcB0tDC0bx2/pLSHxjk3ko4ZpHhofPEvVK1MNqSftRUQAFChSgR48eACxZkvQDmytXrrB582YA7r//ftf1lStXcuTIEby8vJg2bRq1atVy3fPz8+Ptt9/m3nvvJS4ujs8++yxdsSXYunUrFouFsWPH0qBBg0T3GjRowIMPPgiQKCG9efMm3377LQAffPABLVu2dN0rXbo0kydPpmTJkknGOnr0KMuXL8fHx4dvvvkm0XheXl48//zz9OjRg5iYGLdWrU7V37yEqmYZKdntcMR/7JSWM7ZEREQk76heyg+9DZC7qVfGF+PQovhZ1LziejBM64jl214UiQ7nzdZvsqjfIu4tn74jQi11/nxPHhVf4Co55uX4I4kAjGoGhnfG/vKZMSaOzQ7wAOu9iRNGo6gBBhD91/Js+HNpdAxggFEs5/3lL+RZiNIFMlZoNGEZ9ObNm12ThgmWLl2Kw+GgYcOG1KhRw3U9Yba4U6dOVKxYMdl+R4wYAcD27du5dSv9Z0zPnj2b/fv3M3To0GTv+/jEr0i4fQn3hg0biI2NpVy5cnTo0CHJMwULFmTgwIFJrifMCrdo0SLFAq79+vUDYOPGja78MLulqhxbqVKlCAkJ4ezZsxQrVixdA505cwZAZ4iKiIjkU94eVsoX8eHs9Sh3hyI5VN+GZbF6eMKRXLz8+U7ObMXyeQNoMJRKPd5nUpdJ7AzdyYc7PuTItSOp7sZS24JzjxPztIlzm5O4G3HxlZ9LGBALzuNOHJsc8bOvXmDrlPEKzI4/HBAJljaWJEcqGZ4GRhUD85SJfZkdW48/q0D/Er+31qhu5MhjkAKKZvx0jKZNm1KlShWCgoJYuXKla0YVYOHChUDi2V/AVXSqbt26KfabcM/hcHD69OlE+3zTysPDg7CwMPbu3UtwcDAhISEEBwdz5MgRrly5AsQfY5vg+PHjANSsWTPFPpOLJ+G5gwcPJvo53C4mJn69fEREBBcvXqRcufQVIcuIVP1tqFevHiEhIWzYsCHJ1HlqJXwikJ4iWiIiIpI31ClbSAmwpGh4q8qY0WEYwZvdHUrW2v8T1v0/QYdXaNTmOeb2mcvyU8v5fPfnXIi4cNfHDcPANsiGfYEdM9jEPGZiP5ZMIacCYBtoS7xcOR3McBPndif4gvWe5JcLWztZsZ+1Y541iZsW99cNH7B1yZlHINUuXhuH05HuJdAJBg8ezEcffcTSpUtdid/Ro0c5duwYvr6+SeoohYeHA7gKVSXHz8/P9XVERPqPjwsPD+edd95h6dKlxMX99efi4eFB3bp1qV27Nps2bUr0TMJMtq+vb6riS5AwU3316lWuXr1619hu3ryZcxPgLl26sGLFCmbNmsXDDz+c5lngS5cusWDBAgzDoHXr1ukKVERERHK3OIeTJv5F+fXwRXeHIjlUw/J+GAfmQDqr8uY669/DtukT6DOBbvUH0bVyV2YdnsXXB77mZuzNOz5qeBvYHrRhHjVxHHRgnjchCvCIX25sqWHB0tSC4ZPxmVfHRgfEgbWDFcMr+f4spSzYhttw/ObAPGPG7zuubGDraMuU/cdZoVaxWphkvDhX//79+eyzz9i9ezfnzp2jfPnyrtnfnj17UqBA4gr4Cb+/09Lmmzf/+vP/+/NpMWbMGFc15kceecS1HNvf3x8PDw/mzp2bJAFOWBadkKgnJ7mkPOG5hKrTOVWqEuCuXbtStmxZQkNDGTFiBDNnzkz1Uubw8HBGjx7NzZs38fHxYcCAARkKWERERHInm8WgZZX0baWSvK9rnVJ4eHjCkcXuDiV7OWJh0Whsq1+HwdMZXmc49wfcz6R9k/jp6E/EOeNSfNQwDIzaBpbaGSiolQq2njZIxWEwllIWLA9kbSyZqX6J+tgsGZ+dLlGiBO3bt2ft2rWsWLGCJ554wnWE0d+XPwNUrVqVw4cPc+jQoRT7PHDgABD/Z5zeQsR79+51nQc8ZcoU7rnnniRtQkNDk1wLCIhfGn6nSs1Hjx5Ncq1KlfgzrxOWQifn+vXrnDp1irJly1K2bFm31IdK1SvUZrMxfvx4TNMkMDCQvn378tNPP7nWcCcnMjKSefPm0b17d44cOYJhGDz77LMUL555Z6CJiIhI7mEYBvXKF8bLlnveIEv2GdGmCmZsBJza4O5Q3CPiMszog3XKvRS4cZZ/NfsXywcsp3vl7u6OLE/ysnpRqWD6T7j5u8GDBwPx2z537drFpUuXqFGjBo0aNUrStmPHjkB8MayQkJBk+5s5cyYAjRo1olChO1fQv71QsXnb2dlnz551fZ3cnt2oqCiWL18OkKggVYcOHfDw8ODChQuuKta3i4mJcR3vdLuE7+v333/n5MmTycb6ySef8NBDDzFs2LBEsWanVP8fqEuXLjz77LOYpsmlS5d48803ad68OY888gj//ve/+eyzz/jggw945ZVXePjhh2nRogX//ve/uXLlCqZp8vDDD7uqmYmIiEj+5GG1UK+8CmJKUk0qFISjy+NnRPOzi4cwJrXE+HEIpU2Dj9p/xJzec2hauqm7I8tTahStkeG9v7dr164dJUuWZP/+/a7kNSEp/rvu3btTs2ZNYmJiGDlyZKLZ1PDwcF5//XU2b96MzWbjn//8513Hvn2v7vnz511fV61a1fX1l19+mWgP8IkTJxg5ciTBwcFAfDKcoESJEjz00EMAvPzyy+zevdt17/r164wbNy5Rcp2gWbNmtG3bFrvdzsiRIxM9Fxsby6RJk5g3bx4AI0eOzNAJQxmRpjn/MWPGUL58ed59913CwsKIjY1l165d7Nq1K0nbhIy+WLFi/POf/0y2VLaIiIjkLw6nSTP/ouw6ff3ujSXfaFu9OF5eXnA4ny1/vpPjv2L5pCa0eJKAzq/zXffv2BCygU92fUJQWJC7o8v1mpZuisN0YDUyJwm22Wz079+fadOmsWrVKjw8PFxH/iTXdtKkSYwcOZJTp07Rr18/KleuTIECBTh58iTR0dF4e3vz5ptv0qxZs7uOXaRIEcqXL8+5c+d4+umnqVq1Ks899xzt2rWjR48e/PLLL0yfPp0FCxZQoUIFbty44Upg27Rpw5YtW4iIiCA8PNxV3OqFF17gyJEjbN++nQcffNAV3/Hjx7Hb7dSrV4+DBw+6jstN8PHHH/Pkk0+yb98+HnzwQSpUqEDhwoUJCQlx7Wt+7LHHUjyWKTukOe3u168fq1ev5oUXXqBOnTpAfLJ7+y9PT09atmzJG2+8wZo1a5T8ioiIiEvzytoHLImNvLcqZlwUnFjj7lBynu1TsL1fCf74ijZl72Fhv4W8fs/rFPfWtsKMaF6mOZlQ/yqRhDOBIX71bNGiRVNsW6FCBebPn8+LL75IgwYNuHz5MidPnqRs2bIMHz6cxYsX079//1SP/fnnn9O4cWOcTifBwcGuI2g/+eQT/vvf/1K/fn1M0+TYsWPExsbSsWNHpkyZwvTp012VmBPOJwbw9vZm+vTpvPzyy9SpU4dLly4RHBxMs2bNmDFjBl27dnW1u13RokX54YcfeOutt2jRogW3bt3i2LFj2Gw22rdvz6RJk3jllVdS/X1lBcPM4OLr6OhoQkJCuHXrFhaLhWLFilG+fPkknwbkNQ6Hg71799KoUaM8/71K7hYYGMioUaOYOnWqq6iBiIg7hUXF0fDNX90dhuQgR9/sgteJXzDmPeruUHI2Tz8YOBV7QDfsTjvfHPyGGYdmEGXX0WJpYTEsbH1wKwU80l9dOb/74IMPmD59OkOGDOG///2vu8NJkwwvvPb29qZGjRo0adKERo0aUalSJSWEIiIikqLCPh5ULaE3nhKvmX9RvL28MLT8+e5iw+Gnh7B93hjvi4d4quFTrBy0kkE1BmXaUt78IKBogJLfOwgKCqJDhw489thjxMYm3ZNvmqbr6KSEFcG5icowioiISLYyTZOmlVNeGij5y6h2VTEdsXBcqwJSLewMTOuE5dseFIm6xX9a/4dF/RbRrkI7d0eWK7Qo0wKH6bh7w3yqYsWKxMTE8Pvvv/Pxxx8THR3tunfr1i3+85//cPz4cYoVK0b37rmvSrkSYBEREclWdqfJPVW0f1HitalaBE6sjZ/dlLQ58weWzxvA/JFU9CzEl52/5Ntu31KneO6blctOrcu1zvT9v3mJzWbjjTfewGq1MmPGDFq3bk3//v3p06cPbdu25aeffqJQoUJ89tlnd9znnFNl/ORnERERkTTwsFroUqc0FgOcehOar9UrV4gCPt5weJG7Q8ndDszFemAutH+ZRm2fY07vOfwS9Av/2/U/zkecv/vz+YiHxYNmpZtl6hFIeVH37t0JCAjgu+++Y9euXa6iWhUqVKB9+/Y88sgjruJZuY0SYBEREcl2hX08aFSxKLvP6Dik/Gx0h2qYDjvGsZXuDiVv2PA+ts2fQp/Pua/+YLr4d+GHIz8wbf80bsbedHd0OULDkg3xsnm5O4xcoWrVqrz11lvuDiPTaQm0iIiIZDu7w8l9dUq5Owxxs3bVi0HQBoi+4e5Q8g5HLCx6CtsntfA4vZVhtYexatAqhtcZjofFw93RuV3rcq2xO+3uDkPcSAmwiIiIZDub1UL3emXdHYa4UdWSBSjo44Wh5c9ZI/IqzOiLdXJrClwP4R/N/sGKgSvoUaUHBoa7o3ObrpW7qmJ2PqcEWERERNyiSokC+Bf3dXcY4iZPd6gOpglHl7s7lLzt8lGMyfdg+XEIpZzwYbsPmdN7Ds1KN3N3ZNmuauGq+BfyxzDy7wcAogRYRERE3MThNOlSu7S7wxA36VSzOJzZGj9TKVnv+Gosn9SEFf8iwK8C33b/li87f0nVwlXdHVm26erfFYcza48/Gj16NDVr1qRbt26pfubs2bPUqlWLmjVrsmHDBrZt20bNmjWpWbMmdnvGl2sPGzaMmjVr8tlnn2W4rwR2u52goKBE1zI77qyiBFhERETcpltdJcD5Ufmi3hQp4IVxaKG7Q8l/tk/F+l4F+H0yrcu0ZGG/hfz7nn9TwqeEuyPLct2qdMNiZG36M3jwYACCg4M5cOBAqp5ZtGgRpmlSpkwZ7r333qwML1Ns3ryZ3r17s2jRIneHki6pqgL9yiuvZNqAhmHw7rvvZlp/IiIikjtZLQZN/YtRyMfGzaicO1sgmW9sh+rxu1CPLnN3KPnXqpex/fY2DPiKATX706daH6YfnM53h74jyh7l7ugyXcWCFalepHqWj9OhQwdKlCjBlStXWLp0KfXr17/rM4sXLwZg4MCBWCwWGjRowIoVK4D4M3lzmilTpiSZ/QVyfNwJUhXZwoULU71W3jT/OtDv78+YpqkEWERERFysFoMOAaVYsk9nleYnXWqXwjy7E+NWqLtDyd9iw2HOI9gKV8J2/7eMbvgkQ2sN5YvdX7DwxEIcZtYuF85O9/nfh8PpyPLzf202G3379mX69OmsWLGCl156Cas15TETztg1DINBgwYB4OPjQ7Vq1bI0zqyQW+JOVQLcvHnzZK/Hxsayb98+ACwWC/Xr16dq1aoULFiQ2NhYQkJC2L17N1FRUdhsNnr16oW3t3fmRS8iIiK5mt3hpE/DskqA85GSfp6U8PPE2KrlzzlG2Bn4ujOWCi0oMnAqb7R+g0frPsrHOz9mw9kN7o4uU3Sr3C3bil8NHjyY6dOnc/nyZf744w/atGmTYtuEZcStW7emQoUK2RJffpeqBPj7779Pcs1utzNixAgAunbtyvjx4yldOuk+noiICD799FN++OEHTp48yY8//pjBkEVERCSvsFktdKpViuIFPLkaEevucCQbjOlYHcNihSNL3R2K/N3Z7VgmNIL691Oxx4dM7DyRXRd38eGODzl89bC7o0u3MgXKUKd4nWwbr1q1ajRu3Jg9e/awdOnSFBPgmJgYVq5cCfy1dxjii0kNHz4cgEOHDiVZTnzgwAFmzpzJjh07uHLlCr6+vtSsWZN+/foxYMCAO844/93p06eZNWsW27Zt4/z580RFReHn50fNmjXp3bs3gwYNcvW3YMGCRFtjv/rqK7766isGDBjA+++/n+lxDxs2jO3btzNt2jRKlSrF5MmT2bFjBzdv3qR06dJ07tyZ0aNHU6xYsVR/v5CBIlgJwXfo0IEJEyYkm/wCFChQgNdff52+ffty6NAhpkyZkt4hRUREJA8yMOjfuLy7w5Bs0qNuacwL+yAsxN2hSEoOzMP6YRVY9zYNi9VmTu85fNTuI8r75c6/p139u+I0ndk6ZsJy5l9//ZXo6Ohk26xdu5abN29SpEgRunTpkqp+p02bxpAhQ1iyZAm3bt2iZs2a+Pn5sX37dsaPH89jjz3GrVu3UtXXmjVr6N27NzNnziQkJIRy5cpRtWpVYmNj2bZtG6+//jovvviiq33x4sVp0qQJfn5+AJQtW5YmTZpQuXLlLI1748aNDB48mDVr1lC0aFHKli3L2bNnmTFjBkOHDiU8PDxV32+CdCfACfuCx4wZk6r2jz/+OKZpsmyZih2IiIjIbQx4qEUld0ch2aCIr43ShbwwDi5wdyiSGhs/wvZeRdjzA10qdWLpgKX8s9k/KeRZyN2RpcmQmkOyfcyePXvi6+tLREQE69atS7ZNwvLnfv364enpedc+V61axccff4zT6WTMmDH8/vvvzJ8/n3Xr1jFjxgxKlCjB9u3bEyWtKQkLC+PVV18lNjaWBx98kK1bt7JkyRKWLl3Kli1bGDZsGADLli3j+PHjALRv357Zs2dTp04dV9yzZ89m9OjRWRr3999/T5s2bfjtt99Yvnw5q1evZtKkSVitVk6fPs3PP/981+/3dulOgENC4j+18/f3T1X7smXLAhAaqmIHIiIi8heLYVCtlB8NKhR2dyiSxUa3S1j+vMTdoUhqOe2weAy2T2rhEbyFR2o/wq+DVvFo3UfxtNw9aXO3xqUa41/IP8uPP/q7AgUK0KNHDwCWLEn6er9y5QqbN28G4P77709Vnwnn+D7wwAM899xziZLme+65h4kTJwKwbt06du7cece+du7cSVxcHCVLluS1117Dx8fHdc/X15eXX34ZDw8PAAIDA1MVX1bFXbx4cSZMmECpUqVc1zp37ky7du0A2L17d5riSfcroVCh+E9+EhLhu0n45KB48eLpHVJERETyKLvDyf1NK7o7DMlivRqUwbx0FK6dcncoklaRV2FmP6yTW+N7/QwvNH2BFQNX0LNKTwyyp7hUegwOGIzd6Z5j1hKWQW/evJnr168nurd06VIcDgcNGzakRo0ad+0rODjYdfTQo48+mmybxo0b07hxYyB+efWddO7cmT179rBmzZpkjyyKiYmhSJEiAERFpf9YrMyIu1WrVnh5eSW5nlBxOrVLvhOkOwGuXbs2AFOnTr1rW7vdzueff45hGDRq1Ci9Q4qIiEgeZbNaGNC4PF627J2lkexTwNNGhcJeGIfmuzsUyYjLRzEmt8Lyw/2UdDj5oN0HzO09l+Zlkj81xp0KeRaie+Xu2CzuOZO2adOmVKlShbi4OFexqwQLF8ZXQU/t7O+pU/EfGt3tqKF69eoBJHtOb3K8vb05evQoixYt4osvvuBf//oXAwYMoGXLlly+fBlIfMxtWmVG3CnVmko4XchuT9sHHOn+v8zDDz+MaZqsXr2af/zjH1y8eDHZdsHBwTz55JPs2LEDwzBclaNFREREbufnbaNb3TLuDkOyyBP3VsGw2uCwlj/nCSfWYPm0Fiz/B9X9yjG923QmdZ5EtSI55xzYXlV7uS35TZBQ3Xnp0r+qnh89epRjx47h6+tLz549U9VPQqGnhAJUKSlQoAAQfxLP3WzYsIGuXbvSr18/XnrpJSZOnMiSJUu4cuUK3bt3p3DhjG9LyYy4E5ZiZ5Z0vyLatWvHkCFDmDt3LitWrGDlypXUqFGDSpUq4ePjQ1RUFKdOneLkyZOuZ8aNG0f9+vUzJXARERHJW+xOJw80r6gzgfOo/o3KYV47hXH5qLtDkcy042tsO76Gbu/SqvkTLOi7gIXHFzJx70SuRF1xa2gP1HzAreMD9O/fn88++4zdu3dz7tw5ypcv75r97dmzpyvxu5uEdnereHzz5s1E7VPyxx9/MHr0aJxOJ40aNaJPnz4EBARQrVo115bVe++9N1WxZWfcmSFDH4n85z//oWTJknzzzTdER0e7Ps1IkDBdXrhwYV588UXXOngRERGRv7NZLLSqVpzyRXw4dyP9e84k5/G2WahczBtji5Y/51mrXsW27m0YMIV+tfrRu2pvph+czreHviXKnv1/n+uXqJ8jZqNLlChB+/btWbt2LStWrOCJJ55gxYoVQOqXPwNUrVoViN+Pe/LkyRSXEx88eBC4e6HiadOm4XQ6ueeee5g+fXqSM3hjY2OT7FtOj8yOOzNkaKONxWLhmWee4ddff+X111+na9eu1KtXj0qVKtGgQQN69OjBe++9x5o1a5T8ioiIyF05nSaPtans7jAkkz3WprKWP+cHcZEwdxi2zxvhFXqAJxuOYtWgVdwfcD9Ww3r35zPR4BruK371dwnLoFevXs2uXbu4dOkSNWrUSFNtpCpVqlClShUAZsyYkWyb3bt3s3//fgBXheSUnD17FoBatWolSX4h/oimuLg4IOkeW8NIfdGzzI47M2RKpYlSpUrx8MMPM2HCBObNm8eqVauYM2cOn332GQMGDKBgwYKZMYyIiIjkcTarhUda+lPIx7379iRzDWpSATPsLITud3cokh3CQuDrzli+6UbhyBu8fs/rLO6/mA4VO2TL8EW8itCrmvv3/yZo164dJUuWZP/+/cycORP4KylOi+eeew6AOXPmMGHCBGJjY133tm3bxrPPPgvEL11u3br1HftKmJldvnx5oi2rMTExzJo1i7ffftt1LTo6OtGzvr6+AJw7dy7b484MOeNVISIiIvInT1t8Ejxp/cm7N5Ycz2aBaiW8Mf741t2hSHY7uwPLhEZQdxAVen3EF52+YPfF3Xy08yMOXjmYZcM+VOshbEbOSXNsNhv9+/dn2rRprFq1Cg8PD/r165fmfnr06MGZM2f47LPP+PLLL5kxYwZVqlTh2rVrrmS0RYsWfPTRR3edpX366afZunUrly9fpk+fPlSuXBlPT09Onz5NZGQkxYoVo0qVKhw9epTQ0NBEz9apU4fffvuNpUuXcuzYMZo1a8Ybb7yRLXFnhkyZAT5y5Ahvvvkmffv2pUWLFtStW9d176WXXmLatGlJPjkQERERSY7VYvDEvVV1JFIe8fA9/lisHnBksbtDEXc5NB/rh1Vh7X9pUKwWs3vN5uN2H1PBr0KmD+Vj82FYnWFYLdm75Ppubt8O2qVLF4oWLZqufp588knmzp1L79698fPz4+jRo0RHR9OqVSs++OADZsyYkaq+69Wrx+LFi+nbty/lypXjzJkznDlzhkqVKjF69GiWLVvG8OHDAVi/fn2io5BGjhzJ/fffT5EiRQgODk5UAyqr484MhpmBg53sdjtvv/02c+bMAf4qemUYBkeOHAHip/wvX75M5cqVmTZtGhUqZP4L3R0cDgd79+6lUaNGya6bF8kpAgMDGTVqFFOnTiUgIMDd4YiIpIppmryy4AA/7QhxdyiSQSuebUvtQtEYn9SEDJwnKnmExQZ9PsfeYAgYFmYfnc2U/VMIiwnLlO6H1xnOP5r9A4uhD9AkeRl6Zbz66qvMmTMH0zQpW7Ys3bt3T9LGz88P0zQJCgpi5MiRidZ8i4iIiCTHBJ7qUA1L1q+GkyxksUCtUr4YBxco+ZV4TjssfhrbxzWxBW3ioVoPsWrQKh6r+xieFs8Mde1h8eDxeo9joH84JGXpToA3btzIkiVLMAyDl19+mTVr1vDuu+8mabd8+XJefvllDMMgODiY2bNnZyhgERERyfsshoF/8QLcV6e0u0ORDLi/SQUsNg84ourP8jdR1+D7/lgnt6LAtWCeb/o8KwauoFeVXulOYHtX7U0x72LZso9Ucq90J8Bz587FMAweeughHnvsMSyW5LsyDIPHHnuM4cOHY5omK1euTHewIiIikn84nE6e7ljd3WFIBjzU0h8z8hqc+cPdoUhOdfkYTG6NZdZgSjocvN/ufeb1mUeLMi3S1I3FsDCywUhMtNJA7izdCfDevXuB1B/gnLDx+8SJE+kdUkRERPIRq8VCgwpFaFGlmLtDkXSqW8YX4/AiMJ3uDkVyupNrsXxaG5a/QPUCZfmm2zd81eUrqhdJ3YdgnSt1pmLBitr7K3eV7ldIWFj8RvWyZcumqn3p0vFLmKKiotI7pIiIiOQzdoeTf3Wt6e4wJB36NiyLzcMTDmv5s6TBjm+wvlcRtn5By9JNmd93Pm+2epOSPiXv+NiTDZ7E4XRkU5CSm6U7AS5UqBAAly9fTlX7s2fPAlCkSJH0DikiIiL5jM1qoXmVYnSqVcrdoUgaDW9VGTM6DII3uTsUyY1+fQ3bB1WwHFlK32p9+GXgLzzd6Gl8bb5Jmt7nfx81i9XMcUcfSc6U7gQ44azfJUtS96nejz/+CMQfnCwiIiKSWg6nk9d61caqktC5SsPyfnBkaXzVX5H0iIuEucOxfd4Qrwv7GFl/JKsGrWJIzSHYDBsAVsPK802f1+yvpFq6E+C+fftimibffPMNa9asuWPb6dOnM3/+fAzDoFevXukdUkRERPIhq8VC1ZJ+DG5awd2hSCp1qV0KDw9PjMOL3R2K5AU3z8E392H9piuFI67xWsvXWNx/MR0rdmRA9QFULFhRs7+Sarb0Pti7d2/mzp3L9u3beeaZZ2jevHmi2d05c+Zw7tw51q1bx8mTJwFo0KABffv2zXjUIiIikq84TZN/davJkr3niYrTTE9O93jbKpixERin1mfruBvOezL/lC97r3hwLcaCp8XEv6CD9uViGB4QQTHvlCsEX4s2mHW8AOvPe3H6lpUYh0FRLycNi8dxf7VI2peLTVdMMQ6YeMCP5We8uRRlpZiXk07lY3iuwS2KeqUcz6PrivLHRS9+7HKVpiXj0jV2nnNuJ8YXjaHuAMr3/IQJnSbgcDpwmk4Vv5JUM0wz/aeS37p1izFjxrBjx44Uz9tK6L5OnTpMmzaN4sWLp3e4HMXhcLB3714aNWqE1apPnCTnCgwMZNSoUUydOpWAgAB3hyMikm5Op8mnawKZuE4nSuR0x97qgufRJRgLnsiW8exOePmPwiw97ZNim+JeDr5sd4PGJZImkzsveTB2c1Gux6ScRA2oEsU7LcKwpjHPGr2xCL+d805y3d/PzrxuVynsmfSt+IbznozaUIwuFaL58t4baRswPxm2CLNKe4wUjmMVSU6GXi0FCxZkxowZvP3229StWxfDMDBNM9Gv6tWr88orr/DTTz/lmeRXREREsp/FYvB0h+oUL+Dp7lDkDtpUK46XpxfGkexb/vzJvoKu5Ldz+Whmd7nKHwMvsrTHFf7Z8Ba+NidXY6yM3lCUi5GJ3/6GRloYvTE++S3i6eSNZmGs7XOZzf0v8W3HazQrGT/zuzDIh8/2+6Uprt9DPfntnDc2w+SDe26wpf8lZnS6RllfB6fDbXx7tECSZ5wmfLy3IFbD5IWGt9L5E8kHCpUD/9ZKfiXN0r0EOoHFYmHw4MEMHjyYiIgIzp07R3h4OD4+PpQpU4aiRYtmRpwiIiIieNgMnu1cgzeWHHJ3KJKCke2qYsZFY5y4c42YzHIx0sLMY/GVgfv4R/Fx6zDXvaJedgKK2LmndAxDVxfnRqyFKYcL8O9mfyWWXx3y41acBS+ryczO16hZ5K+iXSV9YmlV+tr/t3ff0VGWeRvHv89MeiMJNQQSIJCAQCAQpEkHI9hAFkSkqqCCrriuq9IsIK7YkBexIYiKlV4sSxVpCkpEWgBpoQrBAElIm5n3jyEjEQIhbZLM9Tknx8xT5v5NNmHnmrvx6LpAlh/x4sMEXwZFpVHFO3/7Gq87Yf+w5uaa6fSsnQ5AJe9MHmqYwrObK7DxhAejonPfs+CAN3vOunN3RBoRARrun6cuz4GhUZhy/Yr0IxNfX18iIyNp1qwZDRo0UPgVERGRIuVmMjGgVTi1K13ecyalQ8vwCrD3O8i6UCLtrTjqSbbNPhXv8Tx6TBtXzKZrDXsAXXPMM9e57xLtj28Nu5Ar/OYwDBgVbX/eLKvB+uP5H4FwNtP+VruGb+4gW93H/vjvQ64zLDD1Nz+8zVYeaZyS73ZcTmgzaHI3mAvdlycuSGMGREREpEyx2Wy82LORs8uQK2gWFoS3l2eJrv78xwUzXmYblbwshPrm3TMb7m9xXJ/jzwx7cDawEV0x74Wmwvz+CrCX3n8twZ72eo6l5b7nSKr9cbBX7npnJ/hyIs3M4Pr572V2Sd1fAYu215KCydfHJoMGDSqyBg3DYPbs2UX2fCIiIuJa3Mwm2tStRO9mocz75aizy5FLPNShDjZLJsae70qszcejU3g8OoWUrKvvE33ovD10VvD4K1gGedrYeNcpMi1wtVVhD6f8FWADPPIfTFtXzeTdnfDtYS/ahWTQLiST/efMvL/TPpf4ppAMx7V/Zhi8t9OXIE8rwxqk5rsNlxN9N9SIdXYVUoblKwD/9NNPjgWuCirn/rxWixYRERHJL6vNxrO3N2RNwimSUgu2PY0UvTZ1AuH3VZBZ8sN3/dzzfp96Ms3E6mP2lZivtKWQxzU6dT/f5+P4/nq2JGpdLZNO1dNZfcyLpzYF5jpXNyCLIVFpjsdvX5yLPKbZuau+FpfmVxV6vApWK2jxKymgfAXgFi1aFHcdIiIiIvlmMgx8PMw8e0dD/vnZVmeXI8ANIf74eXvBjoXOLiUXmw3Gbw4gw2LvhOlfL+0ad+S29bQ7n+61B+AWlTOJvMI84auZelMy7+3yZdEBb46nmQnytBJXM51/Nk5xBN3EFDOf7vWhpl82/epeX30u5Y6p4O6j8CuFkq8A/PHHHxd3HSIiIiLXxc1s4o4m1Vnwy1FWJ/zh7HJc3sMd62KzZmMkfOPsUnJ5aas/ay72/t4WfoFWVfM/YmD/OTMj1wZisRl4mm2MbX7uutv3MMMjjVJ5pFHew5qnbPMjy2owqnGKozd6yyl3Fh/05tQFEzV8LfSJuHDd4btcib4bIm9xdhVSDujjExERESmzLFYb/+3dGN9rjWGVYtehbjAcWAvpyc4uBbD3/L70iz+zE+wrhkdWyOKFFvkPsPvOmhm8KpikDPvv1vOxZ6kfVPQBdPsZN5Yd8qJhUBa3httXqv50rzcDVgTzxT4fVh314qM9vvT6tiJfH/Iq8vbLBP9qcOtrYNPCYFJ4CsAiIiJSZplNBpX8PPl3XJSzS3FpdSr74u/jiVFKhj9nWuA/myrw4cXwGxGQzcxOf+Kbz7m1W065c++Kio4Vn0c3O0evOunFUusr8f7YMHiy6XkMA06kmfjv1gDcTDC5VTJbep/k5VbJGAaM/jGAk2ku+Pb99qng5g2GC752KXL5GgI9bdq0Im30kUceKdLnExEREddlNhkMblOLxfHH2JqY7OxyXNLIjnUBG+xe6uxSSM4weOSHIDafsu/X2zA4ixkdzhDslb/wu/igF2N+rECm1cBk2Hg+9hx96xbPnsbfH/Ng00lPbqqWQetqmRfb9ybDYnBnrQvcWdseunvWTmfDCU8WHfRm8UFvht3gQqtEN+kHkXHOrkLKkXwH4KJcvVkBWERERIqS1Wrj1b5N6PHmD2Rka5hkSesUVQkOb4K0JKfWcfi8mWHfB3HwvP0tbruQDN5sm5zvnt/p23158zd/ALzNVl5rc5YuNTKucVfBWG3warw/JsPGk03PO45vP+MO2IP7pRoFZ7HooDc7/szX2/fywT8Eelwc+qzeXyki+f5NstlsRfYlIiIiUpTczCZqVfRl3G03OLsUlxMa5EWQrwfG9nlOrWPvWTfuXh7sCL99I9J4p33+hz0/v8XfEX4reVn4qMufxRZ+ARYe8GbPWXduC0/PNbf4XKa908nXLXfd3hcfn81woSB4x/+Bm5fCrxSpfH2EtHv37uKuQ0RERKRQzCaDAa3C2fD7ab7+7YSzy3EZIzvWxTBMTh3+nJhiZuiqIM5cXLDqscbnGXGVVZf/bvJWPz7da58vXMs/mxkd/6Smn6VYagXIsMDU3/zwMNkYFX0+1zmfi0E3LTv36MvULPtjLzcX6Uxq2h/qdXN2FVIO6eMUERERKTesVhuv/KMJNYO9nV2Ky+jWoAq2I5vhvHM+dMiywqj1gZxKt4ffZ2LOXVf4XZ7oyQe7/QB7+J3T5Uyxhl+A2Qm+HE8zc2+9NEJ9cw/ZrxNg7w3eluSe63jO44gAF9gKyT8Eur9iX8pbpIgpAIuIiEi5YTIZeLqZePve5ribi279Ermyyn4eVPLzwNixwGk1fLHPxzFvtnvYBfpEXCA1y7jqV45MC0z4OQAAD5ONya3O4u1mu+q9mYXMxn9mGLy305cAdysPNUy57Hy3i8Ouvznsxef7vDmZZuLzfd58m+h18TUWz2rUpYbJDf4x8+LQZ/0NS9Erkln0hw4d4syZM1gslsvm+FqtVrKyskhNTeXQoUP873//Y+7cuUXRrIiIiMhl3MwmbggJ4D+31OfFZbucXU65NqJTXQyTGXYtcVoNsxN8HN9/c9ibbw5fu/c/4Z4TF6/34uTFrY4yrQZ9l1e85r2PNErh0caXB9f8enuHH+ezTDzR5DyBnpf3cDaplMVdtdOYf8CHZzdX4NlLzg2KTKVhcDnvAY6bBGGtNO9Xik2hAvC6det44YUXSExMLKp6RERERArNZDIY1q4Om/YnsXLXH84up9y6pWFVbCd+w0g+7JT2z2QYHE4p+NvZX/82zLi4JaaY+XSvD9V8LAyKzHuY9sQbz1HL38KXv3tz8oKZUF8LAyLTGFAvrQSrdYKm/aHlg86uQsq5Av+LsX//fkaMGEFWVla+V3b28PCgefPmBW1SREREJN8sVhtv9G1K3JS1HD9bzoeNOkGgjxvVAjwxtjhv9edgT5ujN7cgxseeZ3zs+WtfWERq+lnYfvfJa15nNsGDDVN5sKEL7fdbvRnc/qZ93q+GPksxKvDYgo8++ojMzEzMZjODBw/mrbfeYsSIEQD06NGDWbNm8frrr9OnTx/MZjOGYTB06FBmzZpVZMWLiIiI5MVsMvDxMDOtfzPcTHpDXdQebB9hH/68c5GzS5Gyzrcy9P/cPuxZ4VeKWYED8E8//YRhGPTv359nnnmGLl260LdvXwAOHjxI69at6dGjBxMmTOC9997DbDYzY8YMbakkIiIiJcbNbCImLJDn7mjo7FLKnduiQ7Cd2g1n9ju7FCnLzO7Qbw54V7QvgCVSzAocgP/4wz6fpmfPno5j1apVIygoiISEBNLT/xpq1LZtW/r164fFYuHTTz8teLUiIiIi18lk2PcHHtQ63NmllBu+Hm7UqOCJsX2+s0uRsi7uJajRAswKv1IyChyAcwJuSEhIruN169bFarWyZ8+eXMfvuOMOAH7++eeCNllof/75J5MnTyYuLo7GjRvTrFkz+vXrxxdffIHVar32E4iIiEiZ9eztDWlXr5KzyygXHmhXC8PsBrsWO7sUKctiBsCNw7Tis5SoAv+2VahQAYC0tNyr0dWsWROwL5J1pePHjx8vaJOFcvToUe666y4++OADjhw5QlhYGBUqVGDr1q2MHz/esaCXiIiIlF/vDGhORGU/Z5dR5vWMCcV25gD8oW2mpIBCm8NtU+yLXomUoAIH4Nq1awOwffv2XMfDwsKw2Wzs2pX7H8Tz5+0r7GVmZha0yUIZPXo0x44do169eixbtoxly5axevVq3n77bTw9PVm9ejUzZsxwSm0iIiJS/MwmA083Ex/ffyOV/DycXU6Z5eVmolaQJ8Z2563+LGWcXxW453P7glda9EpKWIEDcJs2bbDZbLzxxhscO3bMcbx+/foALF++PFfYXbZsGQBBQUEFbbLAjh8/zqZNmwB44YUXqFWrluNc586deeCBBwCYO3duidcmIiIiJcfNbKKKvycfDr0Rb3ezs8spkwa1Cccwu2v4sxSMZwDcOxe8g7XolThFgQNwv3798PHx4dChQ9xyyy383//9HwCtW7fG39+f48ePM3DgQD799FMmTJjAtGnTMAyDFi1aFFnx+XXixF/7w+UE9Es1btz4sutERESkfHIzm2gQEsC0/jFod6Tr94/mNbGdPQrHf3V2KVLWuPvAgHlQtaEWvRKnKXAADg4O5o033sDLy4vMzEySkpIA8PT05LHHHsNms7Ft2zYmTJjAp59+isViwWw2O3pbS1L16tUd3+/cufOy8wkJCZddJyIiIuWX2WTQqX4VXrizkbNLKVPcTFC3khfGDq3+LNfJzdM+7Dm0uXp+xakKteRahw4d+Prrr7n//vuJiYlxHB8wYABPP/00fn5+2Gw2bDYbVapUYdq0adxwww2FLvp6Va1alS5dugDw/PPPc/jwYce5jRs38u677wIwZMiQEq9NREREnCNne6SxtzZwdillRv+W4ZjM7rBzkbNLkbLE5AZ9P4JaN4FJUw/EuQybrfiWXsvIyGDv3r24ubkRGRmJyeS8Jc5TU1MZM2YM3377LWazmVq1apGens6RI0cICAjgkUceYfDgwfl+PovFQnx8PE2bNsVs1h+ylF579uxh+PDhvPfee0RGRjq7HBGRUumdNb/z3293O7uMUu/rf95Eg4B0jNeitHqv5I9hgn/MhBvu1HZHUioU+Ldw8+bNbN68mavlZ09PTxo1akT9+vXJzs5m4cKFzJo1q6BNFophGNSvX58KFSqQnZ3Nvn37OHLkCAD+/v54e3s7pS4RERFxvoc6RvDEzfqQ8GpMJoiq4o2xY4HCr+SPYcAd0xR+pVQp8AD8gQMHYjKZ+Pnnn/MVHtPT03n66acJDAxk6NChBW22QFJSUhg6dCjbtm2jYcOGvPnmm8TExJCWlsaKFSuYPHky48aNY+fOnTz33HMlWpuIiIiUDo92rke2xcabK/c6u5RSqXezGpjdPGCnVn+WfOo+GZr211ZHUqoUaga6zWbDyOcvdM5+wenp6YVpskBmzJjBtm3bqFKlCh9++CEBAQGAvYe6T58+REVF0a9fPz777DO6d+9Oy5YtS7xGkcI4duwYKSkpVzx36NChXP/Ni5+fnxaCExGX93i3SLKtNt5avc/ZpZQ697YMx5Z2BuPwRmeXImVB1+fhxuHOrkLkMtcMwFarlQceeCDPN889evS4ZgjOysri9OnTGIZBeHh4wSothG+//RaAQYMGOcLvpaKjo+nYsSMrV65k6dKlCsBSpiQnJzNgwACsVutVr3vxxRevet5kMjF//nwCAwOLsDoRkbLnybgosi1W3l2739mllCqNqvlg/DoHbFf//xsR2j8JN41ydhUiV3TNAGwymXjggQe47777Ljtns9k4duxYvhszm82MHDny+iosAjk11qlTJ89r6taty8qVKx3zgkXKisDAQD755JM8e4Dzy8/PT+FXROSiZ3o0INtq44N1B5xdSqlwe5MQ3Nw9YJeGP8s1tPs3dB7r7CpE8pSvIdBt2rThhRde4I8//nAcmzZtGoZhMHz4cNzd3a/eiJsbgYGBtGjRgoiIiMJVXAB+fn5kZGRw6tSpPK/J2cfYz8+vpMoSKTIauiwiUvTG3XYDAd7uvLF8j7NLcbpBrWthSz+HcWCts0uR0spkhu6vQIv7nV2JyFXlew5w3759cz2eNm0aAA899FCpX0G5VatWLFu2jLlz59KnT5/Lti1KTk5mxYoVjmtFREREAB7rUo/QCl48Pf83sq2uu/Jx0+q+sGMuWLOdXYqURu4+0GcW1LvZ2ZWIXFOB1yN/6aWXmDRpEp6enkVZT7F48MEHcXd357fffuM///kPZ86ccZxLTEzkwQcfJDk5mRo1atC7d28nVioiIiKlzV3NajBrSAt8PMzXvrgc6ly/Cu4enhi7Fjm7FCmNfCvB0K+hbjdtdSRlgmG72ka+5ch3333Hf/7zH9LT03F3dyciIgKr1cq+ffuwWq2Ehoby/vvv53uItsViIT4+nqZNm17WoywiIiLli8VqI+HEeQbP/IlTKRnOLqdEzXmgJW3CvDFergWWTGeXI6VJcB0YtAj8q4O5UJvLiJSYQn9Mk7OX7t+3N5ozZw5xcXHExMRwxx138OWXXxa2qUKJi4tj8eLF9OvXj5CQEPbv38+RI0eIiori0UcfZeHChU6ZnywiIiKln9lkEFnVj0WPtKV2JV9nl1OiYmv6Q8I3Cr+SW41YGLZK4VfKnEL1AK9cuZIxY8Zw9uxZFixYQP369QGYOXMmr7zyCmBfKRrAMAzuuecexo8fXwRlO596gEVERFxPtsVKaqaFobN+4pfDyc4up9i1iajIp8NawRcDtQK0/CWqB/T50L7wlUnhV8qWAvcAJyYmMmrUKJKTk3Nth3ThwgXeeustbDYbAQEBDBw4kBYtWmCz2fjss8/YtGlTkRUvIiIiUpLczCb8PN34fHhr4hpWdXY5xW5Y+zrYstJh33JnlyKlRYsHoN8cMLsr/EqZVOAA/NFHH5GVlUXlypX5+OOP6dy5MwCrV68mNTUVwzB44403GDNmDB9//DE9evTAZrMxd+7cIiteREREpKSZTQZuJoN3B8byZFwUZpPh7JKKTavwCrD3f5B1wdmliLMZBnR9Hm59zb7YlRa8kjKqwL+5mzZtwjAMnnrqKVq0aOE4vmbNGgCqVq1KmzZtHMeHDBkCwC+//FLQJkVERERKBdPF0DuiYwRzHmhJJT8PJ1dU9JrVDMTbyxNj50JnlyLO5lsZBi6Cto85uxKRQitwAD5+/DgAsbGxuY6vX78ewzBo27ZtruM1atQA4PTp0wVtUkRERKRUMQyD2PAgvn2sPc3Dg5xdTpF6sGMENkuWvQdYXFedjjDyRwhva+8FFinjChyAMzLsWwB4ePz1ieeuXbtISkoCyNX7C5CamgqgBaNERESkXHEzmwjy9eDLB1tzX9tazi6nyLStEwi/r4KM884uRZzBZIbOY2HgAvAK1ErPUm4UOABXrlwZgIMHDzqOrV692v6kJtNlAfjnn38GICQkpKBNioiIiJRKZpOB2WQw/vaGTL+3Gb4eZfsD//oh/vh6eWLsWODsUsQZAkJh6DfQ7gn7XF9T2f59FrlUgQNwbGwsNpuNd999l+zsbE6ePMlnn32GYRg0a9aMoKC/hgElJiYydepUDMPINV9YREREpLyJa1iNZY+1o14VP2eXUmAjOtYFm8W+/6+4lshbYMRGqN5cC11JuVTg3+oBAwZgGAZr167lxhtv5Oabb+bUqVMADBo0yHHdE088wZ133smxY8dwc3PLdU5ERESkvDGbDGoEerPsn+14oF1tyuIi0R3qBsOBHyA92dmlSEkxu0PcJOj/BXj4a8izlFsFDsDR0dE899xzuLm5kZaW5pgTPGDAALp16+a4bseOHaSlpeHh4cGkSZOIiIgofNUiIiIipZib2YSHm4kxPRow7+E21K7k6+yS8q1OJR8CfLT6s0sJqg0PrIJWD9sfm9TzK+WXYbPZbIV5gmPHjrF69WqysrKIjY2lUaNGuc5PnDgRm83GwIEDqVWrVmGaKlUsFgvx8fE0bdpUC3uJiIhInrItVqw2ePnb3cxafwBrod55Fb9X/9GE3s2rY7xaD1K1e0e517Q/9HgVzJ7q9RWXUOgA7KoUgEVEROR62Gw2th5O5omvfuXA6VRnl5OnX8Z2ISjpF4xZ3Z1dihSnyvXh9jchrBXYrJrvKy5Dv+kiIiIiJcAwDKJrVOC7Ue25/6bSOTc4NNCLIF8PjB3znV2KFBd3H+j6PDy8HkJj7ccUfsWFFMk4h507d3LkyBEuXLhAfjqUe/bsWRTNioiIiJQpbmZ70Bh7awN6NA7hqXnb2PdHipOr+suIjnUxDBPsWursUqQ4RHWHW18Hv6ra2khcVqEC8I8//sj48eM5fPhwvu8xDEMBWERERFyaYRg0udgb/PGmQ0xZsYfktCxnl8XNN1TBdmQLxvnjzi5FilKFmtDjFXsAtloUfsWlFTgA79+/n2HDhpGVlZWvXl8RERER+UtOb/CAVmH0bhbKa//bwyebDpHtpFWyKvt5UMnPA2PjAqe0L8XA7A6tRkKn0WBcDL0Kv+LiChyA33//fTIzM3Fzc2PIkCF07NiRihUr4uHhUZT1iYiIiJRrbiYTfp4Gz95+A4Nah/P8kp18v+dUidfxcMe6GCYz7FpS4m1L/hxJMdNlSWUAPup8hpZVM/O+OLwN3D4VKkYwf8FCnnnmGapWrcratWtLqFqR0qnAAXjjxo0YhsGIESMYMWJEUdYkIiIi4lIMw74iVnhFX2bfdyNrEv5gwtKd/H6q5FaLvqVRVWwnfsNIPlRibUoxqFwfOj4NDXuBNVsLXIn8TYEDcFJSEqAFrURERESKivni0tA31a3E/x7vwOwNB3lr9T6SUq/S01cEArzcCAnwwNii1Z/LrMr1ocNT0LCnfZ4vgMn+Vr9bt240adIEd3d359UnUkoUOAAHBgZy+vRpvLy8irIeEREREZeXMz94cJta3NsqjE82HeLd7/fzx/mMYmnvoQ4RGCY32LWoWJ5fitHfg69hAnPuXl9/f3/8/f2dU59IKVPgMRHNmzcH4JdffimyYkRERETkL2aTgaebmcFtarH+6c5MuLMRoYHeRd7ObU1CsJ1KgKTfi/y5pZgE1oR/zIIRG6HB7ReDr3p4Ra6lwAH4vvvuw2Qy8eabb5KWllaUNYmIiIjIJdxMJtzNJu65sSZr/9OJl3tHE17Rp0ie29fDjZoVPDF2aPhzmXLn9HwH3/nz5xMVFUX79u1zHR84cCBRUVGsXbuW3bt389hjj9GmTRsaNWpEly5dmDRpEmfOnMnzeVesWMHw4cNp3bo1jRo1ol27djzxxBPs2LGjSF6iSHEocACOjo5m/Pjx7N+/n549ezJ79mzi4+M5fPgwx44du+qXiIiIiFw/N7MJs8mgd7NQVj/RkSl3N6VuFb9CPef97WphmN1g5+IiqlKKReUo+16+OQyjyHp8165dyz/+8Q9WrFhBUFAQISEhHDlyhNmzZ9OvXz9SUlJyXZ+dnc2///1vRo4cyffff49hGERFRZGZmcnSpUvp06cPn3zySZHUJlLUCjwHuEuXLgCYzWYSExP573//m6/7DMNg586dBW1WRERExOXlzBG+LTqEnjGhrEn4g082HWJ1wiks17mPcM+modjOHMD4Q+/PSh2TGSJvgRbDIKITHD4ITC7yZj7++GM6duzIhAkTqFKlCgArV67k0Ucf5dChQ8ydO5chQ4Y4rn/zzTdZsmQJ1apVY+LEibRr1w4Ai8XCp59+yn//+18mTpxI7dq1adu2bZHXK1IYBe4BPnr0KEePHiUzMxObzXZdXyIiIiJSeDlB+Ka6lZgxuAWbnunCqK71qBaQv0VKPd1M1A7W8OdSx68KtP83PL4T+n0Kte0BM2dV56JWsWJFpk6d6gi/YO/syhkyfemaP6dPn+bDDz8EYPr06Y7wC/aOsYEDBzJkyBBsNhtTpkwplnpFCqPAf0UvvfRSUdYhIiIiIgWUE4Qr+3vyaOd6/LNzPVYn/MEnmw7z/Z4/yKtTeHDrcAyzu4Y/lwaGCep0hJhBcMPtgPHXHr7FFHxztG7dGk9Pz8uOR0REsHr1as6fP+84tnbtWjIzM6lbty4NGza84vPdeeedzJgxg23btpGUlETFihWLrXaR61Xgv6ZevXoVZR0iIiIiUgRy9hLuEFmZLg2qcuJsOnN+PMQXmxMv20apd/Oa2M4exTge74RKBYDgOtC0P8QMBP9qYMkq9sD7d1WrVr3i8ZztTrOzsx3H9u7dC8CJEye45557rnjfpSM+9+/frwAspUrJ/nWJiIiISInI6RWuGuDJqK6RPN41kp8OnmFR/FG+3X6C8+lZ1KvkhfHTh84t1BV5B0FUd2g2GMJagTX7r9DrhK2M3N3z32ZOb3BKSkq+tkM9d+5cgesSKQ4KwCIiIiLlmGEYmO2dwrSoFUzL2sFM7NmY/adSMLm5w4G1zi3QVVSqB5Hdof6tUKOFfYErq8V+roR7fAvD29u+D3VcXBxTp051cjUi1y9ff22bN28u0kZbtGhRpM8nIiIiIteWMzzabECdyr7YbDaM/l/A0V9g12LYvQyS9jm5ynLC7A5hbSDqFqh/GwSGXQy8Bphy5vaanVpiQdSuXRv4ayj0lVy4cIHffvuNkJAQqlevjtlc9l6nlF/5CsADBw7EMIwiaVDbIImIiIg4nzknhGFAaDOoHgPdXoAz+2HXEji4DhJ/gvRkZ5ZZtvhUhHrd7D299bqBh699Tm/OsOYyGHj/rkOHDpjNZvbv38/69euvuM3Rhx9+yJQpU/D19WXt2rX4+RVur2qRopTv8RbavkhERESknDJMkNPXEVwHWo2Ato/ZH5/eezEMb4LDP8KfB5xWZqnjVwWqN7N/gBDRxf5fwwSWbDAX75ze8+fPc+bMmateExQUVGSdWDlCQ0Pp06cPn3/+Of/617946aWX6Ny5MwBWq5V58+Yxbdo0AO69916FXyl18hWAteWRiIiIiAu5NLRVqgdBtSB2qP1x6mk4tAEOb7SH4uPb7Is4lXdegfZe8pze8po3gt/F1ZMtWfbe3Zxti8zFP6d35MiR17xm8+bNBAQEFHnbo0eP5uTJk6xevZqHH36YKlWqULVqVY4ePeoI5XFxcYwaNarI2xYprHz9dWrLIxEREREXdmkg9q0E9XvYF3MymSE7A47+DEe2wJnfIel3+zDq88egrI4gdPeBkCaXhN2W9jm8cDHsG7mHMzth5WZn8vT05O233+abb75h/vz5bN++nV27duHr60vLli256667uOOOOzA5htmLlB6GTWObC8RisRAfH0/Tpk01sV9ERERcm80G1iwwuUPOkFtLJiQfhlMJ9kCc85X0O5w7Cjar8+r1CoQKNf76Cgyz/zeoFlSoaQ/5hsm+aJXNViI9uiJSMvTXLCIiIiKFYxhg9sh9zOwBFetCUB2wXdznNmeIsCULzibC+RNwIRkyzkHG+Uu+/v744rHMFPtzuHmBm+c1/nvxe3cfCKhuD7ZBtSAgFDx8/qrTZrX36hqmy7cjKgeLVolIbgrAIiIiIlJ8TCbg7+HY3b7YVnAdew+rzXJJj7CRez5tQdmsF79sgC137/SlDNPl4V1Eyi0FYBERERFxHsMAoxjekhqmwodoESl39K+CiIiIiIiIuAQFYBEREREREXEJCsAiIiIiIiLiEhSARURERERExCUoAIuIiIiIiIhLUAAWERERESlnMjMz+fLLL3nooYfo2LEj0dHRNG3alB49ejBu3Dh++eUXZ5eYL0eOHCEqKoqoqCgOHTrk7HLy9H//939ERUVxzz335Do+cOBAoqKieOONN5xUmfydtkESERERESlH1q1bx9ixYzl+/DgAQUFB1K1bl5SUFA4fPszvv//Ol19+SVxcHJMmTcLPz8/JFYuUHAVgEREREZFyYuHChYwePRqLxUJsbCyPP/44zZs3xzAMAFJSUvjqq6946623+O6779i3bx+zZ8+mcuXKTq68fHr55Ze5cOECQUFBzi5FLtIQaBERERGRcmDHjh2MGzcOi8VCv379+Pjjj4mNjXWEXwA/Pz+GDh3KZ599RpUqVfj9998ZPXq0E6su36pXr05ERATBwcHOLkUuUgAWERERESkHJk+eTGZmJo0bN2b8+PGYTHm/1a9Xrx4vvPACAGvXrmXhwoUlVKWIcykAi4iIiIiUcXv37mXTpk0A3H///ZjN5mve06lTJ2JiYgD45JNPAEhLSyMmJoaoqCiWL1+e571Dhw4lKiqKKVOm5Dp++vRpJk+eTI8ePWjSpAkxMTH07t2bmTNnkpGRcdnz5Cwe9eqrr7JixQri4uJo1KgRnTt3ZtmyZdd8DQcOHODZZ5+lW7duNGrUiObNm9O3b18+/PBD0tPTr3hPdnY2Cxcu5KGHHqJdu3Y0btyYmJgY4uLiGD9+PAcOHLjifVarlXnz5tGvXz9iY2OJjY1l+PDhbNu2Lc/6rrQIVs7CXm3btsVms/HVV1/Rp08fYmJiiImJ4e6772bevHnYbLYrPuf+/fsZPXo0Xbp0oXHjxnTu3JmXX36Z8+fPO9r78ccfr/mzc1WaAywiIiIiUsZt2LABAJPJRLt27fJ9X7du3di6dSvbt28nKSmJihUrcssttzB//nwWL15Mt27dLrvn5MmTjrB91113OY7//PPPjBgxguTkZNzd3alVqxY2m40dO3awfft2Fi1axIwZM64433jz5s3MnDmTChUqEBERwe+//06DBg2uWvvixYsZM2YMmZmZeHl5ERkZSWpqKr/++iu//vor8+bN4/3336datWqOe9LT0xk+fLgjIIaGhhIZGUlSUhIHDx7k4MGDLFmyhDlz5nDDDTc47svMzOTxxx9nxYoVAISFheHn58eGDRvYsGEDjRs3zvfPPIfNZuOpp55i0aJFBAQEULt2bRITE4mPjyc+Pp4DBw7w73//O9c9P/zwA//85z9JS0vDx8eHyMhITp48ycyZM1m9ejVubop316IeYBERERGRMm737t2APdBdz6rOOSHPZrOxZ88eAHr37g3AmjVrOH/+/GX3LFmyBKvVSmxsLGFhYYA9FOeE3759+7JhwwaWLl3KsmXL+N///keTJk3YvXs3o0aNumId8fHxdO7cme+//55Fixaxdu1a6tSpk2fdv/76K8888wyZmZn07duX9evXM3/+fL777jsWLlxIrVq12LNnDyNGjCA7O9tx3/vvv8+PP/5IUFAQX331FatWrWLevHmsWbOGr776isqVK5OWlsY777yTq70PPviAFStW4O/vz6xZs1i+fDkLFixg5cqVxMTEFGhbqaSkJJYuXcqYMWPYtGkT8+fPZ926ddxxxx0AzJo1izNnzuS6/l//+hdpaWn06tWLdevWMW/ePH744QcmTZrEkSNH2Lt373XX4WoUgEVEREREyrg///wTgMDAwOu6r2LFio7vc8JWbGws4eHhZGZm8u233152z6JFi4Dcvb8ffPABycnJdO7cmQkTJhAQEOA4FxYWxvTp0/Hz82PLli18//33V6zlqaeewsPDA+Cai0ZNnTqV7OxsbrrpJiZMmJAr9Ddo0IAZM2bg5eXFjh07cg2l3rBhAyaTiUceeYTo6OhczxkdHe3YxzfnwwCArKwsZsyYAcCYMWNo06aN41zVqlWZNm3adf/cc/Tv359BgwY5hqx7enoyevRoDMMgOzs71/DqmTNncu7cOaKjo5k0aRK+vr4AGIZB7969eeyxxwpUg6tRABYRERERKeNy5te6u7tf132XzhW+dM5pr169APsw40vt2rWLPXv24OPjwy233OI4njM0OKf38u8qVapE27ZtAVi9evVl5ytXrkzNmjXzVXNaWppjCPOgQYOueE3NmjXp2rUrACtXrnQc/+yzz9i2bRv9+vW74n3e3t4AueYPb9myhZSUFDw9Pbn11lsvu6dChQr06NEjX7X/XadOnS47FhQU5PgA4Ny5c47jOT/ju++++4oLnPXv3/+6//d3RRokLiIiIiJSxuX0QJ49e/a67svpOYbcva69evVi6tSpbN68mRMnTjjm0eb0/sbFxTl6IFNTUzl69CgA06dP56OPPrpiWznX7N+//7JzVapUyXfNiYmJZGVlAdCoUaM8r2vUqBFLly69bFErd3d3zp49S3x8PAcPHiQxMZGDBw+ya9cuTp8+DdgXvMqRc394eLijh/rvrjVfOS9Vq1a94nEvLy8ALBYLYJ+DfPDgQQDq169/xXt8fX2pXbt2rt5ruZwCsIiIiIhIGVe/fn2+/vprDh8+zIULFxw9mdeya9cux/eRkZGO76tVq0abNm1Yt24dS5YsYdiwYVgsFpYuXQrkHv6ckpLi+D4/4etK84o9PT3zVe/f2/P398/zupxh0ampqbnuffHFF1myZIkjRIM9FDds2JAGDRrwww8/5HqenF5YHx+fPNu6dMj39bhWj21Or/ylH1RcrY7rmf/tqhSARURERETKuI4dO/L666+TlZXFmjVr6N69e77uyxlW27BhQypVqpTrXO/evXMF4A0bNnDq1Clq1qxJixYtHNddGraXLFmSK0gXh5yeZ7CH6UvnMV8qpzf80utHjBjBjz/+iJeXFwMGDKBJkybUq1eP8PBw3N3d+fLLLy8LwDm965cG77/La8ulonJp6L1aHZeGfbkyzQEWERERESnjoqKiaNmyJQDvvPMOmZmZ17xn8+bNju2MBgwYcNn5rl27UqFCBRISEhzbAwH07NkTwzAc1wUEBDjC8759+/JsLyEhgV27dl33MO2/CwsLc2z3s3379jyvyzkXHh4O2Feazpk7/O677/L000/TvXt36tat6+iJPXHixGXPU7t2bQAOHTpEWlraFdu62usuCv7+/oSEhAD2n+OVZGRkOIZJS94UgEVEREREyoEJEybg4+PD7t27efbZZx3zR6/k8OHDPPnkkwC0bdvWsejVpTw8PLjtttsA+Prrr1m5ciWGYVzx2o4dOwLwySef5Jo/m+P8+fMMGjSInj17Mnv27IK8PAcfHx9atWoFkOd848TERFatWgVA+/btAThy5Ijj/JXmDl+4cMGxYvSlP7vY2FgqVqxIVlYWX3311RXvyxkaXpxy9mSeN29ergXLcixYsMCxGJrkTQFYRERERKQcCA8P58UXX8TDw4P58+czePBgtm7dmuuatLQ0vvjiC/r27cvx48cJCwvj5ZdfztWje6mcub4zZswgJSWFli1bEhoaetl1w4cPx8fHh59//pknn3wy1/61R48eZfjw4SQnJ+Pv78+9995b6Nf6yCOP4Obmxrp16xg3blyuYcG7d+9m2LBhZGRkUL9+fXr27AmQa1/ht956K9cc4H379jFs2DBHD+qFCxcc58xms2OLoddeey3Xtkp//vkno0aN4vjx44V+Tddy33334evry9atW3nuuedy1bh8+XJefvnlYq+hPNAcYBERERGRcqJHjx6EhoYyatQoNm/eTL9+/ahYsSIhISFkZGRw6NAhx/Do7t27M3HixKsunNSoUSMiIyMdi1tduvjVpcLDw5kyZQqPP/44S5cu5bvvvqNu3bpkZWVx8OBBsrOz8fHx4b333stzzu71iImJ4cUXX2Ts2LF8+eWXLF68mIiICNLS0hyrNkdGRjJt2jTHys033HAD3bt355tvvmHmzJnMnz+fGjVqkJyc7Ogdbtu2LevXryc1NZWUlBTHz+buu+9mz549fPLJJ/zrX//i1VdfJTg4mL1795KZmUnXrl0d86mLS0hICJMnT2bUqFF8/vnnjteclJTEsWPHaNCgAfv27SMrKyvX9laSm3qARURERETKkSZNmvDdd98xceJEOnTogMlkIiEhgcTERMLCwujXrx9ffPEFU6ZMydeqwb179wbsKwzffPPNeV7XoUMHli1bxpAhQwgLC+PAgQMcOnSI0NBQ+vfvz+LFi2nWrFmRvc6ePXuyaNEi+vbtS6VKldi7dy9//vknzZo1Y/z48cydO/eyvYVfe+01JkyYQOPGjbHZbCQkJJCZmUmnTp149913mTlzJtWrVwdwDKHOMW7cON566y1atWpFWloa+/fvp3HjxnzwwQdX/bkUpa5duzJv3jx69OiBr68vu3fvxmQy8eCDDzJnzhzHdfldBdwVGbYrDSCXa7JYLMTHx9O0aVN9wiIiIiIiIk6VlpZGTEwMAGvXrs1zj2FXpx5gERERERGRUm7MmDHceeedzJ8//4rnv//+ewAqVaqk8HsVCsAiIiIiIiKlXFRUFLt37+b1119n586duc5t2bKFCRMmANC/f39nlFdmaAh0AWkItIiIiIiIlJSMjAwGDhzIr7/+CkCNGjUIDAzk9OnTjv2L4+LieP311x37JMvlFIALSAFYRERERERKUmZmJkuXLmXBggUcOnSIM2fOEBQURP369enVqxc9evRwdomlngJwASkAi4iIiIiIlC2aAywiIiIiIiIuQQFYREREREREXIICsIiIiIiIiLgEBWARERERERFxCQrAIiIiIiIi4hIUgEVERERERMQlKACLiIiIiIiIS1AAFhEREREREZegACwiIiIiIiIuQQFYREREREREXIICsIiIiIiIiLgEBWARERERERFxCW7OLqCkbdy4kTlz5hAfH09ycjKBgYG0atWKhx9+mIiICGeXJyIiIiIiIsXEpXqAX331VYYMGcLy5csBqFOnDmfPnmXJkiX06tWL9evXO7lCERERERERKS4uE4Dnzp3L+++/j7u7Oy+99BI//PADixcv5ocffqBjx45kZGTw5JNPkpaW5uxSRUREREREpBi4RADOyMjglVdeAWD06NHcddddGIYBQGBgIK+++iq+vr4kJSWxatUqZ5YqUqQsFgtbt25l5cqVbN26FYvF4uySREREREScxiXmAK9atYrk5GRq1arF3Xfffdl5f39/xo0bx9mzZ6lTp44TKhQpemvXrmX69OmcOHHCcaxatWqMGDGC9u3bO7EyERERERHncIkAvGHDBgA6d+6M2Wy+4jW9evUqyZJEitXatWt59tlnad26NePGjaN27docOHCAOXPm8Oyzz/L8888rBIuIiIiIy3GJAJyQkABAvXr1sNlsLF++nFWrVnHixAkqVKjATTfdRM+ePXF3d3dypSKFZ7FYmD59Oq1bt2bixImYTPaZDg0bNmTixImMHTuWt99+m7Zt2+b5gZCIiIiISHnkEgH42LFjALi5uTFgwAC2bNmS6/y3337LRx99xHvvvUdISIgzShQpMtu2bePEiROMGzfOEX5zmEwm7r33XkaOHMm2bduIiYlxUpUiIiIiIiXPJRbBSk1NBeCll17it99+Y/To0WzcuJH4+HjeeecdQkND2bNnDw8++CCZmZlOrlakcM6cOQNA7dq1r3g+53jOdSIiIiIirsIlAnB6ejpgf8P/+uuvM3jwYIKDg/H29qZTp07MmDEDd3d3EhISWLhwoXOLFSmk4OBgAA4cOHDF8znHc64TEREREXEVLhGAvby8AKhfvz5du3a97HydOnW49dZbAVi5cmWJ1iZS1KKjo6lWrRpz5szBarXmOme1WpkzZw4hISFER0c7qUIREREREedwiQAcEBAAQIMGDfK8pl69egAkJiaWSE0ixcVsNjNixAg2btzI2LFj2bFjB2lpaezYsYOxY8eyceNGHn74YS2AJSIiIiIuxyUWwYqIiODEiRNXnd/r5mb/UXh4eJRUWSLFpn379jz//PNMnz6dkSNHOo6HhIRoCyQRERERcVkuEYCbNGnC+vXr2bZtW57X7N+/H4CwsLCSKkukWLVv3562bduybds2zpw5Q3BwMNHR0er5FRERERGX5RJDoG+77TbAPrx5+fLll51PSkpi6dKlAMTFxZVobSLFyWw2ExMTQ5cuXYiJiVH4FRERERGX5hIBOCIigj59+gDwzDPPsGrVKse5U6dOMWrUKFJTU4mKiqJbt27OKlNERERERESKkWGz2WzOLqIkpKen89hjj7FmzRrAPhcyODiYPXv2kJWVRWhoKO+//z4RERH5ej6LxUJ8fDxNmzZVr5qIiIiIiEgZ4DIBGMBms7FkyRLmzp3Lrl27yMzMpHr16tx8880MGTKEoKCgfD+XArCIiIiIiEjZ4lIBuCgpAIuIiIiIiJQtLjEHWEREREREREQBWERERERERFyCArCIiIiIiIi4BAVgERERERERcQkKwCIiIiIiIuISFIBFRERERETEJSgAi4iIiIiIiEtQABYRERERERGX4ObsAsoqm80GgMVicXIlIiLlj8lkwjAMZ5chIiIi5YwCcAFZrVYAfvvtNydXIiJS/jRt2hSz2ezsMkRERKScMWw5XZlyXaxWK9nZ2eqlEBEpBvq3VURERIqDArCIiIiIiIi4BC2CJSIiIiIiIi5BAVhERERERERcggKwiIiIiIiIuAQFYBEREREREXEJCsAiIiIiIiLiEhSARURERERExCUoAIuIiIiIiIhL+H9CW61V/aiOkQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -206,7 +197,6 @@ "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10,5))\n", "ax = axes[0]\n", "sns.boxplot(results.installed, width=.1, ax=ax, orient=\"v\")\n", - "ax.set_xticklabels([\"\"])\n", "ax.set_ylabel(\"Installed Capacity [MW]\")\n", "\n", "ax = axes[1]\n", @@ -221,11 +211,21 @@ { "cell_type": "markdown", "metadata": { - "collapsed": true + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } }, "source": [ "Note that this is only an example for a basic algorithm in order to demonstrate how such problems can be tackled with pandapower. Algorithms applied in real case studies might include Q-control of PV plants, transformer tap controllers, more sophisticated distribution of PV plants, probability distribution different buses, binary search for the hosting capacity evaluation etc." ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -244,9 +244,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.13" + "version": "3.9.19" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/tutorials/reference_system_convention.ipynb b/tutorials/reference_system_convention.ipynb index 9314373d9..fe6bea571 100644 --- a/tutorials/reference_system_convention.ipynb +++ b/tutorials/reference_system_convention.ipynb @@ -56,7 +56,9 @@ "cell_type": "code", "execution_count": 1, "id": "understood-fellowship", - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [], "source": [ "import pandapower as pp\n", @@ -199,7 +201,7 @@ " -25\n", " 1.064408\n", " 1.011292\n", - " -0.0\n", + " 0.0\n", " \n", " \n", " 3\n", @@ -271,7 +273,7 @@ " 25\n", " 1.064408\n", " 1.011292\n", - " -0.0\n", + " 0.0\n", " \n", " \n", " 11\n", @@ -344,7 +346,7 @@ " element p_mw q_mvar vm_pu p_from_mw p_to_mw\n", "0 load 0 0 1.021515 0.001135 0.0\n", "1 load 0 25 0.972767 1.060615 -0.0\n", - "2 load 0 -25 1.064408 1.011292 -0.0\n", + "2 load 0 -25 1.064408 1.011292 0.0\n", "3 load 50 0 0.923861 55.002097 -50.0\n", "4 load 50 25 0.867587 57.021399 -50.0\n", "5 load 50 -25 0.971638 55.720967 -50.0\n", @@ -352,7 +354,7 @@ "7 load -50 25 1.050547 -45.232313 50.0\n", "8 load -50 -25 1.136787 -45.80152 50.0\n", "9 sgen 0 0 1.021515 0.001135 0.0\n", - "10 sgen 0 25 1.064408 1.011292 -0.0\n", + "10 sgen 0 25 1.064408 1.011292 0.0\n", "11 sgen 0 -25 0.972767 1.060615 -0.0\n", "12 sgen 50 0 1.096104 -46.445807 50.0\n", "13 sgen 50 25 1.136787 -45.80152 50.0\n", @@ -403,7 +405,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABCsAAAH2CAYAAABZUwYHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD/tUlEQVR4nOzdd1hTVx8H8G8IYW9Zggqi4iouwL33qLtaV911a+vee1tH696rbmtdRa3WvcW9cSACyhBZskOS9w9eIpEVMEv4fp6HR5PcnHNycnPPvb97hkAmk8lARERERERERKQj9LRdACIiIiIiIiKijBisICIiIiIiIiKdwmAFEREREREREekUBiuIiIiIiIiISKcwWEFEREREREREOoXBCiIiIiIiIiLSKQxWEBEREREREZFOYbCCiIiIiIiIiHQKgxVEREREREREpFMYrCD6xl24cAECgQDR0dHaLorO0FSdsO6JiL5NPH4TEek+BiuISGMCAgIgEAhw//59bReFiIjom8C2k4gKKwYriIiIiIiIiEinMFhBpOOkUikWLlyIkiVLwtjYGJUrV8Zff/2V43uuXLmCevXqwdjYGMWLF8eoUaMQHx8vf93V1RXz5s1D7969YWZmBhcXFxw7dgwfPnxA+/btYWZmhkqVKuH27dt5TnfBggXo378/zM3NUaJECWzcuFH+esmSJQEAVatWhUAgQMOGDVVQQ8o5dOgQKlasCENDQ7i6umLZsmUKr//555/w8vKCubk5HB0d0aNHD4SHhytsc+LECbi7u8PY2BiNGjVCQECAxspPRETKY9uZd1FRUejZsyfs7OxgbGyMMmXKYNu2bfLXr127hipVqsDIyAheXl44cuRIph4fjx8/RqtWrWBmZgYHBwf89NNPiIiIkL/esGFDjBo1ChMmTICNjQ0cHR0xa9YstXweIioAZESk0+bNmycrV66c7NSpU7LXr1/Ltm3bJjM0NJRduHBBJpPJZOfPn5cBkEVFRclkMpns1atXMlNTU9mKFStkL168kF29elVWtWpVWd++feVpuri4yGxsbGTr16+XvXjxQjZ06FCZhYWFrGXLlrIDBw7I/Pz8ZB06dJCVL19eJpVK85zumjVrZC9fvpQtXLhQpqenJ3v+/LlMJpPJbt26JQMg+++//2QhISGyjx8/Zvu5TU1Nc/wbPHhwtu/9sk5u374t09PTk82ZM0fm5+cn27Ztm8zY2Fi2bds2+Xu2bNkiO3HihOz169ey69evy2rVqiVr1aqV/PXAwECZoaGhbMyYMbLnz5/Ldu3aJXNwcFDIh4iIdAPbzry3ncOHD5dVqVJF5uvrK3vz5o3szJkzsmPHjslkMpksJiZGZmNjI+vVq5fsyZMnshMnTsjc3d1lAGT37t2TyWQyWVRUlMzOzk42efJk2bNnz2R3796VNWvWTNaoUSN5Hg0aNJBZWFjIZs2aJXvx4oVsx44dMoFAIDt9+nQevl0iKiwYrCDSYUlJSTITExPZtWvXFJ4fMGCArHv37jKZLPMJ14ABA2SDBg1S2P7y5csyPT09WWJiokwmSzsx6tWrl/z1kJAQGQDZ9OnT5c9dv35dBkAWEhKS73SlUqnM3t5etm7dOplMJpO9efNG4cQmJy9fvszxLywsLNv3flknPXr0kDVr1kxhm/Hjx8sqVKiQbRq+vr4yALJPnz7JZDKZbPLkyZm2nzhxIoMVREQ6hm1n/trOtm3byvr165fla+vWrZMVKVJEXmaZTCbbtGmTQrnmzp0ra968ucL7goKCZABkfn5+MpksLVhRt25dhW28vb1lEydOzPWzEVHho6/ZfhxElBevXr1CQkICmjVrpvB8SkoKqlatmuV7Hjx4gIcPH2L37t3y52QyGaRSKd68eYPy5csDACpVqiR/3cHBAQDg4eGR6bnw8HA4OjrmK12BQABHR8dMwymUUbp06Ty/JzvPnj1D+/btFZ6rU6cOfv/9d0gkEgiFQty5cwezZs3CgwcPEBUVBalUCgAIDAxEhQoV8OzZM9SoUUMhjVq1aqmsjEREpBpsO/Nn6NCh6Ny5M+7evYvmzZujQ4cOqF27NgDAz88PlSpVgpGRkXz76tWrK7z/wYMHOH/+PMzMzDKl/fr1a7i7uwNQ/KwAULRo0Xx9ViIq+BisINJhcXFxAAAfHx84OzsrvGZoaJjtewYPHoxRo0Zleq1EiRLy/4tEIvn/BQJBts+lX7TnJ930dNLTyIusTnYy6tWrF9avX5/ndLMSHx+PFi1aoEWLFti9ezfs7OwQGBiIFi1aICUlRSV5EBGRZrDtzF5ObWerVq3w9u1bnDhxAmfOnEGTJk0wfPhwLF26VKm84+Li0LZtWyxevDjTa0WLFpX/X1WflYgKPgYriHRYhQoVYGhoiMDAQDRo0ECp91SrVg1Pnz5Vac8EVaVrYGAAAJBIJLlum9sSbRYWFkrnW758eVy9elXhuatXr8Ld3R1CoRDPnz/Hx48fsWjRIhQvXhwAMk2QVr58eRw7dkzhuRs3bihdBiIi0gy2ndnLre20s7NDnz590KdPH9SrVw/jx4/H0qVLUbZsWezatQvJycnygI+vr6/Ce6tVq4ZDhw7B1dUV+vq8xCCir8cjCZEOMzc3x7hx4zB69GhIpVLUrVsXMTExuHr1KiwsLNCnT59M75k4cSJq1qyJESNGYODAgTA1NcXTp09x5swZrF69Ot9lUUW69vb2MDY2xqlTp1CsWDEYGRnB0tIyy21VecI4duxYeHt7Y+7cufjxxx9x/fp1rF69GmvXrgWQdnfLwMAAq1atwpAhQ/D48WPMnTtXIY0hQ4Zg2bJlGD9+PAYOHIg7d+5g+/btKisjERGpBtvO/JkxYwY8PT1RsWJFJCcn459//pEPU+nRowemTp2KQYMGYdKkSQgMDJT3uEjvTTJ8+HBs2rQJ3bt3l6/28erVK+zbtw+bN2+GUCjMd9mIqHDi0qVEOm7u3LmYPn06Fi5ciPLly6Nly5bw8fGRL2X2pUqVKuHixYt48eIF6tWrh6pVq2LGjBlwcnL6qnKoIl19fX2sXLkSGzZsgJOTU6Z5JNSlWrVqOHDgAPbt24fvvvsOM2bMwJw5c9C3b18AaXeStm/fjoMHD6JChQpYtGhRpm6vJUqUwKFDh3DkyBFUrlwZ69evx4IFCzRSfiIiyhu2nXlnYGCAyZMno1KlSqhfvz6EQiH27dsHIK1HxvHjx3H//n1UqVIFU6dOxYwZMwBAPo+Fk5MTrl69ColEgubNm8PDwwO//vorrKysoKfHSw4iyjuBTCaTabsQRERERET07di9ezf69euHmJgYGBsba7s4RFQAcRgIERERERHlaOfOnXBzc4OzszMePHiAiRMnomvXrgxUEJHaMFhBREREREQ5Cg0NxYwZMxAaGoqiRYuiS5cumD9/vraLRUQFGIeBEBEREREREZFO4Ww3RCT37t079OrVC0WKFIGxsTE8PDwUlvCUyWSYMWMGihYtCmNjYzRt2hQvX77UYomJiIiIiKggYrCCiAAAUVFRqFOnDkQiEU6ePImnT59i2bJlsLa2lm+zZMkSrFy5EuvXr8fNmzdhamqKFi1aICkpSYslJyIiIiKigobDQIgIADBp0iRcvXoVly9fzvJ1mUwGJycnjB07FuPGjQMAxMTEwMHBAdu3b0e3bt0yvSc5ORnJyckKaaSkpMDW1la+LjsRERFlxjaUiAq7Qj3B5tGjR7VdBCKdsXv3blStWhV16tTBkydPYGNjg1atWqF58+YA0ibWCg0NhVAoVPjtlC5dGrt3785yNvC9e/di//79mZ7fs2cPTExM1PdhiCiT9u3bqywttp9E6sc2lEg3qLL9pLwp1D0rjh49imbNmkEkEmm7KDpLLBbjzJkzrKdcFIR6Mjc3BwD88ssv6Ny5M+7cuYMxY8Zg9erV6N27N65fv44GDRrg7du3KFq0qPx93bt3h0AgwJ49ezKl+eVdocjISLi7uyMkJARFihRR/4f6RhWE/UlTWFfKEYvFKr24YfupHO6fymE9ZY1taP5wf1IO60k5qm4/KW8Kdc8KABCJRPyBKoH1pJxvuZ6kUim8vLywePFiAED16tXx7NkzbN68GQMGDIC+ftrh4svPqKenB4FAkOXnFolEMDMzy/L5b7WeNIn1pDzWleaxzpXHulIO60kR29Cvw3pSDuuJdBkn2CQiAEDRokVRoUIFhefKly+PwMBAAICjoyMAICwsTGGbsLAw+WtERERERESqwGAFEQEA6tSpAz8/P4XnXrx4ARcXFwBAyZIl4ejoiLNnz8pfj42Nxc2bN1GrVi2NlpWIiIiIiAq2Qj8MhIjSjB49GrVr18aCBQvQtWtX3Lp1Cxs3bsTGjRsBAAKBAL/++ivmzZuHMmXKoGTJkpg+fTqcnJzQoUMH7RaeiIiIiIgKFAYriAgA4O3tjcOHD2Py5MmYM2cOSpYsid9//x09e/aUbzNhwgTEx8dj0KBBiI6ORt26dXHq1CkYGRlpseRERERERFTQMFhBRHLff/89vv/++2xfFwgEmDNnDubMmaPBUhERERERUWFTqIIVgYGBiIiIkD9+/fo17t27J1/lgDJLTU1lPSmB9aSc6OhoAMCDBw9gZWWl1bLoMu5PymNdKSc1NTVT/dja2qJEiRIaL8uXbXFBxv1TOawn5bANVQ73J+UUxnrSVrtH+Vc49kyknRyVL18eCQkJ2i4KUaHXpEkTbReBqNAzMTHBs2fPNHrixraY6OuxDSXKH220e/R1Ck2wIiIiAgkJCVi4cCHc3Ny0XRwiIiKt8ff3x+TJkxEREaHRkza2xUREpA3aavfo6xSaYEU6Nzc3VKhQQdvFICIiKrTYFhMREVFu9LRdACIiIiIiIiKijBisICIiIiIiIiKdwmAFEREREREREekUBiuIiIiIiIiISKcwWEFEREREREREOoXBCiIiIiIiIiLSKQxWEBEREREREZFOYbCCiIiIiIiIiHQKgxVEREREREREpFMYrCAiIiIiIiIincJgBRERERERERHpFAYriIiIiIiIiEinMFihA1q0aIE///xT28XIM3WW28PDA2fPns1xm+joaDRo0ADv3r1TSxlIM3x9feHh4YHY2FhtF+WbtnbtWvzwww/aLkaBpMzxSFNWrFiBBQsWaLsYpEHq/G1PnToVo0aNynW7yZMnY9OmTfLHeW3/3717Bw8PDzx//jxf5SwMjhw5gtq1a2u7GN8UZfdfyjtdujY5cOAARowYoe1ikJYwWKGEfv36YfHixZmeL+wNy969exVOoDR9Qr9x40Y0atQIzs7OGsuTvk5Wv6UqVarg/PnzMDc311KpiJSn7Yuuvn374tixYwgKCtJK/rogNDQU06dPR+PGjVG1alU0b94cixYtQnR0tLaLphZ9+/bF5s2b5Y81fYHm5+eHy5cvo2fPnvLnvmz/c+Po6Ijz58+jdOnSKimTtn+HXyurC8GWLVvi+PHjWirRt2nSpEmYN2+etotRKGgzaN+xY0c8e/YMd+7c0Ur+pF0MVhQAYrFYK/na2NjA2NhYK3knJibi8OHD6Nixo1byL2i0tQ8BgEgkgq2tLQQCgdbKoCu0+T3kRpfLVphYW1ujdu3aOHDggLaLohVBQUH48ccfERgYiMWLF+PEiROYPn06bt68iV69eiEmJkat+Wvjd2BiYgIrKyuN55tuz549aN68OUxMTOTP5bX9FwqFsLW1hb6+vjqKqDLaPM4ZGRmhSJEiWstflyj7PZibm8PCwkJt5ZBIJJBKpWpLn5QjEonQunVr7N69W9tFIS1gsEKF0u92bN++HY0aNULdunUxb948hYPux48fMWLECHh5eaFly5b4559/MqUTGxuLmTNnon79+qhZsyYGDBgAPz8/+evpXUIPHTqEli1bwtPTM8vySKVSbN68GS1btoSXlxc6d+6M06dPAwBkMhkGDhyIwYMHQyaTAQBiYmLQpEkTrF69Wp7GhQsX0K1bN3h6eqJevXr45Zdf5K9lvDPQokULAMCvv/4KDw8P+WMAOHfuHLp27QpPT0+0bNkS69atQ2pqqvz1t2/fok+fPvD09ET79u1x7dq1XOv68uXLMDAwQOXKlRWef/XqFYYPH46aNWuiRo0a6NOnj/wOpFQqxbp169CkSRNUq1YNP/zwA65cuSJ/b/qdmv/++w/9+/eHt7c3OnfujPv378u3ef/+PUaMGIHatWujevXq6NChAy5dugQg6542Z8+ehYeHh/xx+nd3+PBhNGvWDNWrV8e8efMgkUiwdetWNGzYEA0aNMDGjRsV0sltn/Dz80P//v1Ro0YN1KxZE127dsWTJ0+yrT8PDw/s378fI0eORPXq1eXde3P7rnbs2IGOHTuievXqaNq0KebNm4eEhASFtO/du4d+/frB29sbtWvXxuDBgxETE4OpU6fi9u3b2LVrFzw8PODh4YF3794pDAOJi4uDl5cXLl++nKkea9SogcTERABpd1bHjh2L2rVro06dOhg5cmSOw4HS87h06RI6deoET09P9OzZEy9fvlTY7syZM+jQoQOqVauGFi1aYMeOHfLX9uzZoxAcS/9uM140Dhw4ECtXrpQ/zq0+s/selLF582Y0aNAANWrUwIwZM5CcnJxpm0OHDqFdu3bw9PRE27ZtsW/fPoXXQ0NDMWHCBNSpUwfVq1fHjz/+iIcPHwLI/jiT274YFBSEkSNHokGDBqhevTq6deuG69evK+S7b98+tGnTBp6enmjQoAHGjBkjfy2n4xaQdpyaOHEi6tevDy8vL7Rp0waHDx/Oso4OHjyIxo0bZzrZHDlyJKZPny5/vH//frRq1QpVq1ZF27Ztc7y72bJlSwBAly5d4OHhgX79+gEAHj9+jJ9//hn16tVDrVq10LdvXzx9+lThvf7+/ujdu7f8WHf9+vVMd6uU2bcbNmyIkydPZlvGgmz+/PkQiUTYsGEDvL29UbRoUdSrVw+bNm1CeHi4/Pf3xx9/oEePHpne37lzZ6xbt07+OKffSHqbcOrUKfTt2xeenp7w8fHJslx3795Fnz594OXlhaZNm2LhwoXyY+OxY8dQvXp1vH37Vr79vHnz0LZtW4VjWm6/xfT/Hzt2DOfPn5cfR319feVp5LTvSCQSLFmyBLVr10bdunWxfPnyXOtbIpHgzJkzaNiwocLzX/YM8PDwwKFDh/DLL7/A29sbbdq0wfnz5zPVZcaeEC9fvsSQIUNQvXp1NGjQAJMnT0ZUVJT8dalUiq1bt6J169aoVq0amjVrJm8bs/sd+vr6onv37qhevTpq166Nn376Ce/fv8/ys+X0/eZ27Fy+fDm+//57eHt7o2XLlli1alWmC+zszp/69euH9+/fY8mSJfLvEFA8hwgICICHhwf8/f0V0ty5cydatWqldB1+KT2Ps2fPyo/BgwcPRmhoqMJ2OR0Tly5diuHDh8sf//nnn/Dw8FA4n2rdujUOHTokf6yq39mXvuxl1K9fPyxcuBDLly9HnTp10LBhQ6xdu1bhPbGxsZg9ezYaNGgAT09PdOzYERcvXlSon/Pnz6N9+/bw9PRESEgIUlJSsHTpUjRp0gTVq1dHjx495L87IG1Y8oQJE9CkSRN4e3ujY8eOOHHihEK+p0+fRseOHeHl5YW6deti4MCBCudPOdWRWCzG/Pnz0ahRI3h6eqJ58+YKva0yunbtGjw9PTMNrV20aBEGDBggf5zT+c6XsjvHV6a9//DhA4YNGya/7vHx8cl0/MjtvAIAGjRogAsXLiApKSnbclLBpNsh7m+Qr68v7OzssGXLFgQFBWH8+PEoV66c/ERj2rRp+PDhA7Zs2QJ9fX0sWrQIkZGRCmmMHTsWRkZGWLduHczMzHDw4EEMHDgQ//zzDywtLQEAgYGBOHPmDFasWAE9vaxjTps3b8Y///yD6dOno0SJErhz5w4mT54Ma2treHt7Y/78+ejUqRN2796NXr16Yc6cOXBwcMCQIUMAAJcuXcKvv/6Kn3/+GQsWLIBYLM50EZlu7969aNCgAebOnYu6devKy3Tnzh1MnToVkyZNQrVq1RAUFIQ5c+YAAIYOHQqpVIpff/0VRYoUwZ49e/Dp0ycsWbIk13q+e/cuypcvr/BcWFgY+vbtC29vb2zZsgWmpqa4d++e/OJw165d2LlzJ2bMmIFy5crh8OHDGDlyJI4cOQIXFxd5OitXrsS4ceNQokQJrFy5EhMnToSPjw/09fUxf/58iMVibN++HcbGxvD391e426SMoKAgXL58GevXr0dQUBDGjBmD4OBguLi4YNu2bbh//z5mzJiBmjVrolKlSgBy3ycmTZqEcuXKYdq0aRAKhXj+/Hmud7DWrl2LX3/9FRMmTIC+vn6u3xUA6OnpYfLkyXB2dkZwcDDmzZuH5cuXY9q0aQCA58+fY+DAgejYsSMmTZoEoVCIW7duQSqVYtKkSXj79i1Kly4tH3tobW2tcCJpZmaG+vXr48SJE6hXr578eR8fHzRu3BjGxsYQi8UYPHgwKleujO3bt0NfXx8bNmzAkCFD8Pfff0MkEmX7mZctW4aJEyfC1tYWK1euxMiRI3H8+HGIRCI8efIE48aNw9ChQ9GyZUvcv38f8+fPh6WlJTp06AAvLy/579XGxga3b9+GtbU1fH190bVrV4jFYjx8+FB+MqBMfWb1PSjj1KlTWLduHaZOnYqqVavi+PHj2LNnD4oVKybf5p9//sGaNWswZcoUlCtXDs+fP8esWbNgbGyM9u3bIyEhAf369YO9vT1WrVoFW1tbPH36VOHCPqvjTG77YkJCAurVq4dRo0bBwMAAx44dk9dz0aJF8eTJEyxatAgLFixAlSpVEBMTg7t378rzzO24tXr1avj7+2PdunWwsrJCYGBgloEaAGjevDkWLlyIW7duoWbNmgDSgh1Xr16Vn8CePXsWixYtwsSJE1GzZk1cvHgR06dPh4ODA6pXr54pzb1796J79+7YtGkTSpcuLd/f4uPj0a5dO0yePBlAWmBv2LBh8PHxgampKSQSCX755RcULVoUe/bsQXx8PJYuXaqQtrL79nfffYewsDC8e/euUA2Di4mJwbVr1zBq1CgYGRkpvGZra4vWrVvj1KlTmDZtGtq0aYPNmzcjKCgIxYsXB5AWzH7x4gVWrFgBIPffSLrff/8d48aNQ7ly5WBoaJipXEFBQRgyZAhGjhyJOXPmICoqCgsWLMCCBQswb948tGvXDhcvXsSkSZPw559/4tq1azh06BB27doFY2NjpX6L6fr27Qt/f3/ExcXJu79bWloqte/s2LEDR48exZw5c+Dm5oYdO3bg7NmzWe7n6V68eIFPnz6hQoUKuX4/69atw5gxYzB27Fjs2bMHkyZNwunTp+XnLRnFxsZi4MCB6NSpEyZMmIDk5GSsWLEC48aNw5YtW+T1fujQIUyYMAHVqlXDhw8f8ObNGwBZ/w5TU1Pxyy+/oHPnzliyZAnEYjEePXqUa6+9L79fZfYLU1NTzJs3D3Z2dnj58iVmzZoFU1NT9O/fH0DO50+///47OnfujB9++CHboTSurq6oWLEifHx8MHLkSPnzPj4+aN26tdJ1mJXExERs2rRJHvibP38+xo8fL794zO2Y6OXlhb///hsSiQRCoVChLaxbty7CwsIQFBQEb29vAKr7nSnr2LFj6N27N/bs2YMHDx5g2rRpqFKlCmrXrg2pVIqhQ4ciISEBCxcuRPHixeHv769wHp2YmIitW7di9uzZsLS0hI2NDRYsWIDXr19jyZIlsLe3x9mzZ+W/LRcXFyQnJ6NChQro378/TE1NcenSJUyZMgXFixeHh4cHPnz4gIkTJ2L06NFo0qQJ4uPjFdq93Opo9+7duHDhApYuXYqiRYsiNDQ0U4ApXY0aNWBubo7//vsPnTp1ApAWdDx16pQ8sJPb+c6XsjvHz629B4ApU6YgOjoaW7duhb6+Pn777bd8XfdUrFgREokEjx49ku9bVDgwWKFiFhYWmDJlCoRCIdzc3FCvXj3cvHkTP/zwAwICAnDlyhXs3bsX3333HQBg9uzZCgfru3fv4vHjx7h48SIMDAwAAOPGjcO5c+dw+vRpdOnSBUDaSe2CBQtgY2OTZTlSUlKwefNmbNy4EVWqVAEAFC9eHPfu3cPBgwfh7e0NBwcHzJgxA1OnTkVERAQuX76MgwcPyi+YNm7ciJYtWypE0MuWLZtlfunlMDc3h62trfz5devWYcCAAfLPWLx4cQwfPhwrVqzA0KFDcePGDQQEBGDDhg2wt7cHAIwaNUrhYi4r79+/l2+fbt++fTAzM8OSJUvkJ/Wurq7y13fs2IH+/fvL70qMGTMGvr6++PPPP+UX20DayWD9+vUBAMOHD0eHDh0QGBgINzc3hISEoFmzZnB3d5d/nrySyWSYO3cuTE1NUapUKVSvXh0BAQFYu3Yt9PT0ULJkSWzduhW3bt1CpUqVlNonQkJC0LdvX7i5uQGAQvAlO61bt1boKTB9+vQcvysA+Omnn+TbOzs7Y+TIkZg7d668/rZu3YqKFSsq1GfGMcoikQjGxsYK+8iX2rRpgylTpiAxMRHGxsaIi4vDpUuX8PvvvwNIu1CXSqWYPXu2/CR03rx5qF27Nnx9fXOcR2bo0KHy1+fPn4+mTZvi7NmzaNmyJXbu3IkaNWrIg3Wurq7w9/fH9u3b0aFDB5QpUwaWlpa4ffs2mjdvjtu3b6N3797ybomPHz+GWCyW/95y2/ez+x6UsWvXLnTs2FF+IjJq1CjcvHlT4aJ97dq1GDduHJo2bQoAKFasGF6/fo2DBw+iffv28PHxQVRUFPbt2yc/GShRooRCPl8eZ5TZF8uWLatwnBg5ciTOnTuH8+fPo0ePHggJCYGxsTEaNGgAU1NTODk5yQOPyhy3QkNDUa5cOVSsWBEAcrxYt7S0RN26dXHixAl5sOL06dOwtraWX6Bt374d7du3R7du3QCkfe8PHz7E9u3bs7yIs7a2BgBYWVkp7Mc1atRQ2G7mzJmoXbs2bt++jQYNGuD69esIDg7Gtm3b5O8bOXIkBg0aJH+Psvt2+rHv/fv3hSpY8fbtW8hkMpQsWTLL193c3BAbG4vIyEiULl0aZcuWhY+Pj/w37ePjg0qVKsn389x+I+l69eol3yYrmzdvRps2beTHRxcXF0yaNAn9+vXD9OnTYWhoiBkzZqBz585YtGgR/vvvPwwbNky+DyvzW0xnYmICQ0NDpKSkKOx/x48fz3Xf2bVrFwYOHCj/LNOnT8fVq1dzrPP3799DKBQqNTyhffv28gvpUaNGYffu3Xj06BHq1q2badu9e/eiXLlyCr0158yZg2bNmiEgIAB2dnbYvXs3pkyZonAMrVatGoCsf4cxMTH49OkT6tevL2+b09vEnHz5/SqzXwwePFi+vbOzM/r27YuTJ0/KgxU5nT9ZWlpCKBTC1NQ017Zw79698mBFQEAAnj59ioULFypVhxnPfzJKTU3FlClT5DdD5s2bh/bt2+PRo0fw8PDI9ZhYrVo1xMfH4/nz56hQoQLu3LmDvn37ynvS+Pr6wt7eXuW/M2W5u7vL21gXFxfs3bsXN2/eRO3atXHjxg08fvwYR48eldfPl+dxqampmDZtmvz7CgkJwZEjR3D69Gn5sbdv3764cuUKjhw5gl9++QUODg7o27evPI2ePXvi2rVr+Pfff+XBitTUVDRt2hROTk7ycqbLrY5CQkLg4uKCatWqQSAQyNPIilAoRKtWrXDixAn5OcLNmzfx6dMnefq5ne98Kbtz/Nzae39/f9y4cQP79u2TH+9mz56NNm3ayN+j7HWPsbExzMzMsu0pRQUXgxUqVqpUKQiFQvnj9Kg7kNYFWF9fX+EOhZubm8LEgn5+fkhISMjUuCcnJytMqObk5CQ/eNy5c0fh4ie950BiYqLCiTCQdvGRsUdCixYtcPbsWWzZsgXTp09XuMj18/ND586d81UP6V68eIH79+8rDGuQSqVITk5GYmIi/P394eDgoBB4+HJoR1aSk5PlB7V0z58/h6enZ5Z31uPi4hAeHi6/AEpXpUoVvHjxQuG5jA1I+kE5MjISbm5u6NmzJ+bNm4dr166hZs2aaNq0abYBnOw4OTnB1NRU/rhIkSLQ09NTiOwXKVJEHnlWZp/o3bs3Zs2ahePHj6NmzZpo0aJFroGU9IYjXW7flbGxMa5fv44tW7bgzZs3iIuLg0QiUXjdz88PzZs3z1N9fKl+/frQ19fHhQsX0KpVK5w5cwampqbyi80XL14gKCgo08Xhl7+RrGTctywtLeHq6iq/U/fmzRs0atRIYfsqVargzz//lN9B8vT0hK+vL2rWrInXr1+jW7du2LZtG/z9/XH79m1899138nHcytQnkPl7UIa/vz+6du2q8FylSpXk3VITEhIQFBSEmTNnYtasWfJtJBIJzMzMAKTtV+XKlcvyrme6jMeZ9Pfkti8mJCRg7dq1uHTpEiIiIpCamork5GT5XaBatWqhaNGiaNWqFerUqYM6deqgSZMmMDY2RmBgYK7Hra5du2LMmDF49uwZateujcaNG2f6XWfUpk0bzJ49G9OmTYOBgQF8fHzQsmVL+e/N398/093NqlWrYteuXdmmmZWIiAisXr0avr6+iIyMhEQiQVJSEkJCQgCkXWg4ODgonOhlHCIGKL9vp991ZHfYnKUPERoyZAhkMhlOnjwpDygo8xtJl/E32qFDB/nJcrVq1bB+/Xr4+fnhxYsXmbquS6VSvHv3Dm5ubrC0tMScOXMwePBgVKlSRaE7tjK/xdzktu98+vQJHz58UNjn9PX1UbFiRflQ0Kykt7XKzCmUse00MTGBmZlZpjuo6fz8/HDr1q0sA4Lp5U1JScn0eXJiaWmJ9u3bY8iQIahVq5a8LbSzs8vxfRm/X2X3i1OnTmH37t0ICgpCQkJCptdVcf7UqlUrLFu2DA8ePEDlypXh4+OD8uXLywMwudVhdsEKfX19+Q0z4PN5qL+/v3zoSU7HRAsLC5QtWxa+vr7Q19eHSCRCly5dsHbtWiQkJOD27dvw8vICkP/f2dcoU6aMwmNbW1v5fvj8+XM4ODhkWzdA2k2VjPvyy5cvIZFI8P333ytsJxaL5XPJSCQSbNq0Cf/++y/Cw8MhFoshFovlPcDKli2LGjVqoFOnTqhduzZq166NZs2ayXsj5lZH7du3x6BBg9C2bVvUqVMHDRo0yPHGTJs2bdCzZ0+Eh4fD3t4ePj4+qF+/vnx+D2XOd5SRW3sfEBAAfX19heuOEiVKKMwzoux1D5A2rwvbvcKHwQolmJmZ4dOnT5me//TpU6aD7ZfduAUCQZ4m50lISICtrS22bduW6bWMQY2ME1tVrFgRf/31l/xxkSJF8Pr1awDAmjVr4ODgoJBOxov8xMREPHv2DEKhUGE8LYCv6oaXLiEhAcOGDcsyWv416VtZWWUaj/dlt+D8yvgdpp+gpZ/Mde7cGXXq1MGlS5dw7do1bN68GePGjUPPnj2hp6eX6aQv4/wEWaWf3XMCgUCeljL7xLBhw9C6dWtcunQJV65cwdq1a/Hbb7+hSZMm2X7OLydHy+27evfuHUaMGIGuXbti5MiRsLS0xL179zBjxgyIxWIYGxurZJ8RiURo1qwZTpw4Ib870LJlS3kdJSQkoEKFCli0aFGm96bfbVMXb29v/PXXX/JhSGZmZvD09MTt27cVTtDSy6nMvq+OSWrTx8HOnDlTfvcsXfpFujLfVVb7SG774tKlS3H9+nWMGzcOxYsXh5GREcaMGSMfz21qaooDBw7A19cX169fx5o1a7Bu3Trs3btXXu6cjlv16tXDv//+i8uXL+P69esYOHAgunXrhnHjxmX5GRo2bIhZs2bh0qVL+O6773D37l1MmDAh18+eV9OmTUN0dDQmTpwIJycnGBgYoFevXnmasE/ZfTt9EsnsetYVVCVKlIBAIIC/v3+WxzZ/f39YWFjI66VVq1ZYsWIFnj59Kj+BTp/rQJnfSLqMv4O1a9fKj+vpv6GEhAR06dJFYbWMdOldoQHg9u3bEAqF+PDhAxITE+VBa1W1teo4LlpZWSExMRFisTjHIXZA3s5/EhIS0LBhQ4wePTrTa7a2tggODs5XeefNm4eePXvi6tWrOHXqFFatWoWNGzfmeBMk4/erzH5x//59TJo0CcOGDUOdOnVgZmaGkydPYufOnfJtVfGd2traonr16jhx4gQqV66MEydOKASpc6tDdfLy8oKvry9EIhG8vLxgaWkJNzc33L17F3fu3EHv3r3lZQTy/jv7Gl/upxn3Q2W+FyMjI4XgXEJCAoRCIfbv35/pIj59GPC2bduwe/duTJgwAe7u7jA2NsbixYvlx3+hUIhNmzbh/v37uHbtGvbs2YNVq1Zh9+7d8nPXnOqoQoUKOHXqFK5cuYIbN25g3LhxqFmzZrbzznz33XcoXrw4Tp48iR9//BFnz55Vy6opubX3ylD2ugdIa/vUfZ5HuofBCiW4urpmOenjs2fPlOpun65kyZJITU3F06dP5VHtN2/eKARCypcvj48fP0IoFCrdvdfIyChTl9FSpUrBwMAAoaGhOY7tWrp0KQQCAdauXYvhw4ejfv368jsZ7u7uuHnzptJd1PX19TOdmJQvXx4BAQHZdml1c3NDWFgYPnz4IL/7kT6pWE7Kly+faXJSd3d3HD16NMuTKjMzM9jb2+P+/fsK9XH//n2FOwzKcHR0RNeuXdG1a1f5mNqePXvC2toa8fHxSEhIkDdgX04QlB/K7hOurq5wdXVF7969MWHCBBw5ciTHYEVW+eT0XaWPoR4/fry8Af33338VtknfZzJ2fc1IJBJBIpHkWpY2bdpg0KBBePXqFW7duqUwZrd8+fI4deoUbGxsMgULc/PgwQP5xUNMTAzevn0r71JesmRJ3Lt3T2H7+/fvw9XVVX6C4uXlhcWLF+P06dPywIS3tzdu3LiBe/fuoU+fPgrlzKk+v4abmxsePnyIdu3ayZ/L+LuxtbWFvb09goODM90NSufu7o6///4bMTExSt/RVWZfvHfvHtq3by/f9xISEjJ129TX10etWrVQq1YtDBkyBHXq1MGtW7dQq1YtpY5bNjY2aN++Pdq3b48DBw5g+fLl2QYrDA0N0aRJE/j4+CAwMBCurq6ZerellznjZyhVqlSW6aUfW77cj+/du4dp06bJh5CFhoYqTHTn6uqKsLAwREREyC8kHj9+rJCGsvv2q1evoK+vn20ZCyorKyvUqlUL+/btw08//aQQoI6IiMCJEyfQtm1b+YWGo6MjvLy84OPjg+TkZNSsWVM+nEGZ30hWsup+Xb58ebx+/TrH3/r9+/exbds2rFq1CitWrMCCBQswf/58AHn/LYpEoizb2tz2HTs7Ozx69Eh+7Eo/H/ly/qeMypUrBwB4/fq1/P+qUKFCBZw5cwZOTk5ZBvBdXFxgZGSEmzdvKszFky673yGQVhfly5fHwIED0bNnT/nFvjKU2S/S25GMPcDSe1Cly+38KavvMCtt2rTB8uXL0apVKwQHBytMrplbHWYnNTUVT548kfeyST8PTe+xocwx0cvLC0eOHIFQKJTfEff29sbJkycREBAgP37n93emLu7u7ggLC8txmMyXypUrB4lEgsjIyGwntL9//z4aNWqEtm3bAkjrVfX27VuFYUgCgQBVq1ZF1apVMWTIEDRv3hxnz55Fnz59lKojMzMztGzZEi1btkSzZs0wZMiQHI8Zbdq0gY+PDxwcHKCnpydvmwDlzne+lNU5fm7tvaurK1JTU/Hs2TN5z5nAwECFm43KnuMGBQUhOTk5x+MVFUxcDUQJXbt2xdu3b7Fw4UL4+fnhzZs32LFjB06ePKlwcZKbkiVLok6dOpgzZw4ePnyIJ0+eYNasWQonXLVq1ULlypXxyy+/4Nq1a3j37h3u37+PlStX5ri6w5dMTU3Rp08fLFmyBEePHkVQUBCePn2K3bt34+jRowDSJoA6fPgwFi1ahNq1a6Nv376YOnWq/K7d0KFDcfLkSaxZswb+/v548eJFjpM2OTs74+bNm4iIiJCnMWTIEBw/fhzr1q3Dq1ev4O/vj5MnT8pnbK9ZsyZcXFwwdepU+Pn54c6dOwqrKWSndu3aeP36tcIydd27d0d8fDwmTJiAJ0+e4O3btzh+/Li8m3/fvn2xdetWnDp1Cm/evMGKFSvw/Plz9OrVS+l6Xbx4Ma5evYrg4GA8ffoUvr6+8saoUqVKMDIywsqVKxEUFAQfHx95XX+N3PaJpKQkzJ8/H76+vnj//j3u3buHx48fZzuuOzu5fVclSpRAamoq9uzZg6CgIBw/fjzT8okDBw7E48ePMW/ePPj5+cHf3x/79++XX7Q5OTnh0aNHePfuHaKiorI9WfPy8oKtrS0mTZoEZ2dnhbsNbdq0gbW1NUaNGoU7d+4gODgYvr6+WLhwYbYTTqXbsGEDbty4gZcvX2LatGmwsrKSN7J9+vTBzZs3sX79egQEBODo0aPYu3evwm/c3d0dFhYWOHHihPxkzNvbG+fOnVOYr0KZ+vwavXr1wpEjR3D48GEEBARgzZo18t5U6YYNG4YtW7Zg9+7dCAgIwIsXL3D48GH5jN+tW7eGra0tRo0ahXv37iEoKAhnzpxRWP3mS8ocn1xcXHD27Fk8f/4cfn5+mDhxosL3fPHiRezevRvPnz/H+/fv5WPtXV1dlTpurV69GufOnUNgYCBevXqFS5cu5TouvU2bNvLjXcaxskDaceHo0aPYv38/3r59K590MOP444xsbGxgZGSEq1evIiIiQh5sdnFxwfHjx+Hv74+HDx9i4sSJmY7txYoVw7Rp0+Dn54d79+5h1apVAD734FJ237579y48PT1V1pvsWzJlyhT5ZJK3b99GaGgorly5gp9//hn29vYKKwMAaXV66tQpnD59OtN3n9tvRFn9+/fHgwcPMH/+fDx//hxv377FuXPn5MGI+Ph4TJ48GT169EC9evWwaNEieZmAvP8WnZ2d8eLFC7x58wZRUVEQi8VK7Ts9e/bEli1bcPbsWfj7+2PevHlZ9hrNyMbGBuXLl1eYDFAVunXrhtjYWEyYMAGPHz9GUFAQrl69imnTpkEikcDQ0BD9+/fH8uXLcezYMQQFBeHBgwf4+++/5eX68ncYHByM33//Hffv38f79+9x7do1+XxTeZHbflGiRAmEhobi5MmTCAoKwu7duxVW9AFyP39ycnLC7du3ERYWluPqHU2bNkVCQgLmzZsHb29vhSGzudVhdvT19bFw4UL5eei0adNQqVIlefBCmWOip6cn4uPjcenSJXnwKz0waGdnpxAIUNXvTBW8vb3h6emJ0aNH49q1awgODsbly5cVVjL5kqurK9q0aYOpU6fiv//+Q3BwMB49eoTNmzfLV4MrUaIErl+/jvv378Pf3x9z5szBx48f5Wk8fPgQmzZtwpMnTxASEoL//vsPUVFR8n0ztzrasWMHTpw4AX9/fwQEBOD06dOwtbXN1PMgozZt2uDZs2fYtGkTmjVrptCrWpnznS9ldY6fW3vv5uaGmjVrYvbs2Xj06BGePXuG2bNnK/ReUfa6586dOyhWrFi+5oqjbxt7ViihePHi2L59O1auXIlBgwZBLBajZMmSWLp0aZYTR+Vk3rx5mDlzJvr164ciRYpg5MiRCkuFpvdyWLlyJaZPn47IyEjY2trC09Mzz+tvjxw5EjY2Nti8eTOCg4NhYWEhv9sQGRmJGTNmYNiwYfK7jMOGDcO1a9cwd+5cLF26FN7e3li2bBk2bNiALVu2yLu8Z2fcuHH47bffcOjQIdjb2+Pff/9FnTp1sHr1aqxfv14+E3DJkiXlk/7o6enh999/x8yZM9G9e3c4Oztj0qRJ8kl/suPu7o7y5cvj33//lXeLtLKywubNm7F8+XL069cPenp6KFu2rPwCsmfPnoiLi5PPRFyqVCmsWrUqT71jJBIJ5s+fj7CwMJiZmaFOnTryLuWWlpbyJbMOHTqEGjVqYOjQoZg9e7bS6Wclt31CKBQiJiYGU6ZMwcePH2FtbY0mTZpk27shO7l9V2XLlsX48eOxdetW/PHHH/D09MSvv/6KKVOmyNNwdXXFhg0bsHLlSvTo0QOGhoaoVKmS/G5QekCsQ4cOSEpKwqlTp7L9zK1atcK2bdsy7QvGxsbYvn07VqxYgdGjRyM+Ph729vaoUaNGrj0tfv31VyxevBhv375FuXLlsGrVKvkdugoVKmDp0qVYs2YNNmzYADs7O/kEqxnLVa1aNVy+fFk+0Zu7uztMTU3h6uqqsDJMbvWZkxYtWqB9+/YYNmxYlq+3bNkSQUFBWLFiBZKTk9G0aVN07dpVoQdY586dYWRkhO3bt2PZsmUwNjZGmTJl5GP205d/XLp0KYYNGwaJRAI3NzdMnTo123Ipc3waP348ZsyYgZ9++glWVlbo378/4uLi5Gmkz1K+du1apKSkoESJEli8eLF8Itacjlvp5f7jjz/w/v17GBoaolq1armuIFSjRg1YWloiICBAPgFguiZNmmDSpEnYvn07Fi1ahGLFimHu3LnZ9uzQ19fHpEmTsH79eqxZswbVqlXDtm3bMHv2bMyePRtdu3aFo6MjRo0ahWXLlsnfJxQK8ccff2DWrFno3r07ihUrhrFjx2LEiBHyrsnK7tsnT57Mdt8o6FxcXLBv3z6sWbMG48aNQ0xMDGxtbdG4cWMMHTo0013GZs2aYcGCBRAKhZl6muX2G1FW2bJlsW3bNqxcuRJ9+vSBTCZD8eLF5UNOFi1aBGNjY/lEiO7u7hg1ahTmzJmDypUrw8HBIU+/xc6dO8PX1xfdunVDQkICtm7dCm9v71z3nT59+iAiIgLTpk2DQCBAx44d0aRJk1wDFp07d8axY8eyXAo2v+zt7bFz506sWLFCfl5VtGhR1KlTR95zb/DgwRAKhVizZg3Cw8NhZ2cnb++z+h3+9ttvePPmDY4dO4bo6GjY2dmhW7du8gn6lJXbftGoUSP89NNPWLBgAVJSUlC/fn0MHjxYYUnc3M6fhg8fjjlz5qB169ZISUnBo0ePsiyLqakpGjRogH///Ve+mlRe6jArxsbG6N+/PyZOnIjw8HBUq1ZNIW1ljomWlpYoU6YMPn78KL/g9vLyglQqVRgOqUx95sTDwwNz587NctLH/FqxYgWWLl2KiRMnIjExEcWLF89yKE1Gc+fOxcaNG7F06VKEhYXB2toalSpVkvdWGDx4MIKDgzF48GAYGRnhhx9+QOPGjeW/LTMzM9y5cwe7du1CXFwcnJycMG7cOPmqZ7nVkampKbZt24a3b99CKBSiYsWK8knZs1OiRAl4eHjg0aNHmDhxosJrypzvfCmrc/zc2nsAWLBgAWbMmIG+ffvC1tYWv/zyC169eiUPnih73XPy5MmvngeGvk0CWU4zKxUg6Xei9u/fr9QSXKT7Ll26hGXLluHw4cM5HrCJfH190b9/f1y9elVhYiddlJiYiHr16mHdunVcnquAu3fvHnr37o0TJ04ofbfo8uXLWLp0KQ4dOpSnrt9fevr0KX788UfcuXNHHnjLi6NHj6J169a5zmPwJbbF356kpCS0bdsWv/32W46T2ebkzZs3aNeuHXx8fNQyNI6Uc+TIESxZsiTLoc26Jjg4GG3bts20vDx920JDQ9GsWTNs2rRJPnF6bl69eoUBAwbgn3/+ybE3SW7y2+4pM2cPqQ97VtA3q379+nj79i3Cw8Ph6Oio7eIQqYSvry+qV6/OQEUBdPbsWRgbG8PFxQWBgYFYvHgxqlatmqdurYmJiZg7d+5XBSqI8sLIyAgLFixAdHR0vt4fExODM2fOwMzMjG01Ke3y5cvo3LkzAxXfuJs3byIhIQFlypRBREQEli9fDmdn5xx7an/pw4cPWLBgwVcFKujbxbMd+qbltbsuka6rX7++wkRYVHDEx8djxYoVCAkJgZWVFWrWrInx48fnKY2vXRqYKD++Jng6Y8YMPH36VL58MJEyunfvru0ikAqkpqZi5cqVCA4OhomJCapUqYJFixblqadCrVq11FhC0nUMVhBRgeft7Z3tmGAiTWnXrp3CCi5EhcEff/yh7SLQ/3Xo0EGl8z8Q5aZOnTqoU6eOtotB3zAO9CciIiIiIiIincJgBRERERERERHpFAYriIiIiIiIiEinMFhBRERERERERDqFwQoiIiIiIiIi0ikMVhARERERERGRTmGwgoiIiIiIiIh0CoMVRERERERERKRTGKwgIiIiIiIiIp3CYAURERERERER6RQGK4iIiIiIiIhIp+hruwCa5u/vr+0iEBERaZW220Jt509ERIUL251vU6EJVtja2sLExASTJ0/WdlGIiIi0zsTEBLa2thrNk20xERFpizbaPfo6hSZYUaJECTx79gwRERHy5y5cuIC6detCX7/QVEOepaam4sqVK6ynXLCelBMdHY0mTZrg7NmzsLKy0nZxdBb3J+WxrpSTmpqaqX5sbW1RokQJjZYjq7a4IOP+qRzWk3LYhiqH+5NyCmM9aaPdo69TOPbM/ytRooTCDhoUFISqVatCJBJpsVS6TSwWIyQkhPWUC9aTcj5+/AgAqFy5MooUKaLl0ugu7k/KY10pRywW60z9fNkWF2TcP5XDelIO21DlcH9SDuuJvgWcYJOIiIiIiIiIdAqDFURERERERESkUxisICIiIiIiIiKdwmAFEREREREREekUBiuIiIiIiIiISKcwWEFEREREREREOoXBCiIiIiIiIiLSKQxWEBEREREREZFOYbCCiIiIiIiIiHQKgxVEREREREREpFMYrCAiIiIiIiIincJgBRFladGiRRAIBPj111/lzyUlJWH48OEoUqQIzMzM0LlzZ4SFhWmvkEREREREVCAxWEFEmfj6+mLDhg2oVKmSwvOjR4/G8ePHcfDgQVy8eBHv379Hp06dtFRKIiIiIiIqqPS1XQBtE4vF2i6CTkuvH9ZTzgpSPcXFxaFHjx5Yt24dFi5cCKlUCrFYjJiYGGzZsgU7d+5EvXr1AAAbN25EpUqVcOXKFdSoUSNTWsnJyUhOTpY/joyMBJBWTwWhrtSlIO1P6sa6Uo5YLIZIJFJ5mpQz7p/KYT1ljW1o/nB/Ug7rSTnqaD9JeQKZTCbTdiG05ejRo9ouApHO+eOPP2BmZoYBAwZg6tSpKFmyJAYOHIiHDx9ixowZ2LVrF8zMzOTb//zzz2jbti3atWuXKa29e/di//79mZ7fs2cPTExM1Po5iEhR+/btVZYW208i9WMbSqQbVNl+Ut4U+p4VzZo1Y7QsB2KxGGfOnGE95aKg1NP+/fsRHh6Oo0ePwsjICMuXL0fJkiXRunVrxMTEwMDAAF27dlV4j4uLC6ytrdG6detM6TVp0gRr1qyRP46MjIS7uzsaNWqEIkWKqP3zfKsKyv6kCawr5ajjzhnrPHfcP5XDesoa29D84f6kHNaTctjzRLsKfbBCJBLxB6oE1pNyvuV6CgoKwtixY3HmzBmYm5sDAAQCAfT09CASiaCvn3a4+PLzCQQCCIXCLD+3SCRS6IWR8flvtZ40ifWkPNaV5rHOlce6Ug7rSRHb0K/DelIO64l0GSfYJCIAwJ07dxAeHo5q1apBX18f+vr6uHjxIlauXAl9fX04ODggJSUF0dHRCu8LCwuDo6OjdgpNREREREQFUqHvWUFEaZo0aYJHjx4pPNevXz+UK1cOEydORPHixSESiXD27Fl07twZAODn54fAwEDUqlVLG0UmIiIiIqICisEKIgIAmJub47vvvlN4ztTUFEWKFJE/P2DAAIwZMwY2NjawsLDAyJEjUatWLdSsWVMbRSYiIiIiogKKwQoiUtqKFSugp6eHzp07Izk5GS1atMDatWu1XSwiIiIiIipgGKwgomxduHBB4bGRkRHWrFmjMDs5ERERERGRqnGCTSIiIiIiIiLSKQxWEBEREREREZFOYbCCiIiIiIiIiHQKgxVEREREREREpFMYrCAiIiIiIiIincJgBRERERERERHpFAYriIiIiIiIiEinMFhBRERERERERDqFwQoiIiIiIiIi0ikMVhARERERERGRTmGwgoiIiIiIiIh0CoMVRERERERERKRTGKwgIiIiIiIiIp3CYAURERERERER6RQGK4iIiIiIiIhIpzBYQUREREREREQ6hcEKIiIiIiIiItIpDFYQERERERERkU5hsIKIiIiIiIiIdAqDFURERERERESkUxisICIiIiIiIiKdwmAFEREREREREekUBiuIiIiIiIiISKcwWEFEREREREREOoXBCiIiIiIiIiLSKQxWEBEREREREZFOYbCCiDTGxMQEq1evhomJibaLQkRE9E0xNTXFypUr2YYSUaGhr+0CEFHhYWxsjOHDh2u7GERERN8cIyMjjBw5UtvFICLSGAYrdERCajKSJCnQE+jBTN8I+npCbReJSKVSJVJ8SkqGRCqFiaEBTAxE2i4SkcrFxyQgJSkFQpE+LGzMtF2cQiM2MQkpqRKIhEJYmhhpuzhEKpciFSNRkgQAMBEaQaTHNpQKFplMCshiAJkEEBhCoGeu7SKRDmCwQktixQn4N+Qe7kf543nsO4QmRclfM9DTh5uZI8pZOKOeXUXUtC2rxZIS5d9lvzc4++Q1ngaH40VoBMQSifw1J2sLVHS2h5dbMbStWp4XGPRNCnkTjv/+vIin11/g1V1/RH+Ilb9mYm6M0lVLwt27FJr0qIfSVUtqsaQFS9DHGBy78xQP3obg2btwRMUnyl8zMzJAeSd7fFfcAd9XK4+yTnZaLClR/qRIUnDt4108iH4K//hAhCaGQwoZAEAPenA2cYSbaQlUsaqAmkWqQl+Pp/T07ZGlPIAsyQcQPwZSnwGy+M+v6dkCou8gEFUFjDtCIHTUYklJW3hk07CwpGhseX0G/4U+QLJUnOU2KdJUPI8NxvPYYBwJvgln4yL4sURddCheE0IBpxkh3SaRSrHv+gPsunoPgR9jst3ufVQs3kfF4szjV1hx8gpaVymLYU1roagVI+mk+57feoU/5xzE7VP3IZVKs9wm4VMiHl56ioeXnuKvZcdRvkYZdJ/cCbXaeWm4tAXHg7chWHfmBq6+CIBMlvU2cUkp8PUPhq9/MLZdvIMqLkUxqEl11C/vptnCEuVDQmoiDgWfxLnwa4hLjc9yGymkCEp4j6CE97j44Qa2B5ijmUM9dHBuAUOhgYZLTJR3ssQTkMVvAlKfZL+RNAJIvgBZ8gUgbiVkho0hMBsJgaicxspJ2sdghQYdC76F1S99EJ+alKf3vUv8iOV+R/Fv6D1MrdgFLqb2aioh0dd5Hf4R0w6exsPA0Dy9L0mcir99n+D0o5eY8H0DdPb+Tk0lJPo6Kcli7Jy5HweXHYdUknWQIjvPbr7EjA6L0ahbHYxYNQAWRRiYU1ayOBWr/r2GnZfuQppdlCIb99+GYNjWo2hbrTwmtW/IXlyks+5FPcGG17vxMSUq940ziBF/wl/BJ3AlwhdDS/2ECpZl1FRCoq8jk3yALHYmkPxfHt8pAZLPpAUuzIYCpoMhEHAoVGHA2/QakCqVYOajPVj87FCeAxUZPYkJRN8bf+ByeA5RSCItOfvkFbr8sTvPgYqM4pJSMOOvM5iw94TCkBEiXRD9IRa/1pmG/UuO5jlQkdH5fVcxqPI4BDwJUmHpCq6Pn+LRY/U+bL94J8+BioyO332Gzit2wT88UoWlI1KNfYHHsODZ6jwHKjIKTfqAWU9W4J/3eb0QJFI/mfgxZB/b5iNQkZEYsriVkEX+BJk0NvfN6ZvHYIWaSWRSzHy0B/+FPlBJeinSVEx9uIsBC9IpZ5+8wphdPkhOVU2Awee+HybsPQlJNt3riTQtNjIO4xvPwsu7/ipJ7+P7SIxrNAuBz4JVkl5BFRWfiH7r/4Lf+w8qSS80+hP6rTuIgA/5vyAkUrXdb4/gUPBJlaQlgww7Ag7h2LszKkmPSBVk4qeQRfYBpCoKFovvQhbZDzJpnGrSI53FYIWabXl9BhfCH6s0zbQAyF4Exqvm5I3oa/iHR2L8nhNIVXFg4fSjl1j73w2VpkmUXwu6r1B5T4iYiFhMa7sIifH573FX0I3900flPSE+xiVgxLajSBKnqjRdovy48sEXR979q/J0/3z7N+5F8cYWaZ9MGgtZ1GBA9km1Cac+gixmkmrTJJ3DYIUaPY8Nxq6AC2pJO1kqxvwnByGV8c4zaY9EKsXUg/+qrEfFlzaf98XTd2FqSZtIWT6b/sOdMw/VknaIfxi2TN6tlrS/dXuv3cet1+oZKhPwIQorT11VS9pEyopOicGWN/vVlv7617uQkJqY+4ZEaiSLnQ9I1XQul3waskQf9aRNOoHBCjVa9OQvSNQYTHgc8xZHg2+qLX2i3Oy/8fCr5qjITapUihl/cewtaU9MRCw2jtup1jyOrfkXfr6v1JrHt+bjp3gs97mi1jx2Xb6Hp8EMhpL2bA/4K9sVP1QhMiUaewOPqi19otzIkq8DSYfVm0fsHA4HKcAYrFCTO5Gv8DIuRO35HAhU78kcUU7+vHJP7Xk8ex8OX3+O6yftOLnlHBI+qffOpEwmw+GVJ9Sax7fm4M1HSEzJenlvVZHKZNh99b5a8yDKTmRyNK5H3FV7PufDr7N3BWmNLGG7BjKJApIYlCuoGKxQk7+DNDPWPjAhAr4fX2okL6KMrr4IQODHaI3kte+6aiaoJcoLqVQKnw2amaTu0l83EP2BM5sDacPL/rrxSCN5nbrvh5gEzhlCmncm7DKkUP9Q3mRpCi6EX1d7PkRfkkneAckXNZNXwl6N5EOax2CFGqRKJbgW8Uxj+V3+wAmUSPPOPXmtsbwuPvPnyiCkcf4P3iI0IFwjeYmTxfA9qf6eSt+Cp8HhCI3RTJfe5FQJrvoFaCQvoox8IzUXhPeNVM+cO0Q5SjoPaCAgBwBIfQFZaqBm8iKNYrBCDQLiw5Ei1dws489j32ksL6J0T95p5iIOABLFqSpfEYAoN6paplRX89NVmp5U96kGj2VEAJAiFSM4Uf1DhdP5x/MijjRPlqra1RBzJdZwfqQRDFaowYtPmg0evPoUotaJPIm+JJFK8SJEs0vn8oKCNI3BCu14GqzZ37qm8yMKjH+n0fO2BEkiQpO43D1pmPipRrOTpWo2P9IMBivUICpFszPSJkvFSExN0WieVLjFJaWobbnS7ETGJ2g0P6LocM3OIaHp/HSVpn/rkXE8tpBmxYg/aTzPWC3kSYWc9GPBzo80Ql/bBSiIpDKZ5vPU1JgwImhpH5fK/v8vEKq+1VJ1guT/caDQUEAo1G5ZdJ2q60pfH7C3T/u/VKLZ46qm89NV6b91jeWnheMZFW7aOGeT/r8nR1ISEFnAR1WyDVWOOurJxASwspLnoJpElcVe5gUSe1aogbHQQKP5CSCAkYbzpMLN2EAEgUCzeZoYiAAAvK4gdcq4fxmbGWk0b03np6vSf+sFNT8iIz1DzecpTMuTbSipk8L+JTDVbOZ6JprNjzSCwQo1cDNz1Gh+xUyKwECPnWRIc4xE+ihuY6nRPEs72gL4fCeASB0kks8nW67fFddo3prOT1el/9Y1l18RjeZHVNzESaP5CQV6cDJOOzdlG0rqpLB/6ZfRaN4CDedHmsFghRq4mztDAM3ddi5nUUxjeRGlq+DsoLG8BAKggnNa33yxWGPZUiGVvo+Vqeam0XzdvUppND9dVaGYvYbz09yxjAgArAwsYGNgpbH8ihkXhYFeWg8itqGkTmLx54C/QPSdZjPX13B+pBEMVqiBmcgIpc2Laiy/KtaaPaEmAgBvN80FySo4OcDUMG2oUwrnkiU1Sz+ZL1u9NAyNNTfErlL9ChrLS5dVKlEUBvqaG2jupcFjGVG6ChaauwtcwcJd/n+2oaROMhmQmvr/BwbemstYYA6IymkuP9IYBivUpL1zdY3kYyI0QHPHKhrJiyijNlXLaWysd5caHgDSGsHkZI1kSYVY+j5mamGChj/W1kie7l6lULpqSY3kpessTYzQvJJmLuQquxSFe1HNDjshAoBmDnU1lldTx7S8UlM5DITUL70NFRjUAIQauqFq3BECAefvK4gYrFCTFkWrwVRf/ZOltShaDSb6mp+oicjcyBBtqqo/ip0xn6SktNVAiNQpKenznaF2w1pqJM/2GsrnW9GtdmWN5NNdQ/kQfamCpTtKaGDuigoWZeT5xMerPTsixMdnGApi0l0DOQogMOmhgXxIGxisUBMTfUMMLNVMrXmY6xujr1sTteZBlJNhTWvCwli9wbJRLWrLe3DwRIs0JSEh7V93r1Jo3EO9d0DdPd3QpFc9tebxrani4oQWldxz3/AreBR3RKsqZdWaB1FO+rj+oNb09aCHn1w7AUi7eEw/rhGpk0SSoResSTdAqOb5mIy7QaDPIfEFFYMVatS1RF1UtlJft95fy7aDraGF2tInyo29hRkmtW2otvS93YqhR+0qANIaPo61JU2Jj//cXXr4ygGwcbRSSz4iA32M2zocQg3O0fCtmNqxEWxMjdWStoG+EPN/bA6hHk+DSHsqWZVHUzUOB2nn3AylzVwBAHFxXLaUNOfTp7T9TSAwhMByIdR2ySksBoH5BPWkTTqBrbSaTf+uK2wNzVWebuuinmjpVE3l6RLlVXvPCmhfTfUTA9pbmGJB1xYA0oZ+REerPAuibMlkn/c5CxszTPpzFEQGql8iesiKvijpUULl6RYENmYmWNi9JfSFqj9VmdKhEdwcuGQpaV9v185wNVX9JK/lLUqja/E2ANImDf70SeVZEGVLLE4LkAGAwKAKBGZjVJ+JwBgCy2UQ6JmqPm3SGQxWqFlRYxv8Xu1nlQYsmjlWwaSK6u06SJQXc35ohtaVVded2t7CFJt/7gwn67SeQ7GxnBSMNC85+XO36apNPDD9wFiIDFU3qezPS35Cu6EtVJZeQVSnrCuW9mwNkVA1PU8EAmBiuwb44f+T9hJpk0wmg7HQCNMqjIKrieoCFmXN3TCp3DCI9EQKgVciTfr06fPqWgKzQYDpcNUlLjCBwGodBAZVVZcm6SQGKzSgpJkDNngPR9WvXGJUXyDEz6WaY8Z3P0Io4FdHukNfqIfF3VphRLNaEH3lXdDqbsWwe1g3lLJPu+sZF8dxtqQ90dGfx97WaueF387OhFMpx69K06KIOabuHY2u49p9fQELgaYeZbB5UGcUs7H8qnSsTY2x/Kfv8VM99kok3SAQCAAAliJzzPpuNOrafv1Sj00d6mJ6hV9gom8MmUyGqKjPF4xEmhYZ+flmk575LxBYLkpbZvRr6JeGwGYXBIaaWa2LtItXvBriaGyN1V6DMaZse5jr530MbgWL4thSYyT6ujWBHgMVpIP09AQY2rQm9o/oAY9iDnl+v4WxIaa1b4Rtg7vIe1TExaX1qiDSpsjIzwGLirXLYsODpej0a5s8DwsRCASo/0NNbH68XGNLohYUnm7O+HvsT+hRp0qeh4UIBECryu44Oq43mnloZklUorwy1TfBL+79Mb7sYBQxsM7z+x2N7DC9wigMLtUThkKD//eoECApSQ2FJVKSRAJERHxeYUtg3AkCWx/AsHE+UjMETAdDUOQIBKLvVFpO0l2qH4BLOepcojbaOHvhdMh9HH13Ey9i30GKrGc8MhEaoK5dRXQqXgseVi4aLilR/pR1ssO+kT1wL+A99l5/gPNPXyMhJevbOnoCASo62+OHGh5oU6UcjP+/6odUmhakYI8K0gUyGfDxI2BhAZiaAkYmhhi6vC+6TeyAk1vO4d9t5/H+dWi277d2sELjHnXRdkhzOJcpqsGSFywmBiJM6dAIg5pUx183H+Ho7acI+hiT7fa25qb4vlo5/FirEooXsdJcQYm+QvUiVeBp4wHfyIc4HXoJz2JfIlWW9ThIkUAfHlbl0MKxPqpYVZTfzEpNTesVxkmpSRekByysrAAjI0AgdITAej1kqa8gS9gLJP4DyKKyT0DoBoHJD4BxZwj08h7Io28bgxVaYCQ0QLti1dGuWHUkpCbj5af38I8LRaJEDKFAAGsDM5S1cEZxE1v2oiCNWbhwIf7++288f/4cxsbGqF27NhYvXoyyZT/PRZGUlISxY8di3759SE5ORosWLbB27Vo4OGTuSVHV1QlVXZ0glcrwJiISz96FIzIuERKZFCYGBijjUATlnOxgYmig8L7k5LSTLM5RQbomNhZISko74dLXTwtC9JjSCT2mdEJMRCxe3PbHu1chSEkSQ2SgD7vitnD3coN9cVttF71AsTU3xZCmNTGkaU1ExiXg6btwvP0QhZRUCURCIYpam6NiMQc4Wql+cmsiTRAKhKhZpCpqFqkKsVSMwIT3CIgPRoIkEQBgpm8CV5PiKG7iBH09xflc4uPTjlVc+YN0iVSa1kvR2BiwtAT09ACBfmkILKYDFtMhkwQD4ieAJARAKgAjQL8kIKoIgZ6VlktP2sRghZaZ6BuisnVJVLZW3xKnRMq4ePEihg8fDm9vb6SmpmLKlClo3rw5nj59ClPTtJmWR48eDR8fHxw8eBCWlpYYMWIEOnXqhKtXr2abrp6eAKXsi8jnoMiKTJZ2ERgfzztBpNtSUoDw8LS7Q6amgKFh2vOWthbwblkF3qii1fIVNjZmJqhb1hV1y7pquyhEaiHSE6GUmQtKmWXfw1YqTeuJmJDwubs9kS5KTEw73zMxSWtD9f9/JSoQFgOEql8Vh759hT5YIdbirEMCgUDhLyOZTKbwpy3p9aPNevoWFIR6On78uMLjTZs2wdnZGTdv3kS9evUQExODLVu2YOfOnahXrx4AYOPGjahUqRKuXLmCGjVqZEozNTUVMpkM+vr6EP5/Nv+4uDiYmJhBKhUgJUWGlBQZkpJkkErV/xm/FRKJWOFfyp626io+Pu1PXx8wMtKDSCSAgYEAQmHaHAnph3RdOpaLRKpbySQ9TW3S09PLsv0EdKveM/5LWWM9ZU0ikSi0oTKZDLGxsTAzs4BEotiGsifFZ2xDlaPNeoqNTfszMBDA0DCt/RSJBNDTS+t1kS79GC7V4kmiOtpPUp5Aps1WXMuOHj2q7SIQ6ayQkBAMHToUf/zxB1xcXPDw4UPMmDEDu3btgpmZmXy7n3/+GW3btkW7dplXNti7dy/279+f6fk9e/bAxMREreUnIkXt27dXWVpsP4nUj20okW5QZftJeVPogxXNmjVjtCwHYrEYZ86cYT3loqDVk1QqRadOnRAdHY0LFy4ASDtp+vnnnxEXF6ewbe3atdGgQQMsXLgwUzrJyclITl9GAUBkZCTc3d3x8GEIrKyyHxZS2EkkYjx4cAaVKzeDUPjt70/qpKt15fh1q5uqnFgsVunFDdtP5RS0tkFdWE9ZYxuaP7raLugaXa2ngt5+Ut4U+mEgIpGIDaMSWE/KKSj1NHToUDx58gRXrlyRfx79/w8s/PLzCQQCCIXCLD+3SCRS6IWRTigU6VTDqKtYT8rTtboqAIeBXBWU450msK6Uw3pSxDb067CelKNr9cRDAGXEpSaISMGIESPwzz//4Pz58yhW7PNkR46OjkhJSUF0dLTC9mFhYXDUtTA4ERERERF90xisICIAaZMYjRgxAocPH8a5c+dQsqTiCjWenp4QiUQ4e/as/Dk/Pz8EBgaiVq1ami4uEREREREVYIV+GAgRpRk+fDj27NmDo0ePwtzcHKGhoQAAS0tLGBsbw9LSEgMGDMCYMWNgY2MDCwsLjBw5ErVq1ULNmjW1XHoiIiIiIipIGKwgIgDAunXrAAANGzZUeH7btm3o27cvAGDFihXQ09ND586dkZycjBYtWmDt2rUaLikRERERERV0DFYQEYC0YSC5MTIywpo1a7BmzRoNlIiIiIiIiAorzllBRERERERERDqFwQoiIiIiIiIi0ikMVhARERERERGRTmGwgoiIiIiIiIh0CoMVRERERERERKRTGKwgIiIiIiIiIp3CYAURERERERER6RQGK4iIiIiIiIhIpzBYQUREREREREQ6hcEKIiIiIiIiItIpDFYQERERERERkU5hsIKIiIiIiIiIdAqDFURERERERESkUxisICIinfHDDw3xww8NtV0MIiIijXJ2FmDZslnaLgaRTmGwgogIwP792+HsLJD/ubkZoW5dd0ydOgIfPoRpu3gFyosXT7Fs2SwEBQVouyhERKQCbEOVc/bsCQYkiPJAX9sFICLSJePGzUGJEiWRnJyEW7euYOfOdTh37gTOnXsMY2MTbRevQHjx4imWL5+NWrUaonhxV4XX9uw5rZ1CERHRV2MbmrNz505g+/Y1GDt2VqbXXr9OhL4+L82IMuIvgogog8aNW6FyZS8AQI8eA2FtXQQbNy7Hv/8eRYcO3bVcuoLPwMBA20UgIqJ8KmxtaEJCPExMTFWSlpGRkUrSISpIOAyEiCgHdeo0BgAEBr7JcTupVIrNm/9AkyYecHMzgoeHHXr2bIkHD27Lt0lNTcWKFXNRu3YplCxpiBo1XLFw4RQkJycrpFW7dhnMmzcPt25dRZs21eHmZoRatdxw8OBOhe3EYjGWL5+NOnXKwM3NCBUrFkGHDnVx6dIZ+TbZzQHx6699UaOGq/xxUFAAnJ0FWL9+KbZvX4NatdxQqpQJundvjnfvgiCTybBixVx4ehZDqVLG6NevPaKiIhXSrFHDFb17f4+LF0+jWbMqcHMzQsOGFXDixN/ybfbv347Bg7sAALp0aSTvMnzt2oVsyxsREY6xYwegcmUHuLkZoWnTyjhwYIfCNhnLv2vXRnkdt27tjfv3fbP+0oiISK2UbUMjIz9i5MifULasBcqXt8Ivv/TBkycP4OwswP792xW2ffXqOX7++QdUrGgDNzcjtGrlhdOnjylsc/bsWZQoYQBf36uYNWsMPDzsULq0KQYM6IiPHz9kyv/cuZPo2LEeSpc2hbu7OX76qQ38/J4obPPrr31RpowZAgJe46efWsPd3RwjRvQEANy8eRmDBnWBt3cJlCxpCC+v4pg5czQSExMV3r99+xoAUBgyky6rOSseP76HXr1aoWxZC5QpY4auXZvgzp0bCtukD8FR9rMSfUvYs4KIKAdv374GAFhbF8lxu7FjB+DAge1o3LgVuncfiNTUVNy6dRl3796Q32UaN24gDh7cgTZtfsCgQWNx795NrF69EK9ePcOWLYcV0gsJCcHQod3QrdsAdOnSB/v2bcXo0X1RqZInypatCABYtmwWVq9eiB49BqJKler49CkWDx/exqNHd1G/frN8fd6//94NsTgF/fqNRHR0JNatW4IhQ7qiTp3GuH79AoYPn4iAgFfYunUV5s4dh+XLtyq8/82blxg69Ef89NMQdOnSBwcObMPgwV2we/cp1K/fDDVr1seAAaOwZctKjBw5BWXKlAcA+b9fSkxMxA8/NERAwCv07TsCJUqUxD//HMTo0X0RGxuNfv2GKWx/+PAexMV9Qq9egyEQCLB27RIMHNgJ16/7QyQS5atOiIgof5RpQ6VSKfr2bYv792+hd++hKF26HP799yh+/bVPpm39/J6gQ4c6cHR0xvDhk2BiYorjxw+gf/8O2LTpEFq16qiw/bRpI2FpaY0xY2YiKCgAmzf/jqlTR2D9+v3ybf7660/8+msfNGzYAlOnLkZiYgJ27lyHjh3r4t9/7ykMV5RIUtGzZwt4e9fF9OlL5UNb/vnnIBITE9C791BYWxfB/fu3sG3bKoSEBGPjxoMAgF69BiMs7D0uXTqDlSv/zLXu/PyeoGPHejA3t8DQoRMgEomwa9cGdOnSEH/9dRHVqtXI82cl+tYwWEFElEFsbAwiIyOQlJQEX9+rWLFiDoyMjNG06ffZvufq1fM4cGA7BgwYhTlz/pA/P2TIWMhkMgDAkycPcPDgDvToMRC//bYJANC37zDY2tpj/fqluHr1POrUaSR/77t373Dw4DnUrp32XNu2XeHtXRz792/DjBlLAQBnz/qgcePWWLJko8o+f2joO1y58hIWFpYAAIlEgtWrFyIpKREnT96Wj6f9+PEDDh/ejYUL18HQ0FD+fn//F9i06RBat+4EAOjefQAaNCiH+fMnon79ZnBxcUP16vWwZctK1K/fDLVrN8yxPLt3b8TLl8+watUudOqUdgfrp5+GoHPnBliyZBq6dPlJYft37wJx5cpLWFlZAwBKlSqLfv3a48KFf9GsWfbfIRERfb38tKGnTh3BnTvXMXv27xg48BcAQO/eQ9GtW+ag+4wZv8DZuQR8fHzlbU+fPsPQoUNdzJ8/MVOwwtq6CPbuPQ2BIK0Hg1QqxdatKxEbGwMLC0vEx8dhxoxR6NFjoEJb2qVLH9SvXxarVi1QeD45ORnff98FkycvVMhnypTFMDY2lj/u1WsQXF1LY9GiKXj3LhDOziXg5VULbm7uuHTpDDp37pVrXS5ZMg2pqWIcPnwFLi5uAIAffuiN+vXLYv78CTh06GKePivRt4jDQIiIMujWrSk8POzg7V0cw4Z1g6mpGbZsOYyiRZ2zfc+JE4cgEAgwevTMTK+lnzScO3cCADBo0BiF1wcPHgsgLfCQUfHixVGjRl354yJF7ODmVhaBgf7y5ywtrfDixRP4+7/M46fM3vffd1E4qUm/c9O5cy+Fib+qVq2BlJQUhIa+U3i/o6OTwsmiubkFfvihNx4/vofw8NA8l+fcuROwt3dUGOssEokwYMAoxMfH4caNSwrbt2v3ozxQAQDVq9cDAIV6IyIi9chPG3rhwimIRCL07Pmz/Dk9PT307TtcYbuoqEhcvXoO33/fFfHxnxAZGYHIyAhERX1Ew4Yt8ObNS4SEKLZJPXsOkrfDAFCjRj1IJBIEB78FAFy6dAYxMdFo3767PL3IyAgIhUJUrVoDV6+ez1Te3r2HZnouY6AiISEekZER8PKqDZlMhseP7+VSa5lJJBJcvHgaLVp0kAcqAMDBoSg6dOiBW7eu4NOn2Dx9VqJvEXtWEBFlMH/+Gri5uUNfXx92dg4oVaos9PRyjuu+ffsaDg5OsLa2yXab4OC30NPTg6traYXn7e0dYWlplelkws7OLlMaVlbWiI6Okj8eN24O+vdvj3r13FGu3Hdo2LAlOnf+CRUqVFLmo2bJ2bmEwmNz87TARdGixbN8PiYmSuF5V9fSCidLAODm5g4gbV4Je3vHPJUnOPgtSpYsk+k7KF06bdjIu3eBsLFxybb86YGLL8tJRESql582NDj4Lezti2ZaLeTL9jIg4BVkMhl++206fvttepZpffwYDnt7e/njL9sES0vFNuHNm7Rgf9eujbNMz9zcQuGxvr4+ihYtlmm7d+8C8dtvM3DmzDGFdhpI622SVx8/fkBiYgJKlSqb6bUyZcpDKpXi/fsg+bBQIPfPSvQtYrCCiCiDqlWry+eYUIcvL+Szk/3JnUz+v5o16+Pq1dc4ffooLl48jb17N2PTphVYtGg9evQYmJ6jwnvSSSSSLFMXCoV5ej59mIuu+FbKSURUEKmzDZVKpQCAIUPGoUGDFllu82WAI7c2IT3NlSv/hJ1d5mD6l0uJGhgYZmqfJRIJunVrhujoSAwbNhGlS5eDsbEpQkPfYfTovvI81I3tHxVEHAZCRPSVXFxKISzsfabVMTIqVswFUqlUfhcn3YcPYYiJiUaxYi7ZvDNn1tY2+PHHfli7di98fYNQvnwlhdnEraysERMTnel9796pp1to+p2vjPz9XwCAfJIyZQM2QFq9vXnzMtPJ3qtXzwFkvpNERETflmLFXBAeHoLExASF5wMCXik8Th8Ooa8vQv36TbP8MzMzz1PeLi6lAAC2tvZZppfbvEoA8OzZI/j7v8CMGcswfPhEtGjRHvXrN4Wjo1OmbZVt/4oUsYOxsQlev/bL9NqrV8+hp6cHJ6fiWbyTvlUbN26Ek5NTpvOd9u3bo3///pg1axaqVKmCrVu3okSJEjAzM8OwYcMgkUiwZMkSODo6wt7eHvPnz1c6T4FAgHXr1qFVq1YwNjaGm5sb/vrrL/nrFy5cgEAgQHR0tPy5+/fvQyAQICAg4Gs/slIYrCAi+kqtW3f+/9KeszO9ln7h3rhxawDApk2/K7y+ceNyAECTJm3ynG9k5EeFx6amZnB1LY2UlM9Lobq4lMLr188Vli978uQBfH2v5jk/ZYSGvsfJk59XNvn0KRZ//bUTFStWkQ8BSV+TPjY2Otf0GjdujfDwUBw79nk289TUVGzbtgqmpmaoWbO+aj8AERFpVIMGLSAWi7F79yb5c1KpVL7MZzpbW3vUqtUQu3ZtQFhYSKZ08rNMZ8OGLWBuboFVqxZALBbnK830Hg0ZA/UymQybN/+Radv09i+rmwhfptmgQXOcPn0UQUEB8uc/fAjDkSN7UL163UxDVOjb1qVLF3z8+BHnz3+eJyUyMhKnTp1Cz55pE4y/fv0aJ0+exKlTp7B3715s2bIFbdq0QXBwMC5evIjFixdj2rRpuHnzptL5Tp8+HZ07d8aDBw/Qs2dPdOvWDc+ePVP558svDgMhIvpKdeo0QufOP2HLlpV48+YlGjZsCalUilu3LqN27Ubo128EKlasjC5d+mD37o2IjY1GzZoNcP/+LRw8uAMtW3ZQWAlEWY0aVUCtWg1RqZInrKxs8ODBbfj4/IV+/UbIt+nWrT82blyOHj1aoHv3AYiICMeff65H2bIVM03OpQpubu4YN24AHjzwha2tA/bv34oPH8KwfPk2+TYVK1aBUCjEmjWLERsbA0NDQ9Sp0xi2tvaZ0uvZcxB27dqA0aP74uHDOyhe3BU+Pn/B1/cqZs/+Pc930YiISLe0bNkBVatWx5w5YxEQ8AqlS5fD6dPHEB2d1lsxY2+EBQvWoGPHumjSxAM9e/6MEiXc8OFDGO7cuY6QkGD899+DPOVtbm6BhQvXYdSon9CyZTW0a9cNRYrY4d27QJw96wNv7zqYP391jmmULl0Orq6lMHfuOISGvoO5uQV8fA5lOVeEh4cnAGD69FFo2LAFhEIh2rfvlmW6EybMw6VLZ9ChQ1306TMM+vr62LVrA1JSkjF16pI8fU7SfdbW1mjVqhX27NmDJk2aAAD++usv2NraolGjRrh8+fL/V3jZCnNzc1SoUAGNGjWCn58fTpw4AT09PZQtWxaLFy/G+fPnUaNGjVxyTNOlSxcMHJg2dHju3Lk4c+YMVq1ahbVr16rts+YFgxVERCqwYsU2VKhQCXv3bsG8eeNhbm6JypW94OVVW77N0qWb4eLihgMHtuPUqcOws3PEiBGTMWZM5lVElNG//yicOXMMly6dRnJyMooVc8GECfMwdOh4+TZlypTHH3/sxNKlMzB79hiUKVMBK1f+icOH9+D69Qtf+7EzKVmyDObNW4W5c8fD398PxYuXxLp1+9Gw4efxxfb2jli0aD1Wr16IceMGQCKR4ODB81kGK4yNjfHXXxewYMEkHDy4A3FxsShVqiyWL9+GH3/sC4kk850wIiL6dgiFQuzc6YMZM37BwYM7oKenh5YtO2L06Jno0KEODA2N5Nu6u1fAiRO3sXz5bBw4sB1RUR9RpIg9vvuuKkaPnpGv/Dt27AEHByesWbMI69f/hpSUZDg6OqN69Xr48cd+ub5fJBJh+/bjmD59FFavXghDQyO0atURffuOQLNmlRW2bd26E/r3H4mjR/fh7793QSaTZRusKFu2Ig4fvoyFCydj9eqFkEqlqFq1Blau3CVfqYsKlp49e+Lnn3/G2rVrYWhoiN27d6Nbt27yeVJcXV1hbv75Jo2DgwOEQqHCPCoODg4IDw9XOs9atWplenz//v2v+yAqJJAV4llXjh49itatW0MkEmm7KDpLLBbjxIkTrKdcsJ6U8/HjR9ja2uLJkwhYWRXRdnF0lkQixt27J1CtWmsIhd/O/lSjhivKlv0OO3f+o7E8dbWunDIPVdYqsVis0mMT20/lsG1QDutJOYWtDT116ggGDOiII0euwNu7jtLv09V2Qdfoaj0V9PYzJ0lJSXBwcMC2bdvg7e0NFxcX3L59G9WqVcOsWbNw5MgRhUBC3759ER0djSNHjsifa9iwIapUqYLff/891/wEAgF27NiB3r17y58bPXo07t+/j/Pnz+PSpUto0KABIiMjYW2dtrqMr68vqlevjjdv3sDV1VVFnzx7nLOCiIiIiIi0JjExUeGxRCLB1q2rYG5uge++q6alUhFplpGRETp16oTdu3dj7969KFu2LKpVU+/+f+PGjUyPy5dPWx7ezs4OABAS8nmOGE33uuAwECIiIiIi0prp00ciKSkRnp61kJycjJMn/8bt29cwadICGBsba7t4RBrTs2dPfP/993jy5Al69eql9vwOHjwILy8v1K1bF7t378atW7ewZcsWAEDp0qVRvHhxzJo1C/Pnz8eLFy+wbNkytZcpIwYriIiIiIhIa+rUaYwNG5bhv//+QXJyElxdS2PevFUKE0YTFQaNGzeGjY0N/Pz80KNHD7XnN3v2bOzbtw/Dhg1D0aJFsXfvXlSoUAFA2nwse/fuxdChQ1GpUiV4e3tj3rx56NKli9rLlY7BCiIiUombNwO0XQQiIvoGdezYAx07qv/CjEjX6enp4f3795menzVrFmbNmqXw3Pbt2zNtd+HChTzl5+TkhNOnT2f7ep06dfDw4UOF5zQ55SWDFUREREREREQalCqW4M2LULx88g6vnr1H5IdPEKekQmSgDxs7c5Qu74QyFZ1R0t0R+iKhtourFQxWEBEREREREWlA2PsonDjgC5/9txAXmza5rFBfD5JUqXwbob4eTqT6AgDMLIzR5sfqaN3VGw5O1krlsXv3bgwePDjL11xcXPDkyZOv/BSawWAFERERERERkRrFf0rCpt9O4tTft6EnEEAq/TycImOg4svHcbGJOLjlEg5svoQWnTzx84RWMDUzyjGvdu3aoUaNGlm+lr4UqyaHc+QXgxVEREREREREanLn6kssnfIXYiLjARkgzWOgID2wcfrwHdy65Iex8zvDs06ZbLc3NzeHubn5V5VZF+hpuwBEREREREREBdGx3dcxddB2REfGK/SmyA+pVIaoj3GYOmg7ju25oaIS6q48ByvEYjH09fXx+PFjdZSHiIiIiIiI6Jt3bM8NrF3wDwBA9pWBinTp6aydf7zAByzyHKwQiUQoUaIEJBKJOspDRERERERE9E27c/Ul1s4/rtY81s4/jjtXX6o1D23K1zCQqVOnYsqUKYiMjFR1eYiIiIiIiIi+WfGfkrB0yl8Q6AnUmo9AT4BlUw8hPi5JrfloS74m2Fy9ejVevXoFJycnuLi4wNTUVOH1u3fvqqRwRERERERERN+STb+dRExkvMqGfmRHJpUh+mMcNv12Er/O7qjWvLQhX8GKDh06qLgYRERERERERN+20HdROPX3bUBDK4NKpTL8e+gOug9uCAcna81kqiH5ClbMnDlT1eUgIiIiIiIi+qadPOgLPYEgz8uTfg2BIC3fvr80z9P71qxZg99++w2hoaGoXLkyVq1aherVq2e5rVgsxsKFC7Fjxw68e/cOZcuWxeLFi9GyZct8p5kbLl1KRBpjbm6Of/75B8WKmcHCAjAyAoRCbZeK6Ovo6wPGxoClJWBtDdjYaLtERFQQmZub49ixY3B2NoOZGWBoCOjxTJ6+YQIBIBIBpqaAlVVaG/qtSxVL4LP/1lcvUZpXUqkM/+y7hVSx8otg7N+/H2PGjMHMmTNx9+5dVK5cGS1atEB4eHiW20+bNg0bNmzAqlWr8PTpUwwZMgQdO3bEvXv38p1mbvJ1iJNIJFi6dCmqV68OR0dH2NjYKPwREWXFwMAAbdq0gYWFIczM0i7qHBwAO7u0hkqg3jmIiFRGKATMzdP2X3v7tBMsU9O0oIWRkbZLR0QFkYGBAdq2bQtLS0NYWABFigCOjmn/8rhD3xKRKC044eiYdg5oaQmYmKS1od+6Ny9CERebqJW842IT8eZlqNLbL1++HD///DP69euHChUqYP369TAxMcHWrVuz3P7PP//ElClT0Lp1a7i5uWHo0KFo3bo1li1blu80c5OvYSCzZ8/G5s2bMXbsWEybNg1Tp05FQEAAjhw5ghkzZuSrIIWZRCZGTEoQUqWJEAj0YCy0gZnIQdvFIlKp4LgYfExKgFQmhYm+AUpa2MDg/90qRKK0hsrcHIiPBz590nJhibKhpwdYWKSdUH0ZXEtISMb7kGikpEigr68HezsLWFmZaKeghUh8fHq9p0IkEsLB3gKWlqx3KjgkUikCPkXhU0oyAMDS0Agu5tbQ+/9ByNAw7U8iAWJjgUTtXCcR5UpfP+18z9Aw82uJqZGISw2HTCaBUGAAC4NiEOl9e9GLl0/eaTX/V0/eo0wF51y3S0lJwZ07dzB58mT5c3p6emjatCmuX7+e5XuSk5Nh9EVk1NjYGFeuXMl3mrnJV7Bi9+7d2LRpE9q0aYNZs2ahe/fuKFWqFCpVqoQbN25g1KhR+SpMYRKdHIDnMf8gJPEeopL9IUWqwutGQivYGrrDxaweSls0h0iPJ170bYkXp+Cw/2OcDnqJRx9DEZWsePZkoCeEu5UtajiUQA/3KihlWQR6emkBCyMjICoKSE3NJnEiLTAySjvJyjh06cHDQJw68xhPnr1DcHAkvhye6mBvgbLuRdGkUXnUqVUGQiH7bKvCvQdv8e/px3j6/D2C32VR7w4WKOdeFE0bV0CtGqVZ7/TNCU34hP0vH+DS+zd4GhWOxFSxwutmIgNUtHFAAyc3dC1dCbbGphAK03p5GRkBMTGAVKqlwhNlwcws7RwvPdAvlaUiIO4iXn86iw9Jz5GQ+kFhewH0YGlQAg7GHnC3aA0H4++0UOq8e/XsPYT6epCkav4HKNTXw8un79AK3rluGxERAYlEAgcHxRvkDg4OeP78eZbvadGiBZYvX4769eujVKlSOHv2LP7++29IJJJ8p5mbfAUrQkND4eHhAQAwMzNDTEwMAOD777/H9OnT81WQwiIiyQ83P6xFSGLOy7smSaIRnHALwQm3cCtiPcpZtkW1Iv0YtCCdFy9OwYoHV7Dv5X3EiVOy3S5FKsHjyDA8jgzDlme+qO3ogsmejeBRxBEiUVq3wKgoIKlgLhtN3xhz87S/dJeu+GHbzisIeBuR4/vCwmMRFh6LS1f8YGdnjm4/VEeHdp7QU/O66wXVhUvPsf3PK3gb+DHH7cLCYhEWFouLl/1gb2eObl1roGM7Tw2Vkij/guNisODOOZwOfIlUWfYXO3HiFNwMC8LNsCD8/uAKvnctj0nVGsLexAzGxoCBAfDxI4P+pH0CwecgGpAWpHgcdQCPog4gUZL9sVwGKaJTAhCdEgC/mOMoYugOL9uBKG5aS0Mlz5/ID5+0EqgAAEmqFFERcWpL/48//sDPP/+McuXKQSAQoFSpUujXr1++h3goI1+3GooVK4aQkBAAQKlSpXD69GkAgK+vLwyz6tdTiMn+f7tHIhPjdsRGHA0cnGug4ktiaTweRe3DoYC+eJ9wRx3FJFKJqyEBaHFsCzY/vZVjoCIr10LfouOJnfjt3kWkSCT/b9xkBWL8In3bLCw+BypiYhIwZ8FRzJx7JNdAxZc+fPiEVevO4pexuxEUHKmGkhZcUdHxmDn3CGbPP5proOJL4R8+YeWa//DL2N149z5KTSUk+nq7/O6ixbEtOPHWL8dAxZdSpBL87f8YzY5txt+vHwNI6wFma5vW7Z5Im2xsPgcqIpP9cSxwCG5FrMsxUJGVj8kv8O+7CbgYOh/JEt0dLyxO0W6EMCVZnPtGAGxtbSEUChEWFqbwfFhYGBwdHbN8j52dHY4cOYL4+Hi8ffsWz58/h5mZGdzc3PKdZm7yFazo2LEjzp49CwAYOXIkpk+fjjJlyqB3797o379/vgpSUAkEAqRI4nEyeDTuR/4JGZSfofVLcakhOBE8Gk+iD6mwhESqsf35HfQ6sw/B8TH5TiNVJsWaR9fx03/78CklGQKBAFZWaXeIiLTB1DSt6yoABL+LxOARO3D+Yv66MqZ7/PQdBo/YgXsP3qqghAVfYNBHDB6xA5eu+H1VOg8fB2Pw8O148ChIRSUjUo1UqRRjrvyDaTdPIz41b4H+jGJSkjDm6j+YeesMgLQ5dooU4YohpD3W1p/npwiMu46jgYMQkfx1x/KXsadwNHAwPomVn0hSk0QG2o0QGhiKlNvOwACenp7ya3oAkEqlOHv2LGrVyrn3ipGREZydnZGamopDhw6hffv2X51mdvJ1+Fq0aBGmTJkCAPjxxx9x+fJlDB06FH/99RcWLVqUr4IUVKnSJPz7bjxCEx+oKEUZrof/jqfRh1WUHtHX2/n8DmbdOgNVLdJ0MywI/c4dRGKqGAJB2ozRXCmENE1fP61XBQCEhEZj9Pi9CAuPVUnaiYkpmDz9Lzx8zAvnnLx7H4XRE/biwwfV3EWLT0jBpGkH8eSpdidAI8po3FUf/O3/WGXp7Xh+Rx6wEArT5toh0jRj48+rewTH38J/IVMhkSWrJO1YcRBOBI9CfGreejhqgo2dOYT62okQCvX1YG1rpvT2Y8aMwaZNm7Bjxw48e/YMQ4cORXx8PPr16wcA6N27t8JkmTdv3sTff/8Nf39/XL58GS1btoRUKsWECROUTjOv8lWTSV8MIq9ZsybGjBmDtm3b5qsQBdn1DysRlvRI9emG/4HwxKcqT5cor+5+eIdZvv+pPN3b4cGY65sWmc140UikKelBMolEillzjyDio2rHgSYnp2LW3COIiUlQaboFRWqqBDPnHkFkZLxK001KEmPG3MOI/cQlE0j7tjz1xZE3T1Se7o7nd3Do/0NCMl40EmmCnt7nIFm8OBznQmZCKlNueIKyPolDcD5ktkrTVIXS5Z20OmeFMiuBpPvxxx+xdOlSzJgxA1WqVMH9+/dx6tQp+QSZgYGB8qkfgLQYwLRp01ChQgV07NgRzs7OuHLlCqysrJROM6/yFaywt7dHnz59cObMGUg51XC2guNvwS/muFrSlkGCS2ELkCpVTYSSKD+SJakYf9UH0i+n4leRPS/v4/L7NwDSuuNz7C1pSvoEdQCwZ/8NvHgVlvMb8ikqOgF/rDmjlrS/dX/uuY7X/uFqSTsyMh6r1qo+yEqUF/6xkfjt3kW1pT/b9wzCEtJ6JTHgT5pkbv55+NHlsCVIkapn0sfQxPt4EvWXWtLOrzIVlQ8WyARAqokQSXaGiHM1Ray7OWLLmiPW3RxxrqZIsjNEqokQsjz0Li5d0SlP5R0xYgTevn2L5ORk3Lx5EzVq1JC/duHCBWzfvl3+uEGDBnj69CmSkpIQERGBnTt3wskpc345pZlX+QpW7NixAwkJCWjfvj2cnZ3x66+/4vbt2/kuREEklUlwNXypWvOITnmLx1EH1JoHUU42PLmJ17HqnShw2s1/5cEQU1O1ZkUkl76vhYXH4s8919Sa1/mLz3HnXoBa8/jWvA+Jxu59+VuTXVn/nXuK+w8C1ZoHUU5m3zqDJIn6JuOLTUnGgjvnAaQNB2HvCtIEgeDzvvbm0wUEJ9xUa36+ERuQmBqt1jzyoqS7I8wscv6xSQz0kFDMGFHVrBHjYYX4kqZItjOE2EoEsZUBxFYiJNsZIr6kKWI8rBBVzRoJxYwhMcj50t3Mwhgly+RvIktdle8JNg8ePIiwsDAsWLAAT58+Rc2aNeHu7o45c+aouozfpMD4a/gkDsl9w6/0NOYwpDKuS0WalyqVYpffPbXn8/ZTNM4FvwaQ1vhx7gpSN5Hoc6+K4z73IBbnf2JkZf19hCs9ZXTsn3uQSNTfc/Pvo6x30o7XMR9x6f89B9XpxNvn+JCYdlfbxETt2RHBxORzrwpNLAqQKkvCi9h/1J6PsvRFQrT5sXqWS5RLhQLElTRFdBUrJDoZQ5Y+t4VAAOgJPp/kfvFYpq+HRCdjRFexQlxJU0iFmdPW0xPg+27VoS8Squ2zacNXzf5hbm6Ofv364fTp03j48CFMTU0xe7bujR3ShmfRRzSST0LqBwTGq/euH1FWTge9QHii+tZyzmjXi7TlfvX0Ps8qTaQu6XeEUlMlOHHqoUbyvHHrtcom7/zWpaSk4uRp1c/1lJWr11/iQ4TuLoFHBdeeF/dVNil1TsRSKfa9TJvk3dCQK4OQ+qW3oVHJAQhNvK+RPJ9FH4MsD8v9qlvrrt6ZhkinWIoQXckKyXaGaUGIvN59+/97ku0MEV3JCimWiqt+yGRAqy7eX1t0nfNVh6ykpCQcOHAAHTp0QLVq1RAZGYnx48erqmzfLIk0BSEJdzWWX1D8DY3lRZTuwjt/jeV1LeQtUiRpd7dFyq3IRJRv6fvYi5dhiIrWzOSXUqkMt++o/y7rt+D5ixDExmpm8kupVIY7dwM0khdRRhfevdZgXp/ba7ahpG7p+1iwBq9P4lJDEJ2iO8P6HJys0bKTl7x3RaKDET6Vs4BMlI8gxZcEAshEAnwqZ4Ekh7Q7eHp6ArTo7AkHJ+uvLbrOyVew4t9//0WfPn3g4OCAoUOHwsHBAadPn8bbt2+5dCmAyJTXkEJzQzMikr5uvWKi/Hj8UXPrW6dIJfCL/gDgc/d8InX5HKzQ7BrufhrOT1e9eKmeyUyzz4/1TpoVJ06Gv5rne8roaVQ4JP+fEJ9tKKmTvv7na/GIZM1en2g6v9z8PKEVrIqYIcnRCAmu/58IS1Vjmf+fTrxrWvpWRczw8/hWqklbx+R7zorExETs3LkToaGh2LBhA+rXr6/qsn2zPia/0mh+Ucn+nLeCNEosleBFtGbXtn4SmXYBwxVBSJ2Ews/dpF+paSWK7LxS04oj35pXrzVbDy81nB/R86gPGhkCki4xVYw3/w+OsA0ldcrYc0fT10Mfk15qNL/cmJoZodXQeoh3Ue/s8PEupmg1tB5MzYzUmo+25OuQFRYWBnNzc1WXRaNkMhkSEhLw8eNHiFTUJ87GxgYCgQDJEs2OO5YiFWJpIgyF5khMTERCguq6LYvFYpXXU0FUWOrJxMQExsbGiBenIFXDYwNjUpL+/z8poqOjNJq3pkkkaftTdPRHCIUFd39SBVXXlaGhEA4OVgCAT580MxQh3ae4pM////QJKSkpKktbLBbDxMQE5ubmEHzlnR11tJ9CoVC+TvunT0k5b6xicXGflwBXR70XhrbhaxWWerK0tIS+vj6ikzW7jwOf21CJJAXR0QV7nha2ocpRTz0ZwtraDAA0fj2ULP28X0dFRUEqVc15an7bz7iEZOy+8QgCQK3BSQGAPTceo2M7L5gZF7yJ3fIVrEgPVISHhyM8PDzTzlCpUqWvL5maRUREoEePHipNMz4+HiYmJlDvLpmz9evXY8yYMVrLnwq233//Hb/88otW9nDZ/ycqSkxMQMWKtlooARUGFStWxOPHjwGkTValSRnzGzRoEPbt26fyPMLDw2FnZ/dVaaij/axSpQru3UtbXUim4YrPmF+/fv1w6JD6Z6+nwsnX1xdeXl6QaaEVTc/x6tXzaNmypcbzp8Jh0KBB2LBhw/8faXo//5xf5cqVERQUpNLU89p+/n7gIqI+Jaq9FmQAImMT8Mf+i5jat7mac9O8fAUr7ty5gz59+uDZs2fyRl4gEEAmk0EgEEAiUf8yb1/LwMAARkZGePToEaytVTMZiZFRWvcbAz0zlaSnLAGE0NdLy3vw4MHo3bu3ytKOioqCh4eHSuupICos9ZQemDTRF0FPIMg007E6WRikRYuNjEzw5Ilmh6BoWkxMFBo39sC5c49gaVlw9ydVUHVdiUSfR0eammr2DkXG/DZs2IDVq1erLO2oqCiUKVMGBioYsK6O9lNPT3v1bmLyOb+tW7dmONH+eoWlbfhahaWeLCws0v4Vaf7up5ko7bdfq1YjtqEEQD31ZGn5uY0R6ZkhUaK5nrAGep/X5r1//77KAt/5aT/fR8Tg2KXHGgvXSGUyHL38GP2/r4mithYaylUz8hWs6N+/P9zd3bFlyxY4ODh8dZdSbRAIBEhKSoK1tTWKFCmi0rRtDEupNL3cWBm4QChI675lYmLy/94dqqOueipoCkM9RUWlNTqGQn24WdjgVcxHjeVd3toeACCR6MHKquDWcbqkpCRYWloXis/6tVRdV1Jp2rwVbiW/rgdCXpV2s5f/P/2iRtVU0V6rs/0EgFIl7fEfnqo83eyUdvv8Pauj3gtD26AKhameylpr9thiqCdEKcu0ehUIDApFu8I2VDmqrqeMo7hsDEshVqza3g05sTEs/fn/NjYqTz8v7efhi48g0BNAJtXcTT2BQIDDFx9iWOe6GstTE/I1waa/vz+WLFmCGjVqwNXVFS4uLgp/hZ2NYWkIINRYfrZGZTWWFxVuZmafew15FHHUWL5CgUAerBCLNZYtFVKp/5+v2L2M5vbxtPwcNJqfrtJ0PWj6eyayMjRGcTNLjeVX1toOIr2081K2oaROYvHnIY2avj6xNdSN66HUVAn+Pv8AUg0GKoC0pbgPXXiA1NS8jXBYs2YNXF1dYWRkhBo1auDWrVvZbisWizFnzhyUKlUKRkZGqFy5Mk6dOqWwzaxZsyAQCBT+ypUrl6/PBOQzWNGkSRM8ePAg35kWdCI9Y9gbV9RYfs4mXhrLiwo3kUiExMS0SQfrFi2psXy97IvBSD8tXM8TLVK39PkVy7k7anRIQtUqDPYDQPnyTjAx0cz6igIB6520o54G29C6RV3l/2cbSuqWvo9p8vrEWFgE1oaa+03l5GVwBGITknPfUA1i45Px6p3yw7z279+PMWPGYObMmbh79y4qV66MFi1aIDw869XQpk2bhg0bNmDVqlV4+vQphgwZgo4dO8rnnEpXsWJFhISEyP+uXLmS78+Ur2DF5s2bsXXrVsyePRuHDh3CsWPHFP6+BYaGhvjxxx9haKieE9Hylu3Vku6XjIRWKGnWUG3pq7ueCorCVE/pB7DvXcvBylAzyyT1cq8KIC1an6T5SdQ1zsAgbX8yMCj4+9PXUkddpe9jhoYitGz2ncrSzUm1Ki4oUVx93ZUNDQ0xc+ZMlRyj1H28MzYyQLPGmgn4e1UrCWcn9Y1pL0xtw9cojPXUs2xVjeSjJxCgx//bULEY+AamlftqbEOVo656Sm9D7YzKwdYw/3fU86Ks5ffQE6hnXd68tp/PArS7HHZe8l++fDl+/vln9OvXDxUqVMD69ethYmKCrVu3Zrn9n3/+iSlTpqB169Zwc3PD0KFD0bp1ayxbtkxhO319fTg6Osr/bG3zPzF+voIV169fx9WrVzF79mx06dIFHTp0kP917Ngx34XRJENDQ3Tv3l1tDWNJ80YwFqp+vNSXylp8D6Ge+u5AqbueCorCVE/pQ70Mhfr4sXRltednZ2yKli5pXfsSEzW/QoM2FKb96Wupo65SUj7fGWr3fVXo6al/XqYO7aqpNX1DQ0PMmjVLZcEKde+fHdpVgyamw9JEvfO3nLvCWE8VbRzgaees9nwaO5dCsf8POYmPV3t2OqEw7k/5oa56Skj4fK5WwaqTStPOih70Ud6yndrSz2v76RcYDn1hvi6xv5q+UA/P32bdK+JLKSkpuHPnDpo2bSp/Tk9PD02bNsX169ezfE9ycrJ8QYl0xsbGmXpOvHz5Ek5OTnBzc0PPnj0RGBiYx0/yWb5qcuTIkejVqxdCQkIglUoV/r6FlUA0QSgQoabdSLXmYapvj8o2vdSaB1FOhnvUgqOJuVrzmOndVD7WtrCcaJH2JSSk/VuieBF0au+p1ry8qrmiXh13tebxrXF1sUX7tuoNJNTwdkPtmqVz35BITWZVbwZ9gfouaoyE+pjq1RhA2sTB/x/FSaRWUunn3hVlLFrA3ki9PRQr2/SCqcg+9w01JCI6HqkSqVbyTpVI8TFGuZPliIgISCQSODgozhPl4OCA0NDQLN/TokULLF++HC9fvoRUKsWZM2fw999/IyQkRL5NjRo1sH37dpw6dQrr1q3DmzdvUK9ePXz69ClfnylfR8iPHz9i9OjRmT4cKSpl0RSuZvXVln49h4kwEJqqLX2i3FgYGGFRLfWt197apSy+dy0PIO0ki2NtSVPi4z/vbwP71UcxZ/UMFTAxMcC40a3Ukva3btCABnAqaqWWtE1NDTH2V/Udu4iU4VHEEUO+q6m29MdXbYCSFmm9fD99Khw9E0k3xMam7W8CgR7qO06GUKCeXuA2hqVRtUgftaSdXyniVK3mn6zG/P/44w+UKVMG5cqVg4GBAUaMGIF+/fopLD/eqlUrdOnSBZUqVUKLFi1w4sQJREdH48CBA/nKM1/Bik6dOuH8+fP5yrCwqeswAVYGripPt4pNHxQzra7ydInyqqFzKYzwqK3ydMtY2mJBzbSLCYkEiIlReRZEOYqOTjvZMjQUYda0DiqfbFNPT4DJ49vAwb5grYmuKsZGBpg5tT1MVTzZplCoh6kTv4edrXp7hREp45fKdVDfSfUTA7ZxKYd+5dMmOExOZs9E0iyJJC1gAQBWBiVQz2EiANWO7TMSWqFx0dlqm6sivwxE2i2PoZL529raQigUIixMcY6LsLAwODpmvUqWnZ0djhw5gvj4eLx9+xbPnz+HmZkZ3Nzcss3HysoK7u7uePXqlfIfIoN8BSvc3d0xefJk9O3bF8uWLcPKlSsV/ugzI6ElWhf7HdYGqmuIKlv3gpftQJWlR/S1xlWtjyEVa6gsvbJWdtjdrBusDI0BpAUqpNrpUUeFmFgMxMWl/b+Umz1+W9gVFuaqmVRWX18P0ya1Rd3aHP6RE/cyjlg8vyvMzFQTKBKJhJgxpR1q1eDwD9INIj0hNjTspNKARWuXslhRty30BAJIpWmBVyJNi49PC5QBQGmL5qjnMBECCFWStrHQBq2L/Q4rgxIqSU+VbK1MtTpnRRFL5XrdGxgYwNPTE2fPnpU/J5VKcfbsWdSqVSvH9xoZGcHZ2Rmpqak4dOgQ2rfPfmGJuLg4vH79GkWLFlXuQ3whX6GfzZs3w8zMDBcvXsTFixcVXhMIBBg1alS+ClNQmegXwffF1+DGh5V4GXsq9zdkw1DPHLXsf0Vpi+YqLB2RakzybAR3KzvM9v0PMSn5X7Ljh1IemOHdBBYGaReFMTGFYwUQ0k2fPgFCIWBiApQv64S1K3tj8bITePQ4ON9pFnO2xsRxbfBdBfVPrlcQVKzgjLV/pNX7k6fv8p1O8eI2mDS2DSqUd1Jh6Yi+nrG+CJsb/YA/Hl7B+sc3IMnneA1DPSF+qVwXgyvWgFBPDzIZEBlZOFYAId0UGQnY2gIiEVDWsg3MRY64FLoIcalZz4mgDGcTL9RzmAQzkW5OR1C2hL1W56wo56L8/B1jxoxBnz594OXlherVq+P3339HfHw8+vXrBwDo3bs3nJ2dsXDhQgDAzZs38e7dO1SpUgXv3r3DrFmzIJVKMWHCBHma48aNQ9u2beHi4oL3799j5syZEAqF6N69e74+U77CPm/evMn2z9/fP18F0TQfHx+MHz8eFhYWsLa2RocOHRReDwwMRJs2bWBiYgJ7e3uMHz8eqan5HwNkKDRHA8epaO60GJai4nl6rwBCuJk1RmfXP7USqBCLxfDy8oJAIMD9+/cVXnv48CH+1959R0VxtWEAf7bQO4IgKiIqYkcRFey9EKPG2BN77zHG3mOLGmssSYwliZpmosZuMMauWLCDBZEiIIp0hGV3vz/2Y2SlLcgW5fmd40mYnb337t3ZeWfeuXOnefPmMDU1RcWKFbFixQqdt0+fwsLCMGzYMHh4eKB3797w9PTE/PnzkZmZqbZeaemnj6rUxvEPh8G/kickRZzK393aHtvafIxVTf3VEhXv89DVDRuWoUsXH3h4WKFu3bIYOrQ7Hj4MUVvn1atXmDVrHGrVKoNq1SwxYkRPxMXp97FY+vTNN8tRvrwI8+ZNFpZlZmZizpyJWuujhITXE26Wd7HD2pX9MX50W9jamBepHFNTI/T5uBG2bh6itURFVFQUPvnkE5QpUwZmZmaoU6cOrly5IryuVCoxb948lCtXDmZmZmjXrh0ePHhQpDp0HT8BoGIFe6z/egDGjmwDGxuzIr3XzMwY/Xo3xtZNQ/SSqGAMzR9j6GvGEgm+qN8Sf3UeiAYORd9OfZ0r4e8PBmNsHV9IxGIoFMCLF6qnG72PGD+LJ68Yqs1+UirVt0MXc2/0dNuJWrY9izyPhbmkDJqWnYrOFdZoLVGRVwy9evWq8LomMbSGm36TKEWpv0+fPli1ahXmzZsHLy8vBAUF4ejRo8K8lOHh4WqTZ7569Qpz5sxBzZo10aNHD5QvXx5nz56Fra2tsE5kZCT69euH6tWro3fv3ihTpgwuXrwIR0fHYn0erd5UY21tjaCgoALvY9GHvXv3YsSIEejTpw/Gjx8PkUiE27dvC6/L5XL4+/vD2dkZ58+fR3R0NAYOHAgjIyMsXbr0rep2tfSDq6UfolIDEZx4ADHpN5Auf5lrPREksDV2RSXL5vC0+VCv2cOdO3fCxcUFN2/eVFuelJSEDh06oF27dtiyZQtu3bqFoUOHwtbWFiNHjtRTa3UrODgYCoUCGzduREREBBwdHTFmzBikpqZi1apVAEpfPzmZW2Fjy+6ISk3E7vtBOB7+AI+SXkCRx5UiB1NzNHZyRT8PLzQr5yYsl8tVJ4jZwwffVxcv/odBg8bBy8sHWVlZWL58Fvr374CAgBvCOgsWfIaAgEP49tvfYW1tg9mzx2P48I+wf/85PbZcP4KCAvHzz9+iRo26asu3bduGmzfvaLWPEhJUt4VYWanmmujZoyE+/KA+/jsTjCPHbyE4JBppabnPCoyMJKhaxQntWtdAh/Z1YFnC817k9PLlSzRt2hStW7fGkSNH4OjoiAcPHsDO7vXkoCtWrMD69euxc+dOVK5cGXPnzkXHjh1x9+7dXI8jy4s+46dYLEKvnj7o1rU+Tp0OxrETt3EvJBrp6bn73dhYiqpVyqJdm5ro0LZ2ic83UhSMofljDM2trkM5/NllIG69iMHPIddwNjoMUalJea7rammLluXd8YlHfVS3e30ikJmp2me9ZY7QoOUXP0+dugsTE9VJ8KJFU3Hy5BHGz//LL4Zqu5+yE2fW1oCFBWAkNodv2cmoX2YoHiQexqPkAMRnPoJCmXsWdWOxJcqa1oSHzQdws2yu1fkp8ouhOU/ENYmh1So4wNrCBEmphR/EKgHITYEsM9U/hRFUU3soAbEMkKar/kleaTbjh7WFCaqWdyjS5x4/fjzGjx+f52unTp1S+7tly5a4e/dugeX98ssvRaq/MCKlUntzA1tZWeHGjRsGlazIysqCm5sbFi5cCAcHB3Tp0gVGRkZq6xw5cgQffPABnj59KmSWtmzZgunTpyMuLg7GxiU72Veq7BniMx8jS5EOkUgCM4ktyphUg1RcMvdGv42///4bY8eOxcGDB+Hl5YXr16/Dy8sLALB582bMnj0bMTExQp/MmDED+/btQ3BwsB5brXsymQyHDx9Gly5dsHbtWmzevFkYZcR+AtJkmbj38hlevEqDXKmEudQIHrYOKGeRe2LB1NTXs0iXNi9exKFu3bL4/fcAGBklo2rVpqhf3wXffLMbH3zwMQDg4cNgtGxZAwcOXIC3t/ZmkTc0qakp6NixAZYu3YT16xejZk0vLFq0Fi9fPoeXVzls2PATPvywLwDt9pFEAtjaAnk9bj084gWinr5EZqYcUqkYTmWt4VbJAVJpydyjW5gZM2bg3LlzOHPmTK7XZDIZpFIpXFxc8Pnnn2Pq1KkAgMTERDg5OWHHjh3o27dvgeUbYvxUKJSIjIpHZNRLyGSqfnd2soFbJQdI9HTPcE6MoZphDC1Y/Ks03Hv5DMmZqpMfWxMz1LArCxsT9eNEhUJ169r7PCIxP9nxc+/e/+Dj44szZ37H4MGDGT//L68YOn/+Sp33k7GxKoZK38g5yJUyvMx4jNSsWCiUckhEJrAxrggb4wolWn9B8ouhMpkMRkZGUCqVGsfQjXvP4scjgVAo8j6YlRsBGfbAK3tAKYUqa6GEKiMhyv23KAswjQdM4gFJPk/GE4tFGNTZB2N7Nnu7jjAw+o/kOnbt2jVERUVBLBbjs88+g6urKzp37qx2ZejChQuoU6eO2qNZO3bsiKSkJNy5c6fE22RhVBYVLRqjslUruFk2h5NZHYNIVMTGxmLMmDGYPHkyzM1zD3e+cOECWrRooXbw2bFjR4SEhODly9yjRUqLxMRE2NvbC3+znwBzI2N4l62ADq4e6FypOlqWd1dLVCgUqokMY2NVt36UxkQFACQlqR55YmuruhJ+69Y1yGQyNG/eTlinalVPlC/viqtXL+iljfoya9Y4tG3rjxYt2qktv3XrGrKystCsWVthmTb7SC5XXSGKi1PdGpJzW3WtWAa+jauiZfPqaOpbDVWrOOksUQEABw4cQMOGDdGrVy+ULVsW9evXx/fffy+8/vjxY8TExKBdu9d9aGNjg8aNG+PChcL7yhDjp1gsgmvFMvBr8rrfq7iXNYhEBWNo8TCG5mZvao6m5dzQqVJ1dKpUHU2cXdUSFVlZqtgZG1s6ExVAzvip2nYePXrE+JlDfjFU1/2UmQk8e6aayyLnfGQSkREcTD1QybI5Klu1gqulr04TFUDJxtCPWtaFMo9EhUIMpJQHEqoD6Y7/T1QAqqSEGK+HT7zxt1KqWj+huur9ijxCnFKpRI+WdXO/8I7TfzTXsexM/YIFC9CrVy/s27cPdnZ2aNWqFeLj4wEAMTExagdaAIS/Y2KKPyHMu0SpVGLw4MEYMWIEqlbNe9Z09lNuDx8+xIYNGzBq1ChhGftJNRPwv//+i8TERNy4cQNpaTKkpQF//PE3hg8fjZgY1WiK0jwJmEKhwPz5k+Hj0xTVq9cGAMTFqa4k2tjYqq3r6OiEuLjSse0AwP79v+D27WuYOXNZrtfi4mIglUp13kcymWqYdUyMKnmRlASkp6sOxGT5XPXQttDQUGzevBnVqlXDsWPHMGbMGEycOBE7d+4E8Hp/k9f+SJN9EeOn5hhDi4cxNLeEhAT88MMPSEpKQlZWFq5fv460NBnOnLmIxYuXIS5OdfKXmlp6E/0546enpyp+vnz5kvHz/wqKofrqp1evVAmL2FjVf5OTVcv0OcdKfjH0xx9/BFC0GFrOwRoftqgNcY752zItgQQPIMMOr0dQFMX/35Nhpyon0/L1S2KRCN2a10Y5h/fvUejvTbJixowZEIlEBf7LvjcSAGbPng0/Pz80aNAA27dvh0gkwu+//67nT6F9mvbThg0bkJycjOnTp+u7yXqhaT/l9OLFC3Tt2hW9evXCiBEj9NRyw5SUlIQ2bdrgwoUL8PLyQlhYEhISgJMnz+Datev6bp5BmDVrHEJCbmPTppK91+9dFxUVgXnzJmHDhl0azamga0qlam6VlBTg5Uvg+XPVqAt9UCgUaNCgAZYuXYr69etj5MiRGDFiBLZs2VLg+27evInffvuN8VMDjKGaYQwtOWlpaRg+fDju3LmDxMRENGjQAGFhSdiz50/8+ec+vSVHDQnjZ/4MPYbK5aokRXKyKmnx/Ln+2pJfDM05uqIoJvdpCXtrc4hFIqSXAZIr/38kRVGTFG8SqcpJrqy6jUQsEsHe2hyT+rR8y4INk1Yn2NSlzz//HIMHDy5wHXd3d2FG05o1a+LFixcAABMTE7i7uyM8PBwA4OzsjMuXL6u9NzY2VnjtXaZpP508eRIXLlyApaUllEolRP/PDDZs2BADBgzAzp074ezsLPRLttLWT9mePn2KuXPnonXr1vjuu+/U1nuf+0lTDg4OkEgkePbsmdryuLhYODqWjj4oyOzZ4/HPPwfx55+n4eJSAXK56ujT0dEZmZmZSExMULvqUZr67datq3j+/Bk6dWogLJPL5bh48TR27PgGP/10CFlZWUhMTIC9/esJ5kpTH2UrV64catasqbasRo0a2Lt3L4DX+5vY2Fi1553b2dnhk08+wezZs/Mtm/FThTFUM4yhJSc7fsbGxsLDw0NYXhr3cXl5M35ms7OzK/XxEyg8hs6bN4/99H/FjaGxsbHCXEQ5WZqZYP6wjhix40+kZT/g520TFdn+X05qeQBQYt3gjrA0099E0tr03iQrHB0dNXokire3N0xMTBASEgIHB9VsqTKZDGFhYahUqRIAwNfXF0uWLMGzZ89QtqzqWbUnTpyAtbV1ro34XaNpP61fvx6LFy+GTCbDmTNnULVqVfj7++PXX39F48aNAaj6afbs2cLEM4Cqn6pXr642+/y7SNN+AlSPOWrXrh2qVKmCrVu3QixWH7D0PveTpoyNjeHt7a02aZFCocDZswEYMiTvGYhLA6VSiTlzJuDo0b/w+++n4OpaWe31OnUawMjICGfPBsDfvycA4OHDEERFhcPb21cfTda5Zs3aIiDgltqyKVOGoEoVT4wbNx1OTs6QSqU4d+4kunbtA6D09VG2pk2bIiRE/dF99+/fF2Jb5cqV4ezsjICAAOHAKikpCdevX8ekSZPg6elZYPmlPX4CjKGaYgwtOdnxMyAgAM2bNwfA+AkUHj+rVKlS6uMnUHAMHTNmCp49u8d++r/8YqirqyuA/GPopUuXMGbMmDzLlFllJxS0J7W8qp73VbGSFVOmTNFovSZNmqB8eS1/Q0VkbW2N0aNHY/78+Rg+fDiqVKmCtWvXAgB69eoFAOjQoQNq1qyJTz/9FCtWrEBMTAzmzJmDcePGwSSvKeDfQ9k/TJlMhvDwcFSrVg2AaudfoYIqc92/f38sXLgQw4YNw/Tp03H79m2sW7cOa9as0Vu7dS0qKgqtWrWCq6srBgwYgLi4OOFgKjsDy35SmTJlCgYOHAgAePQoBL/+uhPp6ano02eInlumP7NmjcO+fbuxbdt+WFpa4dkz1T2PFhaqyfisrW3Qt+8wLFw4Bba29rCyssacORPg7e1bamYyt7S0Eu5BzmZubgE7uzLw9KwNuVyGdu3a4csvp8Hevmyp7KNsn332Gfz8/LB06VL07t0bly9fxnfffSdcqRaJRJg8eTIWL16MatWqCY9dc3FxQffu3Qstn/FTc4yhmmEM1cyUKVMwaNAgVK9eHYDqUZOMn3nHTysrGxgbS2FhYYE+fYaU6vgJFBxDq1evjdTUcPbT/+UXQzdt2gSg6DE0KSMDU48ehVgkgkKLE8qIRSJ8cewYTgwaDKv3MM4WK1lx/fp1XL9+HTKZTNhx3r9/HxKJBA0avB5mJBKJDPLgZOXKlZBKpVi7di1Wr16Nxo0b4+TJk0KGXiKR4ODBgxgzZgx8fX1hYWGBQYMGYdGiRXpuuWGxsbHB8ePHMW7cOHh7e8PBwQHz5s17L597np8TJ07g4cOHePjwIU6ePKn2WvZTgdlPKn369EFYWBhmzJiBnj1boXbt+vj556NwdHQq/M3vqR9/3AwA+PjjVmrLv/56K6pUUV25XrBgDcRiMUaO7ImMjAy0atURS5du0nVTDdrQoUNx8ODJUt9HPj4++OuvvzBz5kwsWrQIlStXxtq1azFgwADI/n9j+7Rp05CamoqRI0ciISEBzZo1w9GjRzW+l5nxs+QwNjCGaqpPnz6Ii4vDV199BQAIDr7N+JlP/Fy9ejs+/ngAAGDevFWQSKSlPjYUhv2kkl8M7d+/v7BOUWLostP/4UV6ulYTFQCgUCrxPC0NS0//h2XtO2i1Ln0QKZVF78HVq1fj1KlT2Llzp3CA8vLlSwwZMgTNmzfH559/XuIN1Yb9+/fn+Zx4ei3ns8/ZT/ljP2nmxYsXcHBwwJ07z2FrW0bfzTFYcrkM164dRoMGXSCRcHsqiKH2lYtL4evoUs4h9CWB8VMzjA2aYT9phjFUM4YaFwyNofbT+xA/IxMT0XLbD9DlA3pEAE4PG47y1u/XE0GK9TSQr7/+GsuWLVO7V9DOzg6LFy/G119/XWKNIyIiIiIiInpX7Ll1S5hYWVdEIhH23Lqp0zp1oVjJiqSkJMTl8Wy2uLg4JCcnv3WjiIiIiIiIiN4lMrkcu2/e0PrtH29SKJXYdeMGZHK5RuufPn0aXbt2hYuLC0QiEfbt21foe06dOoUGDRrAxMQEVatWxY4dO3Kts3HjRri5ucHU1BSNGzfO9YSwoipWsqJHjx4YMmQI/vzzT0RGRiIyMhJ79+7FsGHD8NFHH71Vg4iIiIiIiIjeNcHPnyMxI0MvdSdmZCDk+XON1k1NTUW9evWwceNGjdZ//Pgx/P390bp1awQFBWHy5MkYPnw4jh07Jqzz66+/YsqUKZg/fz6uXbuGevXqoWPHjnj27FmxPg9QzAk2t2zZgqlTp6J///7CpF1SqRTDhg3DypUri90YIiIiIiIionfR7dhY/db/LBa1nQqffLdz587o3LmzxuVu2bIFlStXFqZ8qFGjBs6ePYs1a9agY8eOAFTzWo4YMQJDhgwR3nPo0CFs27YNM2bMKManKebICnNzc2zatAkvXrwQngwSHx+PTZs2wcLColgNISIiIiIiInpX3X72DFJxsU6x35pULMat2OKPYijIhQsX0K5dO7VlHTt2xIULFwAAmZmZuHr1qto6YrEY7dq1E9YpjmKNrMhmYWGBunXrvk0RRERERERERO+8uNRUZCkUeqk7S6HA87RUrZQdExMDpzdGbDg5OSEpKQnp6el4+fIl5HJ5nusEBwcXu179pH2IiIiIiIiI3iMZ8iy91v8qS7/1l7S3GllBRERERERERICJRL+n16ZS7dTv7OyM2Dfm44iNjYW1tTXMzMwgkUggkUjyXMfZ2bnY9XJkBREREREREdFbcrSw0OucFQ7m2pk/0tfXFwEBAWrLTpw4AV9fXwCAsbExvL291dZRKBQICAgQ1ikOJiuIiIiIiIiI3lLtsmX1OmdFHaeyGq2bkpKCoKAgBAUFAVA9mjQoKAjh4eEAgJkzZ2LgwIHC+qNHj0ZoaCimTZuG4OBgbNq0Cb/99hs+++wzYZ0pU6bg+++/x86dO3Hv3j2MGTMGqampwtNBioO3gRARERERERG9JU0eG6rV+stqVv+VK1fQunVr4e8pU6YAAAYNGoQdO3YgOjpaSFwAQOXKlXHo0CF89tlnWLduHSpUqICtW7cKjy0FgD59+iAuLg7z5s1DTEwMvLy8cPTo0VyTbhYFkxVEREREREREb8nTwQE2JiZIzMjQYG0lpKZZMDKTwcgsCxKpAhApAaUI8iwxZOlSyNKNkPVKCkBUaGk2Jiao7uCgUTtbtWoFpVKZ7+s7duzI8z3Xr18vsNzx48dj/PjxGrVBE0xWEBEREREREb0lI4kE/evWw7dXAqHIJxkgMZLD3D4N5nbpEEuVUCoBKAGIAJEIr/+2U/2tyBIh7aUZ0uLNIZdJ8ixTLBJhQL16MJLk/fq7inNWEBEREREREZWA/nXr5jlqQSRWwMYlEY4ez2HhkAaxVLWOSASIxKr/5vW3WKqEhUMaHD2ew8YlESJx7jkxlEol+tWpq7XPpC9MVhARERERERGVgPLW1uhduzbEote3bhhbZsCx2guY2b1SJSMKv6tDTfZ7zOxewbHaCxhbvr7NRCwSoXft2ihvbV1SH8FgMFlBREREREREVEJmtWgJB3NziEUimNunoYxbAsRSRZGTFG8SiQCxVIEybgkwt0+DWCSCg7k5ZrVoWTINNzBMVhARERERERGVECsTE6zs2BGmdqmwcUkGUPTRFPnJLsfGJRmmdqlY2bEjrExMSqZwA8NkBREREREREVEJMrbMFBIV2mLjkgxjy0yt1qFPTFYQERERERERlZAUWTqW3P4NYg0eOfo2xBBhye3fkJr1Sqv16AuTFUREREREREQl5JsHh/AyMwUK5P340pKigBIvM1Ow4f4hrdajL0xWEBEREREREZWA6PR4/B0VqPVERTYFlDgYFYiY9Jc6qU+XmKwgIiIiIiIiKgH7Iy9r/faPN4kA7I+6pNM6dYHJCiIiIiIiIqK3lKWQY1/kRZ2NqsimgBJ/RVxElkKu0fqnT59G165d4eLiApFIhH379hX6nlOnTqFBgwYwMTFB1apVsWPHDrXXFyxYAJFIpPbP09OzGJ/mNSYriIiIiIiIiN7Sw5RoJGel66Xu5Kx0PEqJ0Wjd1NRU1KtXDxs3btRo/cePH8Pf3x+tW7dGUFAQJk+ejOHDh+PYsWNq69WqVQvR0dHCv7Nnzxb5c+Qkfat3ExERERERERFCkqL0XH8kqluXL3S9zp07o3PnzhqXu2XLFlSuXBlff/01AKBGjRo4e/Ys1qxZg44dOwrrSaVSODs7F73h+eDICiIiIiIiIqK3FJIUBalIP6fYEpEYwVpKlly4cAHt2rVTW9axY0dcuHBBbdmDBw/g4uICd3d3DBgwAOHh4W9VL5MVRERERERERG/pRWYyspQKvdQtVyoQn5mslbJjYmLg5OSktszJyQlJSUlIT1fd9tK4cWPs2LEDR48exebNm/H48WM0b94cycnFbxNvAyEiIiIiIiJ6S5mKLL3Wn6HH+nPeVlK3bl00btwYlSpVwm+//YZhw4YVq0yOrCAiIiIiIiJ6S8Zi/Y4FMNFS/c7OzoiNjVVbFhsbC2tra5iZmeX5HltbW3h4eODhw4fFrpfJCiIiIiIiIqK3VMbYSq9zVtgbW2mlbF9fXwQEBKgtO3HiBHx9ffN9T0pKCh49eoRy5coVu14mK4iIiIiIiIjeUnXr8nqds8JTgyeBAKpEQlBQEIKCggCoHk0aFBQkTIg5c+ZMDBw4UFh/9OjRCA0NxbRp0xAcHIxNmzbht99+w2effSasM3XqVPz3338ICwvD+fPn0aNHD0gkEvTr16/Yn4lzVhARERERERG9JU0eG6rd+itotN6VK1fQunVr4e8pU6YAAAYNGoQdO3YgOjpa7UkelStXxqFDh/DZZ59h3bp1qFChArZu3ar22NLIyEj069cPL168gKOjI5o1a4aLFy/C0dGx2J+HyQoiIiIiIiKit1TVshyspGZIzkovdF0xFChjnApHk2Q4GifDQpIJiUgBuVKMVLkx4jKtEJdhhReZFlBocEOEldQMVSydNWpnq1atoFQq8319x44deb7n+vXr+b7nl19+0ajuomCygoiIiIiIiOgtScUSdK/QBLvCTkGBvJMBVtJXqGX1FLWsnsJUkgWlElBABDGUEIkg/F0L0RCJgFdyKe4ku+BOsguSs0zzLFMMEXpUbAKpWKLNj6dzTFYQERERERERlYDuFRrjp7B/cy03FmXBz/4RalpFQwlALFItF4kASY7Expt/m0qyUN8mHA1swnE3uRzOxVeBTKl+Gq8E0K18Y218HL3iBJtEREREREREJcDZzA5dy/tADJGwrKJZPPpXuIwaVqrREmJRAQXkQSxSJTFqWEVjQIXLqGgW//o1iPBBeR84m9mV1EcwGExWEBEREREREZWQCR4fwM7YEmKIUMcqEh8634SZJLPISYo3iUWAmSQTHzrfRG2rKIghgp2xJSZ4+JdMww0MkxVEREREREREJcRCaorZtXujplUkWjg8BFD00RT5yS6npcMD1LSKxOzavWEhzXsui3cdkxVEREREREREJcjVLB4tHR5otY6WDg/gmuOWkPcNkxVEREREREREJSRTnoILsYug/dNtMS7EfgmZIkXL9egHkxVEREREREREJeT68/XIkL8EoNByTQpkyONxLW69luvRDyYriAhhYWEYNmwYKleuDDMzM1SpUgXz589HZmam2no3b95E8+bNYWpqiooVK2LFihV6ajERERERkeFJkT3Fo+QDUGo9UaGihAKPkg8gVRatk/p0SVr4KkT0vgsODoZCocC3336LqlWr4vbt2xgxYgRSU1OxatUqAEBSUhI6dOiAdu3aYcuWLbh16xaGDh0KW1tbjBw5Us+fgIiIiIhI/x4m7YMIIiih1FmdIojwMGkf6pUZo7M6dYEjK4gInTp1wvbt29GhQwe4u7vjww8/xNSpU/Hnn38K6+zatQuZmZnYtm0batWqhb59+2LixIlYvXq1HltORERERGQYFMosPEz8U2ejKrIpocCDxD+hUGZptP7p06fRtWtXuLi4QCQSYd++fQWuHx0djf79+8PDwwNisRiTJ0/Oc73ff/8dnp6eMDU1RZ06dXD48OEifhJ1pX5khUwm03cTDFp2/7CfCvY+9lN8fDzs7OyEz3Tu3Dk0a9YMIpFIWNa2bVt89dVXePbsGezs7HKVkZGRgYyMDLUyAUAul0Euf3/6qqRl9w37qHCG2leGtiuQyWQwMjIq8TKpYO9jbNAG9lPeGEOLx1DjgqEx1H4ytN1AUeNnQsYDZCqStdii/GUqkpCQ8RD2pp6Frpuamop69eph6NCh+OijjwpdPyMjA46OjpgzZw7WrFmT5zrnz59Hv379sGzZMnzwwQfYvXs3unfvjmvXrqF27dpF/jwAIFIqlbobn2Jg9u/fr7e6JRIJ7O3tYWtrCxsbG1hYWEAikUCpVEImkyEpKQkJCQl4+fIlkpP1s8FT6RUdHY3PP/8cgwcPRocOHQAA8+fPh5OTE8aOHSusFxERgQkTJmDDhg2oWLFirnLOnTuH+Ph4eHt7o06dOrCxsYFEIoGTkxNevXqFhIQEJCYmIj4+HnK5XGefj6ikGBsbq+3LTU1NIZFIoFAokJmZqbaNp6en67Wt3bp1K7Gy9Bk/gYL7PSMjA4mJiQbT70TFIRKJcPXqVSQkJMDb2xuenp6wsLCAUqmEs7Mz0tLSkJCQIBwrEr2LzM3NYW9vDxsbG9jY2MDY2BhisRhyuRzp6elITExEQkIC4uPj9ZrMLEr8fJj4Fy7HLddiawrWyHEmqtp0L9J7RCIR/vrrL3Tvrtn7WrVqBS8vL6xdu1ZteZ8+fZCamoqDBw8Ky5o0aQIvLy9s2bKlSG3KVupHVrRv377ErzYVRiwWQywWQyQS5btOmTJlhP9XKpWQy+XQR15JJpPhxIkTeumnd4mh9tOsWbOEOSfyc/PmTXh6vs7ARkVF4fPPP0efPn3UdkLffPMNXF1d0aVLF2HZ3bt3AQAtWrRAjRo1hOXZ23hhO/fy5csDABQKJVJTFUhJUSBLs9Fr7zW5XIYbN06gXr32kEgMZ3syRPrqK2NjESwtxTA3FxW4L3d0dBT+X6FQQKFQ6G1fXtL0sb8TiURC/Cyo38uWLSv8v7773RBjg6FhP6nLjqEffvhhgeu5uroCALKylEhJUSA1VQGFbkeeGyTGUM3os5/MzFQx1NQ0/xkJbG1tUa5cOQCqcyGlUqmXfXlR42d8RghEkEIJ3R/QiiBFfEawzuvNduHCBUyZMkVtWceOHQu9xaQgpT5ZYWRkpPfAqMyKALIeAMp0ACJA4gBIa0IktgSgOjiTSvX7VRlCP70LDK2fpk2bhmHDhhW4jru7u9Dmp0+fokOHDvDz88PWrVshFr8OIuXKlUNcXJza58seklqxYsUCP3daVjoep0YgUZYMJZQwERvD1dwFZU0dAABisQhWVhJYWUmQlgYkJgKld8zXaxKJEQ+0NKSrvpJIAFtbwMREfblcocCj2HhEvEhAhiwLRlIJnG2sUN3FAcb/339nn4C8LwxhfyeXKxB+NxJRD6Ihy5BBaixFWVcHVK5bCcYmqrYZQr8bQl+9C9hPeYtLSkVIdBySX6luCbE2M0UNF0fYW5oDAKRSEWxtJbCxkSA5GUhJ0WdrDQdjqGZ02U8mJoCNDfDmaU2GXIaHydGIzUiAXKmAidgIFc0dUMnCEWLR6wS1vvflmkiXP9dLogIAlMjCK/kLvdQNADExMXByclJb5uTkhJiYmGKXWeqTFfqgVCqAzDNQpv0GZAYCyoQ81hJBKXEDTNtBZNYXImnuIfZEhXF0dFS7sluQqKgotG7dGt7e3ti+fXuugODr64vZs2er3bt34sQJVK9ePc/5Kp69eo5jMacRGH8DMa/i8pwR2VJqgZrWVdHOqTnq29UCAJibq4JZQgKQ41ZdIr2zsACsrYHsC/oZsiwcuRGC/YF3cTsiBumy3AcnUokYHs4O6FLfEz18asHG3FTHrX7/ZKRn4t9fzuL4jlO4f+URMtIzc60jNZLCva4r2gxojo6DW8PS1kIPLSUqvhvh0fjt4k2cu/8Eccmpea5TztYKzTzc0Ne3LjxdykIkUu2jTE1VMZQjFclQZG+bFjl2xS8zU3AwKhABMTcQmhoLuTL3sCBziTFq2FTEBy4+aO1UB0Ziwz91VSj0O+mGXJE7Jr7LDP8bf88oX/0DZfIyQB5R2JqA/DGQ+j2UqT9AadIOIuu5EEmcCnkfUdFFRUWhVatWqFSpElatWoW4uDjhNWdnZwBA//79sXDhQgwbNgzTp0/H7du3sW7dOuzYsUOtrBcZL7Ht8W+4En8DikIe2ZSSlYrL8TdwOf4GnE0dMdCtJ3zs60EiAcqUUY2wSM37GI1Ip2xtVYk0QHXb0o9nruL7k4FITHtV4Puy5ArcjXqGu1HP8M2x8+jVpA4mdGoKc2Ne7SsquVyBP74+gF+/2o/klwVfOs6SZeH+1VDcvxqKHXN+wQej22PQor4wNTcp8H1E+nYzPBpL9v+L25Gxha4bnZCM3y/fwu+Xb6GBW3nM6d4a1cs5wtgYcHAA4uOBzPfrvIXeQWKx6pgue9BUatYrbHpwBIefXkGmouCMWpo8E1fjH+Fq/COsv38QQ9zbomdFPx20uvjEYv3Gd4nYWG91Ozs7IzZWfd8VGxsrnEsUB5MVOqJUJECZtAh4dbDwlXNRABnHoXx+AbCaBZF5zxJvH5VuJ06cwMOHD/Hw4UNUqFBB7bXsewNtbGxw/PhxjBs3Dt7e3nBwcMDatWvRq1cvYd2TseexM+x3pMkLPoHLS8yrOKwI3oJmDj4YVrkPLI0sYGOjeo0JC9InOzvAzEz1/4+fxWPOb8dx40l0kct5JcvCT2eu49TdUCzq1QE+VSoU/iYCAITfi8SKwRsREviwyO99lZaBP1YfxIUDV/DF9nGo1bTwWdKJdC0zKwsbjl/AzjNXIVcU/T7Ia2FR6LNhN0a1aYyRbRpBIhajTBngxQsmLEh/3kxUXH5xH8vv7kXsq4Qil/UyMwWrg/fjVOwtzKzVCy5m9iXb2BJiJnHQ65wVppIyha+oJb6+vggICFB7rOmJEyfg6+tb7DIN/8af94BSHgvli37FTFTkLCgZyqSZUCTpb4ZZej8NHjxYmLzozX851a1bF2fOnMGrV68QGRmJESNGCK/tDPsDmx/9VKxERU5nnwdi7u1ViM9IAKC6t9GUI+dJT6ytXycqgp48xYBvfilWoiKniBeJGPHdXhy8dq8EWvj+u3XmHib4zi5WoiKnqIcxmNpmIU79er6EWkZUMtIyZRi9bR+2/XelWImKbDK5At+cuIDPfj4IWZYcIhFgb6+aa4dIH+zsXicq9kVewufXthUrUZHTtZehGHHpG9xPinr7BmqBvUl1vc5ZYW+iWUI+JSUFQUFBCAoKAgA8fvwYQUFBCA8PBwDMnDkTAwcOVHtP9vopKSmIi4tDUFCQMNk+AEyaNAlHjx7F119/jeDgYCxYsABXrlzB+PHji/2ZmKzQMqXiJZTxgwD5o5IrNG0bFMmrS648ore068lfOPg0oMTKi0yPwaK765AkUw31trFRZeeJdMnY+PX9tfeinmH01r+QlF4yE6lkKRSY9csxHL/5oETKe1+FBD7EbP+lSEtKK5HysmRZWPbJOpzbd7lEyiN6W7IsOSbsPIBLjwq7PVhzAXceYeruw1AolBCLVSeMRLpmYfF6MuojT69i1b2/Cr09WFMJslRMvrYVYSnPSqS8kqRpskDf9V+5cgX169dH/fr1AQBTpkxB/fr1MW/ePABAdHS0kLjIlr3+1atXsXv3btSvX1/tKYF+fn7YvXs3vvvuO9SrVw9//PEH9u3bh9q1axf78/DwX8uUibMAeWjJF5y6BcqM/0q+XKIiuhp/C/uijpd4uVHpMfj20c8AVFeFsm8JIdIFkUg1T4VIBKRnyjDlp4NIeVWyY6kVSiXm/HYMUfGJJVru+yI95RUW91mD9JS3G631JoVcgRWDN+JZxPMSLZeoOL45cQEXH4YXvmIR/XPnIXaevQpAPfFKpAtSqWpkIgA8TonFint/5jnR+ttIlKVh7q1dkBUy74Wu2ZpUg7HYWi91G4utYWtSVaN1W7VqleeI6uy56Hbs2IFTp06pvSev9cPCwtTW6dWrF0JCQpCRkYHbt2+rJTOKg8kKLVKm7wcySu5qc67yE+dAqUjSWvlEhUnJSsO3j3ZprfzL8TdwNi4QgGooPp9oR7pibv760WprD59FxAvtJBTSMmSY9/sJrZT9rvtu2k+ICdPOVbO0pDSsGbFFK2UTaepWRAy2n76itfI3HDuP0GeqR4xbWb1+khGRtmVvb3KlAkvu/FboRJrFFZoSg+2h2jvXKg6xSIqqNj0g0vFptghiVLP5CGLR+zUlJZMVWqJUZqqe+qFNilgoU3mwRfrzZ+QRvJRp96rwzrA/kPX/IMcrQ6Qr2dtaaOwL7D4fpNW6Lj2M4O0gb3h8KxyHvtVuEufK8Ru8HYT0atmBU281R0VhMrLkWHnoNADVrZTZ8+8QaZNY/HqusSNPr+JeUqRW6/s57BRi0hO0WkdRVbPuUeIjSQqjhBJVrbvrtE5dYLJCW14dARTx2q8nbS+UypK5h5qoKDLlmfj3mfYnqkuQJeHii+sAVAdanLuCtM3Y+PWoil8u3IRSB8cbe7ScEHnXHNh0NNcEv9qp55jW6yDKy53IWNwIf7vJejVxNiRMGBnGhD/pgrn561E8eyO0f5woVyqwP+qi1uspCgujcqhi9aHORleIIEYVqw9hYVROJ/XpEg/7tUSZtkdHFb1UJUaIdOz8i6tIySqZSe8KcyxGdWVIJHo9WRORtmRffUzPlOHA1bsFr1xCAh9FCsO1S7v0lFcI2HVGJ3VdD7iFqAfaP2EketNvl27qpB6FUok/Lt8CoLqVkk8GIW3LjqF3EyNwP/mpTur8OyoQWQq5TurSVAPHiTCR2EP7p9timEjs0cBxopbr0Q8mK7RAqUgDZEG6qy/jgs7qIsp2KzFYZ3XdTw5Fhlw1uSHnrSBty97G7kTGlvikmgW5pIVJ9t5FwZcelPikmvlRKpUIOnVHJ3UR5XTxYck9/aPwul7vWxhDSduyRyZejX+7x00XxcvMFDxOjdVZfZowElvC12kuAIWWa1LA12kujMSWWq5HP5is0Iase9D+hpmzvtu6q4vo/0JTdHdipYACT9JU9zzyQIu0LXsbuxup20ei6bo+Q3X/mhaeoFWAB1dL8NHiRBpITHuFSB0+Beh+zHPI5KqrzoyhpE1GRq9vAQlOitJp3bquTxPlzJugocNUrdbR0PELlDNvotU69InJCm3I0t0VZ1V9oVAqdXf1j0imkOFpum4z2GGpqmSF9P2a5JgMjETy+kArJDpOp3WHPNVtfYYq9EaYjut7otP6iHS9b8nMkuPxs5cAGENJu3JuXw9TdHMLiFCfjm45KSoP2145EhYldeqtKqeh4xfwsPm4hMo0TExWaIMiVccVygGlbuYOIAKAV/IMKHQ8y3GaPB0AH71G2pVz+0rV4S0gAJD8ipMlA0BaUrpO60tNZPwk3UrN0P0FppT/718YQ0mb1GJolm5jWmqWbm4fLA4P215o7bIOphL7t550UwQxTCX2aO2y7r1PVAAA86vvDeadSHdE0P3Rjvj/27hYDLi46Lx6nZLJVP91duaQ3cJota90vJmLeRYBABDpuB9EYvY76ZY+Ymj2dm5qyhhKKtruJ11v5SKRYZ8LlTNvgg9cf8X15+vxKPkARBBBWYRpA0QQQwkl3K26ooHjxPd2joo3MVmhDWI7HVdoBIjMdVwnlWamElNIRRJkKXU387KllNs46ZatuZlO67MxN9VpfYbKuoxuD8Cs7EvHAR8ZDhsL3f/Wbcy4fyHdsjGyQHxmis7qszbSbcwuDmOJJRo7zUJt+yF4mLQPDxL/RKYiCQAgghRKZAnr5vzbWGyNajYfoap19/fy8aQFYbJCG4w8dVuf1AMiEb9K0h2pWIIK5uWEeSR0wc2ios7qIgIATxdHndZXo3xZndZnqKp4VQZwSmf1Va1fWWd1EQFAdWcHiEUiKJS6uZ3S3NgIbg66vpBGpV01q3I6fUKHh9W7M2TIwqgc6pUZgzr2I5CQ8RDxGcGIzwjGK/kLyBWZkIiNYSopA3sTT9ibeMLWpCrEpfRcr3R+am2TVgdgBECmm/qMauumHqIc3C0q6SxZYSSSwtW8vE7qIspWs4Jukwe1KjjptD5DVa2B+3tdH5G5iTHcHO0Q+ixeJ/V5ujhCzNudSMeqW1fA8Zgg3dVnVUFndZUUsUgKe1NP2Jvq+EL3O8Swb+55R4lExoCxr+7qM2mps7qIsjWwq6WzuurYekIqluisPiJANdKhjJVubj+SiEXw86ikk7oMnYdPFdg4WOukLolUAu/2dXVSF1FOzau76ayuZjqsiyhbkzLVdVZXeTN7uFlydOL7iMkKLRGZ99NNReJygElr3dRFlEND+7qwN7bVSV0dnVvopB6inIwkEvRspJuRay1ruMPZ1kondRk6YxMjdBqqm7jm180HZVzsdVIXUU59mtTVyZM5jCQS9PThCFzSPTfLsmhgp5uRa90qNNZJPaR7TFZoi0lrQKL9e+xF5gMgEvGKM+meRCTRSRLB2dQRXra6G8VBlFPvJnVhLNX+PnZAMy+t1/Eu+WB0B0iNtH+navcJnbVeB1FeKjnYoZmHm9br6VTXAw5WFlqvhygvH7s21XodZhJjfODio/V6SD+YrNASkUgMkfWX2q1EWg2wGKzdOogK0NWlHSqYOWutfBFEGFVlAMQG/jgqen8521phbPsmWq2ji1d1NK7qqtU63jXObmUxYE5PrdbRfmBL1G1RU6t1EBVkVrfWMNNiUs7G3BRT/ZtrrXyiwrQsWxtNHWpotY4x1TrDxpgJufcVzwC0SGTiB5j10VLpEohslqvmxyDSEyOxEcZWHQixlnYl7Z2bo7aN7u55JMrLkFYNUVtLk1+WsTLHrO68lS8v/Wb20NqTOsq42GPs2iFaKZtIU65lbDGpUzOtlT+zayuOqiC9m1bzI1hJtfNY0QZ27uhZ0U8rZZNhYLJCy0TWswGjhloodwFERnVKvFyioqpmVRnD3fuWeLk1rathUCXtXlkl0oRELMaagR/A2cayRMs1M5Ji3cCusLUw/GfD64NEKsG8P6aW+JwSZpammL93KixteRJH+vdps/ro7l3yI3wGNquPrg20e0WbSBMOJtb4su4AGItLdhRRebMyWFCnf4mWSYaHyQotE4lMIbL7DjAuqWHEYoisF0Jkrq0RG0RF1965OUa494MYJTNbWG3r6phRYyyMJRw5RIahnJ01to/phQr2NiVSnqWpMTYP7wEvt3fnufD6UK5yWaw6OR9lXR1KpDxLWwssOzIbNRpXK5HyiErCoo/bo0fDkpubaWCz+pjetVWJlUf0tnzKVMPyeoNgKjYqkfJczR2xoeFIlDHhxNTvOyYrdEAktoTI7gfAYjyAt/iRSlwhsv9Jd08aISqCDs4tML/WZDiZFP+kQiqSoHfFDzC75gSYSUxLsHVEb69iGVv8Oqk//Ou/3fPQG7qXx++TB6Ch+7v3THh9qODhgk1XvkKrPm831NerdW1suroCtZryefZkWCRiMRb36oCFPdvB0rT4SXpbc1Os7N+FiQoySI0dPPBD44moaf12DyDoWr4RtjYeDydT25JpGBk07U+1TQAAkcgIIquJUJq2hzJ5JZB5DoBSwzdbA+Z9IbIcB5GIw4XJcNW08cAqrzn4I/Iw/ok5i1R5mkbvE0GEurae+KRSD7hZaP8pOkTFZWNuiq/6d0bHeh7YePwCQp7GafxeFztrDG3VEH396mmxhe8nGwdrzN7zGVr28sNPi35H6M0nGr/XuXJZ9JneHR+MbK/FFhK9vY8b1UFTDzesOXIGx289gEyu0Oh9JlIJ/Ot7YnKnZihjaa7lVhIVn5tlWWxpNBZ/hJ/DnidnEJeRqPF7a1hXwMiqHdGojIcWW0iGhskKHRMZ1YDIfhuUWWFQpv8GZF4GZCEAMtRXFDsCRrUgMmkPmH3AJAW9M0wlJvikUg/0quCPs88DcTk+CKEp4UiQJamtZyw2QiXzCqhpUw3tyjaFs1lZPbWYqOja1KqCNrWqICjsKf4KvIOb4dEIfRYPuUI9CV2xjA1qV3SGf31PtPCsDLG4ZG6VKq2afdQYzT5qjNtng3F857+4d/EBwoOjoMhxUicSieBSxQkePlXRtn9z+HT2gljMgaT0bihna4UV/bpg2gep2Bt4GxcehONu1DOkZmSqrWdtZoKa5Z3QrHolfNSwNmzMORqR3g0SkRh9KjVHz4p+OBd3DydighCcFInoVy9zredu4YRatpXQtbwPPK05GrE0YrJCT0RSN4ispgEAlMosQB4OKNMASACxPUQS7cw8T6QrJhJjtHVqirZOqmdsx2cmIEmWDIVSCVOJCZxMHSARSfTcSqK34+XmIsw7kZ4pQ2R8IjJlchhJxXCyseIJhJbUbuaJ2s1Ut3Okp75CTOgzyDJkkBpLUdbVgZNn0jvPwcoCo9o0xqg2jQEA4S8SkPJKdWHLxswU5Uto/hwifZGKJWjpVBstnWoDABIzU/EsIxFypQImYiO4mNnDRFIyc1zQu4vJCgMgEkkBqbu+m0GkVfbGtrA3ttV3M4i0xszYCNWcS2YiSNKcmYUpKtdx1XcziLTKtYytvptApFU2xhawMWaimdRxXCQR6UxGRgb27duHjIyMwlcmIiIiQWZmJv7880/GUCIqNZisICKdSUlJQY8ePZCSkqLvphAREb1TkpOT0bNnT8ZQIio1mKwgIiIiIiIiIoPCZAURERERERERGRQmK4iIiIiIiIjIoDBZQUREREREREQGhckKIiIiIiIiIjIoTFYQERERERERkUFhsoKIiIiIiIiIDAqTFURERERERERkUJisICIiIiIiIiKDwmQFERERERERERkUJiuIiIiIiIiIyKAwWUFEREREREREBoXJCiIiIiIiIiIyKExWEBEREREREZFBYbKCiIiIiIiIiAwKkxVEREREREREZFCYrCAiIiIiIiIig8JkBREREREREREZFCYriIiIiIiIiMigMFlBRERERERERAaFyQoiIiIiIiIiMihMVhARERERERGRQWGygoiIiIiIiIgMCpMVRERERERERGRQmKwgIiIiIiIiIoPCZAURERERERERGRQmK4iIiIiIiIjIoDBZQUREREREREQGhckKIiIiIiIiIjIoTFYQkZqMjAx4eXlBJBIhKChI7bWbN2+iefPmMDU1RcWKFbFixQr9NJKIiIiIiN5rTFYQkZpp06bBxcUl1/KkpCR06NABlSpVwtWrV7Fy5UosWLAA3333nR5aSURERERE7zOpvhtARIbjyJEjOH78OPbu3YsjR46ovbZr1y5kZmZi27ZtMDY2Rq1atRAUFITVq1dj5MiRemoxERERERG9j0p9skImk+m7CQYtu3/YTwV7H/opNjYWI0aMwB9//AEjIyMAqs+T/ZnOnTuHZs2aQSQSCcvatm2Lr776Cs+ePYOdnV2uMjMyMpCRkSH8HR8fn6tcyu192J50hX2lGZlMJvyuS7JMKhi3T82wn/LGGFo83J40w37SjDbiJ2lOpFQqlfpuhL7s379f300gMghKpRJffvklPD090bt3b8TGxmLUqFFYvXo13N3dAQDz58+Hk5MTxo4dK7wvIiICEyZMwIYNG1CxYsVc5e7Zswe//vprruW7d++Gubm59j4QEeXSrVu3EiuL8ZNI+xhDiQxDScZPKppSn6xo3749s2UFkMlkOHHiBPupEIbaT7NmzcKqVasKXOfmzZv4559/8McffyAgIAASiQRhYWHw8PDA5cuX4eXlBQDo0qUL3NzcsGnTJuG9d+/ehZeXF27cuIEaNWrkKjuvq0IeHh6Ijo5GmTJlSuZDvocMdXsyROwrzchkshI9uWH81Ay3T82wn/LGGFo83J40w37STEnHTyqaUn8biJGREX+gGmA/acbQ+mnatGkYNmxYgeu4u7tj7ty5uHjxIiwtLdVe8/X1xYABA7Bz506UK1cOcXFxap8ve0hqxYoV8/zcRkZGucrMXm5I/WSo2E+aY1/pHvtcc+wrzbCf1DGGvh32k2bYT2TISn2yguh95ujoCEdHx0LXW79+PRYvXiz8/fTpU3Ts2BG//vorGjduDECVuJg9e7bavXsnTpxA9erV85yvgoiIiIiIqLiYrCAiuLq6qv2dfSWnSpUqqFChAgCgf//+WLhwIYYNG4bp06fj9u3bWLduHdasWaPz9hIRERER0fuNyQoi0oiNjQ2OHz+OcePGwdvbGw4ODpg3bx4fW0pERERERCWOyQoiysXNzQ15zb1bt25dnDlzRg8tIiIiIiKi0kSs7wYQEREREREREeXEkRXFEB4ejufPn+u7GTqRlZWFR48e4fr165BKubnkh/2kmYSEBADAjRs3YGtrq9e2GDJuT5orbX3l4OCQa44ZXXgz7pWmPn8bpW37LC72k2YYQzXD7Ukz7CfNZGVl5dk/+orHpQ23zCIKDw9HjRo1kJaWpu+mEL2z2rZtq+8mEL2TzM3Nce/ePZ0eIDHuERkWxlAi/dNHPC6NmKwooufPnyMtLQ3Lli2Du7u7vptDRESlRGhoKGbOnInnz5/r9OCIcY+IiOg1fcXj0ojJimJyd3dHzZo19d0MIiIinWDcIyIiIl3iBJtEREREREREZFCYrCAiIiIiIiIig8JkBREREREREREZFCYriIiIiIiIiMigMFlBRERERERERAaFyQoiIiIiIiIiMihMVhARERERERGRQWGygoiIiIiIiIgMCpMVRERERERERGRQmKwgIiIiIiIiIoPCZAURERERERERGRQmK4iIiIiIiIjIoDBZQVq3adMmfPzxx1ope/bs2Zg4cWKh682cORPff/+98HfHjh3x008/aVxPVFQU6tSpg+Dg4GK1szTYt28f/Pz89N2Md4qm2y8VXVF/49r022+/Yfz48fpuxnvLkL7rotBmu+vUqYOAgIAC10lISEDLli0RFRWllTaQbgQGBqJOnTpISkrSd1Peado8Vi3tNNkf6cqaNWuwdOlSfTeDioDJCj2IiYnB3Llz0aZNG9SvXx8dOnTA8uXLkZCQoO+macXgwYOxdetW4W9dn6CFhITgzJkzGDBggLBsz549RQpKzs7O+Pfff1G1atUSadO7nvzI6yC7U6dO+Pvvv/XUonfTjBkzsHjxYn03o1TQ58FSjx49cO/ePVy9elUv9evbkCFD8NVXX+VaXtoTnG/GIV1vo9999x1at26N8uXL66xOejt5/Za8vLzw77//wsrKSk+tItKcvo9/Bw8ejAMHDiAiIkIv9VPRMVmhYxEREejTpw/Cw8Px1Vdf4fDhw5g7dy4uXbqETz75BImJiVqtXyaTabX8vJibm8PW1lbn9WbbvXs3OnToAHNzc2GZvb09zMzMNC5DIpHAwcEBUqlUG00sMfr4frOZmpqiTJkyeqvfkGj6PVhZWcHa2lpr7ZDL5VAoFFornzRjZGSELl26YNeuXfpuCuVBX/vNosahkpSeno6//voLPXr00Ev97xt9xl4jIyM4ODhAJBLprQ2GQp/fQ2EMuW2liZ2dHfz8/PDbb7/puymkISYrdGzJkiUwMjLCt99+Cx8fH5QrVw7NmzfH999/j2fPnmH9+vUAgHXr1qF///653t+zZ09s3rxZ+Hvv3r348MMP4e3tja5du+KXX34RXsvOXh49ehSDBw+Gt7c3Dh06lGe7rl27hkGDBqFhw4Zo164dli1bhrS0NADAgQMH0KhRIzx58kRYf/HixejatSvS09MBqEaLTJs2DU2bNkWjRo3Qp08f3Lx5E4D60LpNmzbhwIED+Pfff1GnTh3UqVMHgYGBQhmff/45/Pz80LRpU0yYMEFteKpcLseKFSvg5+eHZs2aYfXq1YX2t1wux4kTJ9CqVSu15W+ODKhTpw727t2LSZMmwcfHB/7+/vj3339z9WXOTPCDBw8wevRoNGrUCC1btsTMmTPx8uVL4XWFQoFt27ahS5cuaNCgAdq3b4/vvvsOgGoUAgD06tULderUwZAhQwCohnP269cPjRo1gp+fHz799FM8ffo0z89W0Pdb0HYBAKtXr8YHH3wAHx8fdOrUCRs2bMgVSE+dOoW+ffvC29sbzZs3x6RJkwCoruw8ffoUK1asEL5DQP0qaVhYGOrUqYPQ0FC1Mn/88Ud07txZ4z58U3YdAQEB8Pf3h7e3N0aNGoWYmBi19X799Vd07twZ9evXR9euXdVGfKxatQrjxo0T/v7pp59Qp04dnD17VljWpUsX7N27V/i7pH5nb3pzlNGQIUOwbNkyrF69Gk2bNkWrVq2wadMmtfckJSVh4cKFaNmyJby9vdGjRw/8999/av3z77//olu3bvD29kZ0dDQyMzOxatUqtG3bFo0aNUL//v2F3x2gGg4+bdo0tG3bFj4+PujRowcOHz6sVu/x48fRo0cPNGzYEM2aNcPw4cOFfURhfSSTybBkyRK0bt0a3t7e6NChg9poq5zOnz8Pb2/vXEOaly9fjmHDhgl/nzhxAt27d0eDBg3QsWNH7Ny5M99+7tixIwBg8uTJqFOnjvB3REQEJkyYgJYtW6JRo0bo27cvLly4oPbeuLg4jB07Fg0bNkSnTp1w6NChXPuPpKQkzJ8/Hy1atECTJk0wbNgwhISEqJXTsmVLnDp1Cq9evcq3naVd9u9hx44daN26NZo1a4bFixer7ZtevHiB8ePHC9/HwYMHc5VT2PeRHZP27t2LTp06wdvbO8/2KBQKbN26FZ06dULDhg3Rs2dPHD9+HACgVCoxfPhwjBo1CkqlEgCQmJiItm3b4ptvvhHKyG8/CqjHofy2UQA4efIkevfuDW9vb3Tq1AmbN29GVlaW8PqTJ08waNAgeHt7o1u3bjh//nyhfX3mzBkYGxujXr16assfPnyIcePGoUmTJmjcuDEGDRokXIFUKBTYvHkz2rZtiwYNGuDjjz9W229m7wv/+ecfDB06FD4+PujZsyeCgoKEdZ4+fYrx48fDz88PjRo1Qvfu3XH69GkAeY+0CQgIEGIM8Pq7++uvv9C+fXs0atQIixcvhlwux7Zt29CqVSu0bNlSiLXZCtsmQkJCMHToUDRu3BhNmjRB7969cefOnXz7r06dOvj1118xYcIENGrUSLjNtLDvaufOnejRowcaNWqEdu3aYfHixWr7UQC4fv06hgwZAh8fH/j5+WHUqFFITEzE7NmzceXKFfz8889C7I2KilK7DSQlJQUNGzbEmTNncvVj48aN1Y7ZCjreelN2HadPn8ZHH30Eb29vDBgwAA8ePFBbr6D98u7du9WSY9nfbc6TxuHDhwvHwZr0Z37fgya2bt2Kli1bonHjxpg3bx4yMjJyrVPYsZQmx75v7mcK2xY1iUu//PKLcAzUsmVLTJkyRXitoP0WoNpPTZ8+HS1atEDDhg3h7++Pv/76K88++v3339GmTZtcFz0mTJiAuXPnCn8XdMz1pvyOf2/fvo0RI0agefPm8PX1xeDBg3H37l2194aGhmLgwIHCvu7ChQu5RqRpsm23atUKR44cybeNZFgM+zLxeyYxMRHnz5/HxIkTYWpqqvaag4MDunTpgqNHj2LOnDnw9/fH1q1bERERgYoVKwJQHUTcv38fa9asAQAcPHgQGzduxKxZs+Dp6Yng4GAsWLAAZmZm6Natm1D22rVrMXXqVHh6esLExCRXuyIiIjB69GhMmDABixYtwsuXL7F06VIsXboUixcvxocffoj//vsPM2bMwE8//YTz589j7969+Pnnn2FmZoa0tDQMGTIEZcuWxYYNG+Dg4IC7d+/meUV38ODBCA0NRUpKijD83cbGBjKZDKNGjUK9evWwY8cOSKVSfPvttxg9ejT+/PNPGBkZYefOndi/fz8WLVoEd3d37Ny5EwEBAWjUqFG+fX7//n0kJyejZs2ahX4/mzdvxpQpU/D5559j9+7dmDFjBo4fPw4bG5tc6yYlJWH48OH46KOPMG3aNGRkZGDNmjWYOnUqfvjhB6Hf9+7di2nTpqFBgwaIi4vD48ePAaiG//br1w/ff/89qlatCiMjI2RlZWHSpEno2bMnVqxYAZlMhlu3bhV6teTN71eT7cLCwgKLFy+Go6MjHjx4gAULFsDCwgJDhw4FAJw+fRqTJ0/GiBEjsHTpUshkMuHgZ+3atejZsyc+/vjjfG+lcXNzQ61atXDo0CFMmDBBWH7o0CF06dJF4z7MS3p6Or7//nsh8bdkyRJ88cUXwkF/QEAAli9fjunTp6NJkyb477//MHfuXDg5OaFRo0Zo2LAh/vzzT8jlckgkEly5cgV2dnYIDAxEs2bNEBsbi4iICPj4+AAoud+Zpg4cOICBAwdi9+7duHHjBubMmQMvLy/4+flBoVBgzJgxSEtLw7Jly1CxYkWEhoZCLH6dd05PT8e2bduwcOFC2NjYwN7eHkuXLsWjR4+wYsUKlC1bFgEBAcJvq1KlSsjIyEDNmjUxdOhQWFhY4PTp05g1axYqVqyIOnXqIC4uDtOnT8dnn32Gtm3bIjU1FdeuXRPqLKyPdu3ahVOnTmHVqlUoV64cYmJiciWYsjVu3BhWVlb4559/8NFHHwFQJR2PHj0qJHbu3LmDqVOnYsyYMejUqROCgoKwZMkS2NjYoHv37rnK3LNnD1q2bIkvv/wSzZo1E/orLS0NzZs3x8SJE2FsbIwDBw5gwoQJ+Pvvv1GuXDkAwKxZs5CQkIBt27ZBKpVi5cqViI+PVyv/888/h6mpKTZv3gxLS0v8/vvvGD58OA4ePCjsP2rVqgW5XI5bt24J2xblFhgYCEdHR/zwww+IiIjAF198AU9PT2FfM2fOHMTFxeGHH36AVCrF8uXLi/V9hIeH48SJE1izZo3a7yenrVu34uDBg5g7dy5cXV1x9epVzJw5E3Z2dvDx8cGSJUvw0UcfYdeuXfjkk0+waNEiODk5YfTo0QAK3o++Kb9t9OrVq5g9ezZmzJiBBg0aICIiAosWLQIAjBkzBgqFApMnT0aZMmWwe/duJCcnY8WKFYX287Vr11CjRg21ZbGxsRg8eDB8fHzwww8/wMLCAtevXxdODn/++Wf8+OOPmDdvHjw9PfHXX39hwoQJ2LdvHypVqiSUs379ekydOhWurq5Yv349pk+fjkOHDkEqlWLJkiWQyWTYsWMHzMzMEBoaqjbqURMRERE4c+YMtmzZgoiICEyZMgWRkZGoVKkStm/fjqCgIMybNw9NmjRB3bp1ARS+TcyYMQOenp6YM2cOJBIJgoODCx1JuWnTJkyePBnTpk2DVCot9LsCALFYjJkzZ6J8+fKIjIzE4sWLsXr1asyZMwcAEBwcjOHDh6NHjx6YMWMGJBIJLl++DIVCgRkzZuDJkyeoWrWqMAeOnZ2d2gUNS0tLtGjRAocPH0bz5s2F5YcOHUKbNm1gZmam0fFWfr7++mtMnz4dDg4OWL9+vbC/NDIyKnS/3LBhQ+H3am9vrxZ7e/fuDZlMhps3bwpJaU36M6/vQRNHjx7F5s2bMXv2bNSvXx9///03du/ejQoVKgjrFBbXNDn2zWs/U9i2WFhcunPnDpYvX46lS5fCy8sLiYmJavG4sP3WN998g9DQUGzevBm2trYIDw/PM1EDAB06dMCyZctw+fJlNGnSBIDqXObcuXPChZTCjrnelNfxLwCkpqbiww8/xMyZMwGoEntjx47FoUOHYGFhAblcjkmTJqFcuXLYvXs3UlNTsWrVKrWyNd22a9eujdjYWERFRfE2uHcAkxU69OTJEyiVSlSuXDnP193d3ZGUlIT4+HhUrVoV1atXx6FDh4QDn0OHDqFu3bpwdXUFoNpBT506Fe3atQMAVKhQAY8ePcLvv/+udhL1ySefCOvkZevWrfD398enn34KAKhUqRJmzJiBIUOGYO7cuTAxMcG8efPQs2dPLF++HP/88w/Gjh2LWrVqCe16+fIlfvnlF+FAMLuNbzI3N4eJiQkyMzPh4OAgLP/777+hUCiwcOFC4eR88eLF8PPzQ2BgIPz8/PDzzz9j+PDhwmeZO3cuzp07V2CfP336FBKJRKPbE7p16yacSE+cOBG7du3CrVu30KxZs1zr7tmzB56enmpXyRYtWoT27dsjLCwMjo6O2LVrF2bNmiV8FxUrVkSDBg0AqA4wAMDW1lboh8TERCQnJ6NFixZCgsrd3b3Qdr/5/WqyXYwaNUpYv3z58hg8eDCOHDkiJCu+++47dOrUSW0EQvXq1QGokksSiQQWFhZq3+Gb/P39sWfPHiFZERYWhrt372LZsmUa9aGbm1ue5WZlZWHWrFnCQejixYvRrVs33Lp1C3Xq1MGOHTvQrVs39O3bF4AqcXLz5k3s2LEDjRo1QoMGDZCamorg4GDUrFkTV69exeDBg4WRNIGBgShbtmyJ/8405eHhIRyIVapUCXv27MGlS5fg5+eHixcv4vbt29i/f7/QP9nbSs7+mTNnjvB9RUdHY9++fTh+/DjKli0LQJU0PHv2LPbt24dJkybByckJgwcPFsoYMGAAzp8/j2PHjgnJiqysLLRr1w4uLi5CO7MV1kfR0dGoVKkSGjRoAJFIJJSRF4lEgs6dO+Pw4cNCsuLSpUtITk4Wyv/xxx/RuHFjYd/o5uaG0NBQ7NixI89khb29PQDVbTc5t9nq1asL/QSorhadPHkS//77L/r374/Q0FBcvHgRv/zyi7C/W7hwIfz9/YX3XLt2Dbdv38Z///0HY2NjAMDUqVNx8uRJHD9+HL169QIAmJmZwdLSMt+RUqRibW2NWbNmQSKRwN3dHc2bN8elS5fw8ccfIywsDGfPnsWePXtQu3ZtAKrvI+fvUNPvQyaTYenSpcK28abMzExs3boV3333Hby8vACofmvXr1/H77//Dh8fHzg5OWHevHmYPXs2nj9/jjNnzuD3338XTpgK2o++Kb9tdPPmzRg2bJhaHBk3bhzWrFmDMWPG4OLFiwgLC8O3334r/L4nTpyodjKXl6dPnwrrZ/vll19gaWmJFStWCAf1OffDO3fuxNChQ4XRcVOmTEFgYCB++ukn4WQbUO1fWrRoAQAYN24cunfvjvDwcLi7uyM6Ohrt27cX9h9v7r80oVQq8eWXX8LCwgJVqlRBo0aNEBYWhk2bNkEsFqNy5crYtm0bLl++jLp162q0TURHR2Pw4MFCzM2ZfMlPly5d1EYKzJ07t8DvCoBwnAWoYu+ECRPw5ZdfCv23bds21KpVS60/c86VZWRkBDMzs0Jj76xZs5Ceng4zMzOkpKTg9OnTWLt2LQDViXphx1v5GTNmjPD6kiVL0K5dOwQEBKBTp06F7perVasGGxsbXLlyBR06dMCVK1cwcOBA4fa427dvQyaTCb+3wrb9/L4HTfz888/o0aOHEGMmTpyIS5cuqZ20FxbXNDn2fXM/o8m2WFhcio6OhpmZGVq2bAkLCwu4uLgIiUdN9lsxMTHw9PQUYlpBJ+s2NjZo1qwZDh8+LCQrjh8/Djs7OyERUdgx15vyOv4FVBcqcpo/fz78/Pxw5coVtGzZEhcuXEBkZCS2b98uvG/ChAkYOXKk8B5Nt+3sfd/Tp0+ZrHgHMFlhwLKHZo0ePRpKpRJHjhwRAl1aWhoiIiIwf/58LFiwQHiPXC6HpaWlWjnZOyQA6N69u3Cw3KBBA2zZsgUhISG4f/9+rqHrCoUCUVFRcHd3h42NDRYtWoRRo0bBy8tLbTh2SEgIPD098xyBoKn79+8jIiIi184qIyMDERERSE5ORlxcnNpwUKlUilq1aglDcPOSkZEBY2Njje7lzHnyZW5uDktLy1xX7LKFhITg8uXLee6Is9ubmZmZ6/MUxMbGBt26dcPo0aPh6+uLJk2aoGPHjnB0dCzwfTm/X023i6NHj2LXrl2IiIhAWlpartdDQkLQs2dPjduel86dO+Prr7/GjRs3UK9ePRw6dAg1atQQDgYL68P8khVSqVQ4UQFUCR0rKyuEhoYKt568OeKjfv36+PnnnwGoToaqV6+OwMBASKVSGBkZoVevXti0aRPS0tJw5coVNGzYEEDxf2dvo1q1amp/Ozg4CNthcHAwnJyc8u0bQHUwm3NbfvDgAeRyOT744AO19WQymTCXjFwux/fff49jx47h2bNnkMlkkMlkwgiw6tWro3Hjxvjoo4/g5+cHPz8/tG/fXrgKVFgfdevWDSNHjkTXrl3RtGlTtGzZssADYn9/fwwYMADPnj1D2bJlcejQIbRo0UKY3+Px48do3bq12nu8vLzw008/CSNmNJGWloZNmzbh9OnTeP78ObKyspCRkSGM+ggLC4NUKlW7Au3q6qo2z0hISAjS0tJyJTWz9105mZqa8jaQQlSpUkXt+8se/QWohgBLpVK1kXLZv/9smn4fLi4uwgnE1atX1U5+skcOpKenqx0IA6rfTc7toWPHjggICMAPP/yAuXPnqp3klsR+9P79+wgKClK7rUGhUCAjIwPp6ekIDQ2Fk5OTWuLhzVs78pIdG3MKDg6Gt7d3nlfWU1JS8OzZM+EEKJuXlxfu37+vtizn/if7pCI+Ph7u7u4YMGAAFi9ejPPnz6NJkyZo165dvgmc/Li4uMDCwkL4u0yZMhCLxWojZMqUKSPsNzXZJgYOHIgFCxbg77//FmJvYYmUN/f5hX1XZmZmuHDhAn744Qc8fvwYKSkpkMvlaq+HhISgQ4cOReqPN7Vo0QJSqRSnTp1C586dceLECVhYWAgnm4UdbxUk57ZlY2MDNzc3YcSoJvtlb29vBAYGokmTJnj06BH69u2L7du3IzQ0FFeuXEHt2rWFeVw06U+geLE3NDQUvXv3VltWt25d4fZITeKaJse+Ofcz2e8pbFssLC75+vqiXLly6Ny5M5o2bYqmTZuibdu2MDMzQ3h4eKH7rd69e2PKlCm4d+8e/Pz80KZNm1y/65z8/f2xcOFCzJkzB8bGxjh06BA6deok/N4KO+bS1PPnz/HNN98gMDAQ8fHxkMvlePXqFaKjowGo4rGTk5NagiPnOQGg+badPfqV8fjdwGSFDrm6ukIkEiE0NBRt27bN9XpoaCisra2FHVvnzp2xZs0a3L17V9hRZd/rlX2P4/z584UrzNneHNKacwKvTZs2CUM6s3+saWlp6NWrl9rTMrJlD4UGgCtXrkAikSAuLg7p6enCwcLbDHnPlpaWhpo1a2L58uW5XsvOwhaHra0t0tPTIZPJChzaCCDX8EGRSJTv5IRpaWlo1aoVPvvss1yvOTg4IDIysljtXbx4MQYMGIBz587h6NGj2LBhA7777rsCDz5zfr+abBdBQUGYMWMGxo4di6ZNm8LS0hJHjhzBjz/+KKxbEt+pg4MDGjVqhMOHD6NevXo4fPiw2sFBYX2oTQ0bNkRgYCCMjIzQsGFD2NjYwN3dHdeuXcPVq1cxcOBAoY1A0X9nb+PN7TTndqjJ92JqaqqWnEtLS4NEIsGvv/6a6yQ+e/j19u3bsWvXLkybNg0eHh4wMzPDV199JcwVIJFI8P333yMoKAjnz5/H7t27sWHDBuzatUtIaBTURzVr1sTRo0dx9uxZXLx4EVOnTkWTJk3ynXemdu3aqFixIo4cOYI+ffogICBAK09NWbVqFS5cuICpU6eiYsWKMDU1xZQpU4o0EVpaWhocHBywffv2XK+9OTt/YmLiW+3P3lWWlpZITk7OtTw5OTlX0q8o++G8aPp95Py91qpVC3/88Yfwd5kyZfDo0SMAwMaNG+Hk5KRWTs6T/PT0dNy7dw8SiURtXieg5GLj2LFj8xy19Tbl29ra5poX5s3bU4sr53eYvS/KvqjQs2dPNG3aFKdPn8b58+exdetWTJ06FQMGDIBYLM518SHn/AR5lZ/fMpFIJJSlyTYxduxYdOnSBadPn8bZs2exadMmrFy5Ms9jtWxv7vML+66ioqIwfvx49O7dGxMmTICNjQ2uX7+OefPmQSaTwczMrES2GSMjI7Rv3x6HDx8WRql16tRJ6CNtHW9pwsfHB3/88YdwG5KlpSW8vb1x5coVtQsF2e3UZNvXxiS1msR+Tb6rvLaRwrbFwuKShYUFfvvtNwQGBuLChQvYuHEjNm/ejD179gjtLmi/1bx5cxw7dgxnzpzBhQsXMHz4cPTt2xdTp07N8zO0atUKCxYswOnTp1G7dm1cu3YN06ZNK/SzF9WcOXOQkJCA6dOnw8XFBcbGxvjkk0+KHI812bazH2aQ38g6MixMVuiQra0tfH198csvv+DTTz9VOzB4/vw5Dh8+jK5duwrB3dnZGQ0bNsShQ4eQkZGBJk2aCLczODg4oGzZsoiMjMx1xbQgeQ2/rlGjBh49epTvrRuA6gR3+/bt2LBhg/CM4iVLlgBQXUX5888/kZiYqNHoCiMjo1wHnzVq1MDRo0dhb2+f6+A1m6OjI27duiUEs6ysLNy9ezfXfbc5eXp6AgAePXok/H9JqFmzJk6cOAEXF5c8D5wqVaoEU1NTXLp0Se0eyGzZJ6RyuTzXazVq1ECNGjUwfPhwDBgwQDjZ14Qm28WNGzdQrlw5tcx7duY6m4eHBy5dupTv0Mq8vsO8+Pv7Y/Xq1ejcuTMiIyPVJtcsrA/zk5WVhTt37ggZ9cePHyM5OVkYseHu7o7r16+rDQ2/fv06qlSpIvzdsGFD7Nu3DxKJRLjC4ePjgyNHjiAsLEyYU6C4vzNt8fDwQGxsbIG3ybzJ09MTcrkc8fHx+U4kGBQUhNatW6Nr164AVFevnjx5onYbkkgkQv369VG/fn2MHj0aHTp0QEBAAAYNGqRRH1laWqJTp07o1KkT2rdvj9GjRxe4z/D398ehQ4fg5OQEsVgsDCsHgMqVK+P69eu5PoObm1u+oyqkUmmubTZ7O8k+IUlLS1O7TcPNzQ1ZWVm4d++ecPUuPDxc7SSvRo0aePHiBSQSSYHDSSMiIpCRkVHg/up95ebmluekj/fu3dNouH22ypUrC/v97NFV2b//bJp+HzmZmprmin9VqlSBsbExYmJiCpxjZNWqVRCJRNi0aRPGjRuHFi1aCFf1CtuPvimvbbRGjRoICwvLNz67u7sjNjYWcXFxwii87An+ClKjRo1ck5N6eHhg//79eSb3LS0tUbZsWQQFBan1R1BQkNpIN004Ozujd+/e6N27tzC304ABA2BnZ4fU1FSkpaUJidQ3J6otDk23CTc3N7i5uWHgwIGYNm0a9u3bV2CyIq96Cvqusucz+OKLL4QT3mPHjqmtk73N5Lx1KCcjI6M8jxve5O/vj5EjR+Lhw4e4fPmy2txRmhxv5Sf7+AFQnfA9efJEuLVZk/1yw4YN8dVXX+H48ePCsZyPjw8uXryI69evY9CgQWrtLKg/34a7uztu3ryJDz/8UFiW83ejSewv6rEvoNm2WFhcAlT7Cl9fX/j6+mL06NFo2rQpLl++DF9fX432W/b29ujWrRu6deuG3377DatXr843WWFiYoK2bdvi0KFDCA8Ph5ubW67RbYUdc+WU3/Hv9evXMWfOHCHWx8TEqE247ubmhtjYWDx//ly4oHX79m21MjTdth8+fAipVJpvG8mw8GkgOjZr1ixhApgrV64gJiYGZ8+exYgRI1C2bFm1JwMAqoBz9OhRHD9+XO0+aUB1JeCHH37Arl27EBYWhvv37+Ovv/4qcFb8vAwdOhQ3btzAkiVLEBwcjCdPnuDkyZNCMiI1NRUzZ85E//790bx5cyxfvlxoE6C6X9DBwQETJ07E9evXERERgRMnTqjNAJ5T+fLlcf/+fTx+/BgvX76ETCaDv78/7OzsMHHiRFy9ehWRkZEIDAzEsmXLhKFvAwYMwA8//ICAgACEhoZi8eLFeV6ty8ne3h41atRQm3yoJPTt2xdJSUmYNm0abt++jYiICJw7dw5z5syBXC6HiYkJhg4ditWrVwvPc75x4wb+/PNPoV2mpqY4d+4cnj9/juTkZERGRmLt2rUICgrC06dPcf78eeE+36IobLtwdXVFTEwMjhw5goiICOzatUttJmVAdV/qkSNHsHHjRoSGhuL+/ftqk166uLjgypUriI2NLfDpHe3atUNaWhoWL14MHx8ftaHKhfVhfqRSKZYtW4abN2/izp07mDNnDurWrSskLwYPHoz9+/fj119/xZMnT4SJWHPOyeDt7Y3U1FScPn1aOGDKTgw6OjqqJQJK6ndWEnx8fODt7Y3PPvsM58+fR2RkJM6cOaM2I/+b3Nzc4O/vj9mzZ+Off/5BZGQkbt26ha1btwqz8Lu6uuLChQsICgpCaGgoFi1ahBcvXghl3Lx5E99//z3u3LmD6Oho/PPPP3j58qWwbRbWRzt37sThw4cRGhqKsLAwHD9+HA4ODrlGHuTk7++Pe/fu4fvvv0f79u3VrmYPGjQIly5dwpYtWxAWFob9+/djz549age6bypfvjwuXbqE58+fC1dVKlWqhICAAAQHByMkJATTp09XO1l0d3dHkyZNsHDhQty6dQv37t3DwoUL1Uav+Pr6ol69epg0aRLOnz+PqKgoBAUFYf369WpPE7h69SoqVKhQrHv033W9e/fGkydPsGzZMoSEhODx48fYuXMnjhw5UuB39qbKlSujadOmWLRokfD7X7BggVriX9PvozAWFhYYNGgQVqxYgf379yMiIgJ3797Frl27sH//fgCqCTT/+usvLF++HH5+fhg8eDBmz54tbF+F7UfflNc2Onr0aPz999/YvHkzHj58iNDQUBw5ckR4YkKTJk1QqVIlzJ49GyEhIbh69ara0xTy4+fnh0ePHqk9Lr1fv35ITU3FtGnTcOfOHTx58gR///23MMx/8ODB2LZtG44ePYrHjx9jzZo1CA4OxieffKJxv3711Vc4d+4cIiMjcffuXQQGBgr7kbp168LU1BTr169HREQEDh06JPT12yhsm3j16hWWLFmCwMBAPH36FNevX8ft27fznV8sP4V9V66ursjKysLu3bsRERGBv//+O9fjE4cPH47bt29j8eLFCAkJQWhoKH799Vchzrq4uODWrVuIiorCy5cv871o0LBhQzg4OGDGjBkoX7682ugATY638vPtt9/i4sWLePDgAebMmQNbW1vhpFqT/bKHhwesra1x+PBh4WTax8cHJ0+eVJuvQpP+fBuffPIJ9u3bh7/++gthYWHYuHGjMJoqW2FxrajHvoBm+6fC4tJ///2HXbt2ITg4GE+fPhXmfHNzc9Nov/XNN9/g5MmTCA8Px8OHD3H69OlCjzP9/f2F/d2b5yKaHHPllNfxb/bn/vvvvxEaGoqbN29i+vTpufbtFSpUwJw5cxASEoLr169jw4YNAF6P4NJ027527Rq8vb1LbDQZaRdHVuhYpUqV8Msvv2Djxo2YOnUqEhMT4eDggDZt2mDMmDG5srPt27fH0qVLIZFIcmX4e/bsCVNTU+zYsQNff/01zMzMUK1aNbUJnDRRvXp1bN++HevXr8egQYOgVCpRsWJF4ZaT5cuXw8zMTJgI0cPDAxMnTsSiRYtQr149ODk54dtvv8WqVaswduxYyOVyuLu7Y/bs2XnW17NnTwQGBqJv375IS0vDtm3b4OPjgx07dmDNmjX47LPPkJqairJly6Jx48ZCdnTQoEF4/vw55syZA5FIhB49eqBt27aFJix69uyJAwcO5Pko2OIqW7YsfvzxR6xZswYjR46ETCZDuXLl0LRpU+GKyahRoyCRSLBx40Y8e/YMjo6Owm0QUqkUM2bMwJYtW7Bx40Y0aNAAK1euxOPHj3HgwAEkJCTA0dERffv2FSaE01Rh20Xr1q3x6aefYunSpcjMzESLFi0watQotUfi+vj44Ouvv8a3336LH374QRiqmW3cuHFYtGgRunTpgszMTNy6dSvPtlhYWKBly5Y4duyYMIt3UfowL2ZmZhg6dCimT5+OZ8+eoUGDBmplt23bFjNmzMCOHTuwfPlyVKhQAV9++aXaVQYbGxtUq1YNL168EIJ0w4YNoVAo1IahatKfBalTpw6+/PLLPCd9LK41a9Zg1apVmD59OtLT01GxYsU8b6XJ6csvv8R3332HVatWITY2FnZ2dqhbt65wBWPUqFGIjIzEqFGjYGpqio8//hht2rQRfluWlpa4evUqfv75Z6SkpMDFxQVTp04VZpsvrI8sLCywfft2PHnyBBKJBLVq1RImw8uPq6sr6tSpg1u3bmH69Olqr9WsWROrVq3Cxo0b8e2338LR0VGYyC8/U6dOxcqVK7F3716ULVsWx44dwxdffIF58+bh008/ha2tLYYOHYqUlBS19y1duhTz5s3D4MGD4eDggEmTJuHhw4dC8iT7qvr69esxd+5cxMfHw8HBAd7e3moT+x45cuSt5y94V1WsWBE7duzA+vXrhd965cqVsWrVqjwnMC7I4sWLMX/+fAwZMgRlypTBhAkT1B4Vqun3oYkJEybA3t4eW7duRWRkJKytrYVRb/Hx8Zg3bx7Gjh0rXGUcO3Yszp8/jy+//BKrVq0qdD/6pry20aZNm+Kbb77Bli1bhCfSVK5cWZgYUCwWY+3atZg/fz769euH8uXLY8aMGcIkh/nx8PBAjRo1cOzYMSEu2draYuvWrVi9ejWGDBkCsViM6tWrCyeQAwYMQEpKivBEnCpVqmDDhg1FGh0jl8uxZMkSxMbGwtLSEk2bNhWGlNvY2AiPbt67dy8aN26MMWPGYOHChRqXn5fCtgmJRILExETMmjULL168gJ2dHdq2bZvv6Ib8FPZdVa9eHV988QW2bduGdevWwdvbG5MnT8asWbOEMtzc3PDtt99i/fr16N+/P0xMTFC3bl1hVGJ2Qqx79+549eoVjh49mu9n7ty5M7Zv355rWzAzMyv0eCs/kydPxldffYUnT57A09MTGzZsEK6Ua7JfFolEaNCgAc6cOSNMOO7h4QELCwu4ubmpPRmmsP4sSMeOHdGtWzeMHTs2z9c7deqEiIgIrFmzBhkZGWjXrh169+6tNgKssLhmZGRUpGPf7M9f2P6psLiU/bSsTZs2ITMzE66urvjqq6+EiVgL2m9lt3vdunV4+vQpTExM0KBBg0KfINS4cWPY2NggLCxMmIg+mybHXDnldfy7fft2LFy4EAsXLkTv3r3h7OyMiRMn4uuvvxbeJ5FIsG7dOixYsAD9+vVDhQoV8Pnnn2P8+PHCLTmabttHjhzJd9sgwyNSFjQ74Xtu//796NKlS6FzGeSUnY379ddfNXocJunfq1ev0LVrV6xcubLASYQK8vjxY3z44Yc4dOiQVoYkkmb27duHFStW5Dmk3NBERkaia9euuR7rR++2mJgYtG/fHt9//70wYV1hHj58iGHDhuHgwYMFjiYpzN27d9GnTx9cvXpVONDXlCbz9uSHce/9dPr0aXz99df466+/CkwcEgUGBmLo0KE4d+6c2gTDhig9PR3NmzfH5s2b+Zjo99z169cxcOBAHD58WONRi2fOnMGqVauwd+/eIt2C/Ka3icdUNBxZQe89U1NTLF26FAkJCcV6f2JiIk6cOAFLS0s4OzuXbOPovXXmzBn07NmTiYp33KVLl5CWloZq1arh+fPnWL16NcqXL1/gFfI3xcXFYenSpW+VqCAqaS1atMCTJ0/w7NkzxjZ6bwQGBqJRo0ZMVLyHAgICYGZmhkqVKiE8PBxfffUV6tevX6TbK9PT0/Hll1++VaKCdIvfFJUKbxO05s2bh7t37wqPbSLSRL9+/fTdBCoBWVlZWL9+PSIjI2Fubg4vLy8sX768SKMUfH19tdhCouIr6m2jRIauRYsWahMy0/sjNTUVa9asQXR0NGxtbdGkSRN88cUXRSrjbR8NTLrHZAVRIdatW6fvJtD/de/evUTnfyAqTPZz7ImISisfH59856Yi0pUPP/xQ7QkuVDrwJkUiIiIiIiIiMihMVhARERERERGRQWGygoiIiIiIiIgMCpMVRERERERERGRQmKwgIiIiIiIiIoPCZAURERERERERGRQmK4iIiIiIiIjIoDBZQUREREREREQGhckKIiIiIiIiIjIoTFYQERERERERkUFhsoKIiIiIiIiIDIpU3w14V4WGhuq7CUREVIroO+7ou34iIiJDwHioO0xWFJGDgwPMzc0xc+ZMfTeFiIhKGXNzczg4OOi0TsY9IiIidfqIx6URkxVF5Orqinv37uH58+f6bopOZGVl4ezZs2jWrBmkUm4u+WE/aSYhIQFt27ZFQEAAbG1t9d0cg8XtSXOlra8cHBzg6uqq0zrzinunTp0qNX3+Nkrb9llc7CfNMIZqhtuTZthPmsnKysqzf/QRj0sjbpnF4OrqWmo2TplMhujoaNSvXx9GRkb6bo7BYj9p5sWLFwCAevXqoUyZMnpujeHi9qQ59pVuvBn3IiIi2Oca4PapGfaTZhhDNcPtSTPsJ83IZDL2jx5xgk0iIiIiIiIiMihMVhARERERERGRQWGygoiIiIiIiIgMCpMVRERERERERGRQmKwgIiIiIiIiIoPCZAURERERERERGRQmK4iIiIiIiIjIoDBZQUREREREREQGhckKIiIiIiIiIjIoTFYQERERERERkUFhsoKIBIcOHULjxo1hZmYGOzs7dO/eXe318PBw+Pv7w9zcHGXLlsUXX3yBrKws/TSWiIiIiIjeW1J9N4CIDMPevXsxYsQILF26FG3atEFWVhZu374tvC6Xy+Hv7w9nZ2ecP38e0dHRGDhwIIyMjLB06VI9tpyIiIiIiN43TFYQEbKysjBp0iSsXLkSw4YNE5bXrFlT+P/jx4/j7t27+Oeff+Dk5AQvLy98+eWXmD59OhYsWABjY2N9NJ2IiIiIiN5DpT5ZIZPJ9N0Eg5bdP+yngr3r/RQYGIioqCgolUp4eXkhNjYW9erVw7Jly1C7dm0AwNmzZ1G7dm3Y29sLn7NNmzZISkpCUFAQ6tevn6vcjIwMZGRkCH/Hx8cDUPXTu9pXuvCub0+6xL7SjEwmg5GRUYmXSQXj9qkZ9lPeGEOLh9uTZthPmtFG/CTNiZRKpVLfjSAi/frll1/Qr18/uLq6YvXq1XBzc8PXX3+N48eP4/79+7C3t8fIkSPx5MkTHDt2THhfWloaLCwscPjwYXTu3DlXuQsWLMDChQtzLU9MTIS1tbVWPxMREdG7jDGUiEo7TrBJ9B6bMWMGRCJRgf+Cg4OhUCgAALNnz0bPnj3h7e2N7du3QyQS4ffffy92/TNnzkRiYqLwLyEhAc+ePYOVlVVJfUQiIqL3EmMoEZV2pf42EKL32eeff47BgwcXuI67uzuio6MBqM9RYWJiAnd3d4SHhwMAnJ2dcfnyZbX3xsbGCq/lxcTEBCYmJsVtPhERUanFGEpEpR2TFUTvMUdHRzg6Oha6nre3N0xMTBASEoJmzZoBUN2jFxYWhkqVKgEAfH19sWTJEjx79gxly5YFAJw4cQLW1tZqSQ4iIiIiIqK3xWQFEcHa2hqjR4/G/PnzUbFiRVSqVAkrV64EAPTq1QsA0KFDB9SsWROffvopVqxYgZiYGMyZMwfjxo3jlR8iIiIiIipRTFYQEQBg5cqVkEql+PTTT5Geno7GjRvj5MmTsLOzAwBIJBIcPHgQY8aMga+vLywsLDBo0CAsWrRIzy0nIiIiIqL3DZ8GQkREREREREQGhU8DISIiIiIiIiKDwmQFERERERERERkUJiuIiIiIiIiIyKAwWUFEREREREREBoXJCiIiIiIiIiIyKExWEBEREREREZFBYbKCiIiIiIiIiAwKkxVEREREREREZFCYrCAiIiIiIiIig8JkBREREREREREZFCYriIiIiIiIiMigMFlBRERERERERAaFyQoiIiIiIiIiMihMVhARERERERGRQWGygoiIiIiIiIgMCpMVRERERERERGRQmKwgIiIiIiIiIoPCZAURERERERERGRQmK4iIiIiIiIjIoDBZQUREREREREQGhckKIiIiIiIiIjIoTFYQERERERERkUFhsoKIiIiIiIiIDAqTFURERERERERkUJisICIiIiIiIiKDwmQFERERERERERkUJiuIiIiIiIiIyKAwWUFEREREREREBoXJCiIiIiIiIiIyKExWEBEREREREZFBYbKCiIiIiIiIiAwKkxVEREREREREZFCYrCAiIiIiIiIig8JkBREREREREREZFCYriIiIiIiIiMigMFlBRERERERERAaFyQoiIiIiIiIiMihMVhARERERERGRQWGygoiIiIiIiIgMCpMVRFSoVq1aYfz48Rg/fjxsbGzg4OCAuXPnQqlUFvpeNzc3LF68GAMHDoSlpSUqVaqEAwcOIC4uDt26dYOlpSXq1q2LK1euAACUSiUcHR3xxx9/CGV4eXmhXLlywt9nz56FiYkJ0tLSSv7DEhERlSDGUCKi4mGygog0snPnTkilUly+fBnr1q3D6tWrsXXrVo3eu2bNGjRt2hTXr1+Hv78/Pv30UwwcOBCffPIJrl27hipVqmDgwIFQKpUQiURo0aIFTp06BQB4+fIl7t27h/T0dAQHBwMA/vvvP/j4+MDc3FxbH5eIiKjEMIYSERUdkxVEpJGKFStizZo1qF69OgYMGIAJEyZgzZo1Gr23S5cuGDVqFKpVq4Z58+YhKSkJPj4+6NWrFzw8PDB9+nTcu3cPsbGxAFRXobIPtE6fPo369eurLTt16hRatmypjY9JRERU4hhDiYiKjskKItJIkyZNIBKJhL99fX3x4MEDyOXyQt9bt25d4f+dnJwAAHXq1Mm17NmzZwCAli1b4u7du4iLi8N///2HVq1aCQdaMpkM58+fR6tWrUriYxEREWkdYygRUdExWUFEWmdkZCT8f/bBWl7LFAoFANVBmL29Pf777z+1A63//vsPgYGBkMlk8PPz0+EnICIi0g/GUCIqraT6bgARvRsuXbqk9vfFixdRrVo1SCSSEq9LJBKhefPm2L9/P+7cuYNmzZrB3NwcGRkZ+Pbbb9GwYUNYWFiUeL1ERETawBhKRFR0HFlBRBoJDw/HlClTEBISgj179mDDhg2YNGmS1upr1aoV9uzZAy8vL1haWkIsFqNFixbYtWsX77UlIqJ3CmMoEVHRcWQFEWlk4MCBSE9PR6NGjSCRSDBp0iSMHDlSa/W1bNkScrlc7b7aVq1aYf/+/bzXloiI3imMoURERSdSavKQZyIq1Vq1agUvLy+sXbtW300hIiJ6pzCGEhEVD28DISIiIiIiIiKDwmQFERXbmTNnYGlpme8/IiIiyhtjKBFRwXgbCBEVW3p6OqKiovJ9vWrVqjpsDRER0buDMZSIqGBMVhARERERERGRQeFtIERERERERERkUJisICIiIiIiIiKDwmQFERERERERERkUJiuIiIiIiIiIyKAwWUFEREREREREBoXJCiIiIiIiIiIyKExWEBEREREREZFB+R+1OjQaXntcTAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCsAAAH2CAYAAABZUwYHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD9ZUlEQVR4nOzdd1hTVx8H8G8IYW8QEFQQFRWLC3DvPequ1lV367Z1772to3XvVWetdRW1WvcWB25xIFOGylJmSPL+wUs0sgJmCd/P8/BokptzTk5u7rn3d88QyGQyGYiIiIiIiIiIdISetgtARERERERERPQpBiuIiIiIiIiISKcwWEFEREREREREOoXBCiIiIiIiIiLSKQxWEBEREREREZFOYbCCiIiIiIiIiHQKgxVEREREREREpFMYrCAiIiIiIiIincJgBRERERERERHpFAYriL5y58+fh0AgQFxcnLaLojM0VSeseyKirxOP30REuo/BCiLSmKCgIAgEAvj7+2u7KERERF8Ftp1EVFQxWEFEREREREREOoXBCiIdJ5VKsXDhQpQuXRrGxsaoUqUK/vrrr1zfc/nyZdSvXx/GxsYoWbIkRo0ahcTERPnrrq6umDdvHvr06QMzMzO4uLjg6NGjePPmDTp06AAzMzNUrlwZt27dyne6CxYswIABA2Bubo5SpUph48aN8tdLly4NAKhWrRoEAgEaNWqkghpSzsGDB1GpUiUYGhrC1dUVy5YtU3j9jz/+gLe3N8zNzeHo6IiePXsiOjpaYZvjx4/D3d0dxsbGaNy4MYKCgjRWfiIiUh7bzvyLjY1Fr169UKxYMRgbG6NcuXLYtm2b/PWrV6+iatWqMDIygre3Nw4fPpylx8fDhw/RunVrmJmZwcHBAT/88APevn0rf71Ro0YYNWoUJkyYABsbGzg6OmLWrFlq+TxEVAjIiEinzZs3T1ahQgXZyZMnZS9fvpRt27ZNZmhoKDt//rxMJpPJzp07JwMgi42NlclkMtmLFy9kpqamshUrVsiePXsmu3LliqxatWqyfv36ydN0cXGR2djYyNavXy979uyZbOjQoTILCwtZq1atZH/++acsICBA1rFjR1nFihVlUqk03+muWbNG9vz5c9nChQtlenp6sqdPn8pkMpns5s2bMgCy//77TxYRESF79+5djp/b1NQ017/Bgwfn+N7P6+TWrVsyPT092Zw5c2QBAQGybdu2yYyNjWXbtm2Tv2fLli2y48ePy16+fCm7du2arHbt2rLWrVvLXw8JCZEZGhrKxowZI3v69Kls165dMgcHB4V8iIhIN7DtzH/bOXz4cFnVqlVlfn5+slevXslOnz4tO3r0qEwmk8ni4+NlNjY2st69e8sePXokO378uMzd3V0GQHb37l2ZTCaTxcbGyooVKyabPHmy7MmTJ7I7d+7ImjdvLmvcuLE8j4YNG8osLCxks2bNkj179ky2Y8cOmUAgkJ06dSof3y4RFRUMVhDpsJSUFJmJiYns6tWrCs8PHDhQ1qNHD5lMlvWEa+DAgbKffvpJYftLly7J9PT0ZMnJyTKZLOPEqHfv3vLXIyIiZABk06dPlz937do1GQBZREREgdOVSqUye3t72bp162QymUz26tUrhROb3Dx//jzXv6ioqBzf+3md9OzZU9a8eXOFbcaPHy/z8PDIMQ0/Pz8ZANn79+9lMplMNnny5CzbT5w4kcEKIiIdw7azYG1nu3btZP3798/2tXXr1slsbW3lZZbJZLJNmzYplGvu3LmyFi1aKLwvNDRUBkAWEBAgk8kyghX16tVT2MbHx0c2ceLEPD8bERU9+prtx0FE+fHixQskJSWhefPmCs+npaWhWrVq2b7n3r17uH//Pnbv3i1/TiaTQSqV4tWrV6hYsSIAoHLlyvLXHRwcAACenp5ZnouOjoajo2OB0hUIBHB0dMwynEIZZcuWzfd7cvLkyRN06NBB4bm6devit99+g0QigVAoxO3btzFr1izcu3cPsbGxkEqlAICQkBB4eHjgyZMnqFmzpkIatWvXVlkZiYhINdh2FszQoUPRpUsX3LlzBy1atEDHjh1Rp04dAEBAQAAqV64MIyMj+fY1atRQeP+9e/dw7tw5mJmZZUn75cuXcHd3B6D4WQGgePHiBfqsRFT4MVhBpMM+fPgAAPD19YWzs7PCa4aGhjm+Z/DgwRg1alSW10qVKiX/v0gkkv9fIBDk+FzmRXtB0s1MJzON/MjuZOdTvXv3xvr16/OdbnYSExPRsmVLtGzZErt370axYsUQEhKCli1bIi0tTSV5EBGRZrDtzFlubWfr1q0RHByM48eP4/Tp02jatCmGDx+OpUuXKpX3hw8f0K5dOyxevDjLa8WLF5f/X1WflYgKPwYriHSYh4cHDA0NERISgoYNGyr1nurVq+Px48cq7ZmgqnQNDAwAABKJJM9t81qizcLCQul8K1asiCtXrig8d+XKFbi7u0MoFOLp06d49+4dFi1ahJIlSwJAlgnSKlasiKNHjyo8d/36daXLQEREmsG2M2d5tZ3FihVD37590bdvX9SvXx/jx4/H0qVLUb58eezatQupqanygI+fn5/Ce6tXr46DBw/C1dUV+vq8xCCiL8cjCZEOMzc3x7hx4zB69GhIpVLUq1cP8fHxuHLlCiwsLNC3b98s75k4cSJq1aqFESNGYNCgQTA1NcXjx49x+vRprF69usBlUUW69vb2MDY2xsmTJ1GiRAkYGRnB0tIy221VecI4duxY+Pj4YO7cufj+++9x7do1rF69GmvXrgWQcXfLwMAAq1atwpAhQ/Dw4UPMnTtXIY0hQ4Zg2bJlGD9+PAYNGoTbt29j+/btKisjERGpBtvOgpkxYwa8vLxQqVIlpKam4p9//pEPU+nZsyemTp2Kn376CZMmTUJISIi8x0Vmb5Lhw4dj06ZN6NGjh3y1jxcvXmDfvn3YvHkzhEJhgctGREUTly4l0nFz587F9OnTsXDhQlSsWBGtWrWCr6+vfCmzz1WuXBkXLlzAs2fPUL9+fVSrVg0zZsyAk5PTF5VDFenq6+tj5cqV2LBhA5ycnLLMI6Eu1atXx59//ol9+/bhm2++wYwZMzBnzhz069cPQMadpO3bt+PAgQPw8PDAokWLsnR7LVWqFA4ePIjDhw+jSpUqWL9+PRYsWKCR8hMRUf6w7cw/AwMDTJ48GZUrV0aDBg0gFAqxb98+ABk9Mo4dOwZ/f39UrVoVU6dOxYwZMwBAPo+Fk5MTrly5AolEghYtWsDT0xO//PILrKysoKfHSw4iyj+BTCaTabsQRERERET09di9ezf69++P+Ph4GBsba7s4RFQIcRgIERERERHlaufOnXBzc4OzszPu3buHiRMnolu3bgxUEJHaMFhBRERERES5ioyMxIwZMxAZGYnixYuja9eumD9/vraLRUSFGIeBEBEREREREZFO4Ww3RCQXHh6O3r17w9bWFsbGxvD09FRYwlMmk2HGjBkoXrw4jI2N0axZMzx//lyLJSYiIiIiosKIwQoiAgDExsaibt26EIlEOHHiBB4/foxly5bB2tpavs2SJUuwcuVKrF+/Hjdu3ICpqSlatmyJlJQULZaciIiIiIgKGw4DISIAwKRJk3DlyhVcunQp29dlMhmcnJwwduxYjBs3DgAQHx8PBwcHbN++Hd27d8/yntTUVKSmpiqkkZaWBjs7O/m67ERERJQV21AiKuqK9ASbR44c0XYRiHTG7t27Ua1aNdStWxePHj2CjY0NWrdujRYtWgDImFgrMjISQqFQ4bdTtmxZ7N69O9vZwPfu3Yv9+/dneX7Pnj0wMTFR34choiw6dOigsrTYfhKpH9tQIt2gyvaT8qdI96w4cuQImjdvDpFIpO2i6CyxWIzTp0+znvJQGOrJ3NwcAPDzzz+jS5cuuH37NsaMGYPVq1ejT58+uHbtGho2bIjg4GAUL15c/r4ePXpAIBBgz549WdL8/K5QTEwM3N3dERERAVtbW/V/qK9UYdifNIV1pRyxWKzSixu2n8rh/qkc1lP22IYWDPcn5bCelKPq9pPyp0j3rAAAkUjEH6gSWE/K+ZrrSSqVwtvbG4sXLwYA1KhRA0+ePMHmzZsxcOBA6OtnHC4+/4x6enoQCATZfm6RSAQzM7Nsn/9a60mTWE/KY11pHutceawr5bCeFLEN/TKsJ+WwnkiXcYJNIgIAFC9eHB4eHgrPVaxYESEhIQAAR0dHAEBUVJTCNlFRUfLXiIiIiIiIVIHBCiICANStWxcBAQEKzz179gwuLi4AgNKlS8PR0RFnzpyRv56QkIAbN26gdu3aGi0rEREREREVbkV+GAgRZRg9ejTq1KmDBQsWoFu3brh58yY2btyIjRs3AgAEAgF++eUXzJs3D+XKlUPp0qUxffp0ODk5oWPHjtotPBERERERFSoMVhARAMDHxweHDh3C5MmTMWfOHJQuXRq//fYbevXqJd9mwoQJSExMxE8//YS4uDjUq1cPJ0+ehJGRkRZLTkREREREhQ2DFUQk9+233+Lbb7/N8XWBQIA5c+Zgzpw5GiwVEREREREVNUUqWBESEoK3b9/KH798+RJ3796Vr3JAWaWnp7OelMB6Uk5cXBwA4N69e7CystJqWXQZ9yflsa6Uk56enqV+7OzsUKpUKY2X5fO2uDDj/qkc1pNy2IYqh/uTcopiPWmr3aOCKxp7JjJOjipWrIikpCRtF4WoyGvatKm2i0BU5JmYmODJkycaPXFjW0z05diGEhWMNto9+jJFJljx9u1bJCUlYeHChXBzc9N2cYiIiLQmMDAQkydPxtu3bzV60sa2mIiItEFb7R59mSITrMjk5uYGDw8PbReDiIioyGJbTERERHnR03YBiIiIiIiIiIg+xWAFEREREREREekUBiuIiIiIiIiISKcwWEFEREREREREOoXBCiIiIiIiIiLSKQxWEBEREREREZFOYbCCiIiIiIiIiHQKgxVEREREREREpFMYrCAiIiIiIiIincJgBRERERERERHpFAYriIiIiIiIiEinMFhBRERERERERDqFwQod0LJlS/zxxx/aLka+qbPcnp6eOHPmTK7bxMXFoWHDhggPD1dLGUgz/Pz84OnpiYSEBG0X5au2du1afPfdd9ouRqGkzPFIU1asWIEFCxZouxikQer8bU+dOhWjRo3Kc7vJkydj06ZN8sf5bf/Dw8Ph6emJp0+fFqicRcHhw4dRp04dbRfjq6Ls/kv5p0vXJn/++SdGjBih7WKQljBYoYT+/ftj8eLFWZ4v6g3L3r17FU6gNH1Cv3HjRjRu3BjOzs4ay5O+THa/papVq+LcuXMwNzfXUqmIlKfti65+/frh6NGjCA0N1Ur+uiAyMhLTp09HkyZNUK1aNbRo0QKLFi1CXFyctoumFv369cPmzZvljzV9gRYQEIBLly6hV69e8uc+b//z4ujoiHPnzqFs2bIqKZO2f4dfKrsLwVatWuHYsWNaKtHXadKkSZg3b562i1EkaDNo36lTJzx58gS3b9/WSv6kXQxWFAJisVgr+drY2MDY2FgreScnJ+PQoUPo1KmTVvIvbLS1DwGASCSCnZ0dBAKB1sqgK7T5PeRFl8tWlFhbW6NOnTr4888/tV0UrQgNDcX333+PkJAQLF68GMePH8f06dNx48YN9O7dG/Hx8WrNXxu/AxMTE1hZWWk830x79uxBixYtYGJiIn8uv+2/UCiEnZ0d9PX11VFEldHmcc7IyAi2trZay1+XKPs9mJubw8LCQm3lkEgkkEqlakuflCMSidCmTRvs3r1b20UhLWCwQoUy73Zs374djRs3Rr169TBv3jyFg+67d+8wYsQIeHt7o1WrVvjnn3+ypJOQkICZM2eiQYMGqFWrFgYOHIiAgAD565ldQg8ePIhWrVrBy8sr2/JIpVJs3rwZrVq1gre3N7p06YJTp04BAGQyGQYNGoTBgwdDJpMBAOLj49G0aVOsXr1ansb58+fRvXt3eHl5oX79+vj555/lr316Z6Bly5YAgF9++QWenp7yxwBw9uxZdOvWDV5eXmjVqhXWrVuH9PR0+evBwcHo27cvvLy80KFDB1y9ejXPur506RIMDAxQpUoVhedfvHiB4cOHo1atWqhZsyb69u0rvwMplUqxbt06NG3aFNWrV8d3332Hy5cvy9+beafmv//+w4ABA+Dj44MuXbrA399fvs3r168xYsQI1KlTBzVq1EDHjh1x8eJFANn3tDlz5gw8PT3ljzO/u0OHDqF58+aoUaMG5s2bB4lEgq1bt6JRo0Zo2LAhNm7cqJBOXvtEQEAABgwYgJo1a6JWrVro1q0bHj16lGP9eXp6Yv/+/Rg5ciRq1Kgh796b13e1Y8cOdOrUCTVq1ECzZs0wb948JCUlKaR99+5d9O/fHz4+PqhTpw4GDx6M+Ph4TJ06Fbdu3cKuXbvg6ekJT09PhIeHKwwD+fDhA7y9vXHp0qUs9VizZk0kJycDyLizOnbsWNSpUwd169bFyJEjcx0OlJnHxYsX0blzZ3h5eaFXr154/vy5wnanT59Gx44dUb16dbRs2RI7duyQv7Znzx6F4Fjmd/vpReOgQYOwcuVK+eO86jOn70EZmzdvRsOGDVGzZk3MmDEDqampWbY5ePAg2rdvDy8vL7Rr1w779u1TeD0yMhITJkxA3bp1UaNGDXz//fe4f/8+gJyPM3nti6GhoRg5ciQaNmyIGjVqoHv37rh27ZpCvvv27UPbtm3h5eWFhg0bYsyYMfLXcjtuARnHqYkTJ6JBgwbw9vZG27ZtcejQoWzr6MCBA2jSpEmWk82RI0di+vTp8sf79+9H69atUa1aNbRr1y7Xu5utWrUCAHTt2hWenp7o378/AODhw4f48ccfUb9+fdSuXRv9+vXD48ePFd4bGBiIPn36yI91165dy3K3Spl9u1GjRjhx4kSOZSzM5s+fD5FIhA0bNsDHxwfFixdH/fr1sWnTJkRHR8t/f7///jt69uyZ5f1dunTBunXr5I9z+41ktgknT55Ev3794OXlBV9f32zLdefOHfTt2xfe3t5o1qwZFi5cKD82Hj16FDVq1EBwcLB8+3nz5qFdu3YKx7S8fouZ/z969CjOnTsnP476+fnJ08ht35FIJFiyZAnq1KmDevXqYfny5XnWt0QiwenTp9GoUSOF5z/vGeDp6YmDBw/i559/ho+PD9q2bYtz585lqctPe0I8f/4cQ4YMQY0aNdCwYUNMnjwZsbGx8telUim2bt2KNm3aoHr16mjevLm8bczpd+jn54cePXqgRo0aqFOnDn744Qe8fv0628+W2/eb17Fz+fLl+Pbbb+Hj44NWrVph1apVWS6wczp/6t+/P16/fo0lS5bIv0NA8RwiKCgInp6eCAwMVEhz586daN26tdJ1+LnMPM6cOSM/Bg8ePBiRkZEK2+V2TFy6dCmGDx8uf/zHH3/A09NT4XyqTZs2OHjwoPyxqn5nn/u8l1H//v2xcOFCLF++HHXr1kWjRo2wdu1ahfckJCRg9uzZaNiwIby8vNCpUydcuHBBoX7OnTuHDh06wMvLCxEREUhLS8PSpUvRtGlT1KhRAz179pT/7oCMYckTJkxA06ZN4ePjg06dOuH48eMK+Z46dQqdOnWCt7c36tWrh0GDBimcP+VWR2KxGPPnz0fjxo3h5eWFFi1aKPS2+tTVq1fh5eWVZWjtokWLMHDgQPnj3M53PpfTOb4y7f2bN28wbNgw+XWPr69vluNHXucVANCwYUOcP38eKSkpOZaTCifdDnF/hfz8/FCsWDFs2bIFoaGhGD9+PCpUqCA/0Zg2bRrevHmDLVu2QF9fH4sWLUJMTIxCGmPHjoWRkRHWrVsHMzMzHDhwAIMGDcI///wDS0tLAEBISAhOnz6NFStWQE8v+5jT5s2b8c8//2D69OkoVaoUbt++jcmTJ8Pa2ho+Pj6YP38+OnfujN27d6N3796YM2cOHBwcMGTIEADAxYsX8csvv+DHH3/EggULIBaLs1xEZtq7dy8aNmyIuXPnol69evIy3b59G1OnTsWkSZNQvXp1hIaGYs6cOQCAoUOHQiqV4pdffoGtrS327NmD9+/fY8mSJXnW8507d1CxYkWF56KiotCvXz/4+Phgy5YtMDU1xd27d+UXh7t27cLOnTsxY8YMVKhQAYcOHcLIkSNx+PBhuLi4yNNZuXIlxo0bh1KlSmHlypWYOHEifH19oa+vj/nz50MsFmP79u0wNjZGYGCgwt0mZYSGhuLSpUtYv349QkNDMWbMGISFhcHFxQXbtm2Dv78/ZsyYgVq1aqFy5coA8t4nJk2ahAoVKmDatGkQCoV4+vRpnnew1q5di19++QUTJkyAvr5+nt8VAOjp6WHy5MlwdnZGWFgY5s2bh+XLl2PatGkAgKdPn2LQoEHo1KkTJk2aBKFQiJs3b0IqlWLSpEkIDg5G2bJl5WMPra2tFU4kzczM0KBBAxw/fhz169eXP+/r64smTZrA2NgYYrEYgwcPRpUqVbB9+3bo6+tjw4YNGDJkCP7++2+IRKIcP/OyZcswceJE2NnZYeXKlRg5ciSOHTsGkUiER48eYdy4cRg6dChatWoFf39/zJ8/H5aWlujYsSO8vb3lv1cbGxvcunUL1tbW8PPzQ7du3SAWi3H//n35yYAy9Znd96CMkydPYt26dZg6dSqqVauGY8eOYc+ePShRooR8m3/++Qdr1qzBlClTUKFCBTx9+hSzZs2CsbExOnTogKSkJPTv3x/29vZYtWoV7Ozs8PjxY4UL++yOM3nti0lJSahfvz5GjRoFAwMDHD16VF7PxYsXx6NHj7Bo0SIsWLAAVatWRXx8PO7cuSPPM6/j1urVqxEYGIh169bBysoKISEh2QZqAKBFixZYuHAhbt68iVq1agHICHZcuXJFfgJ75swZLFq0CBMnTkStWrVw4cIFTJ8+HQ4ODqhRo0aWNPfu3YsePXpg06ZNKFu2rHx/S0xMRPv27TF58mQAGYG9YcOGwdfXF6amppBIJPj5559RvHhx7NmzB4mJiVi6dKlC2sru29988w2ioqIQHh5epIbBxcfH4+rVqxg1ahSMjIwUXrOzs0ObNm1w8uRJTJs2DW3btsXmzZsRGhqKkiVLAsgIZj979gwrVqwAkPdvJNNvv/2GcePGoUKFCjA0NMxSrtDQUAwZMgQjR47EnDlzEBsbiwULFmDBggWYN28e2rdvjwsXLmDSpEn4448/cPXqVRw8eBC7du2CsbGxUr/FTP369UNgYCA+fPgg7/5uaWmp1L6zY8cOHDlyBHPmzIGbmxt27NiBM2fOZLufZ3r27Bnev38PDw+PPL+fdevWYcyYMRg7diz27NmDSZMm4dSpU/Lzlk8lJCRg0KBB6Ny5MyZMmIDU1FSsWLEC48aNw5YtW+T1fvDgQUyYMAHVq1fHmzdv8OrVKwDZ/w7T09Px888/o0uXLliyZAnEYjEePHiQZ6+9z79fZfYLU1NTzJs3D8WKFcPz588xa9YsmJqaYsCAAQByP3/67bff0KVLF3z33Xc5DqVxdXVFpUqV4Ovri5EjR8qf9/X1RZs2bZSuw+wkJydj06ZN8sDf/PnzMX78ePnFY17HRG9vb/z999+QSCQQCoUKbWG9evUQFRWF0NBQ+Pj4AFDd70xZR48eRZ8+fbBnzx7cu3cP06ZNQ9WqVVGnTh1IpVIMHToUSUlJWLhwIUqWLInAwECF8+jk5GRs3boVs2fPhqWlJWxsbLBgwQK8fPkSS5Ysgb29Pc6cOSP/bbm4uCA1NRUeHh4YMGAATE1NcfHiRUyZMgUlS5aEp6cn3rx5g4kTJ2L06NFo2rQpEhMTFdq9vOpo9+7dOH/+PJYuXYrixYsjMjIyS4ApU82aNWFubo7//vsPnTt3BpARdDx58qQ8sJPX+c7ncjrHz6u9B4ApU6YgLi4OW7duhb6+Pn799dcCXfdUqlQJEokEDx48kO9bVDQwWKFiFhYWmDJlCoRCIdzc3FC/fn3cuHED3333HYKCgnD58mXs3bsX33zzDQBg9uzZCgfrO3fu4OHDh7hw4QIMDAwAAOPGjcPZs2dx6tQpdO3aFUDGSe2CBQtgY2OTbTnS0tKwefNmbNy4EVWrVgUAlCxZEnfv3sWBAwfg4+MDBwcHzJgxA1OnTsXbt29x6dIlHDhwQH7BtHHjRrRq1Uohgl6+fPls88ssh7m5Oezs7OTPr1u3DgMHDpR/xpIlS2L48OFYsWIFhg4diuvXryMoKAgbNmyAvb09AGDUqFEKF3PZef36tXz7TPv27YOZmRmWLFkiP6l3dXWVv75jxw4MGDBAfldizJgx8PPzwx9//CG/2AYyTgYbNGgAABg+fDg6duyIkJAQuLm5ISIiAs2bN4e7u7v88+SXTCbD3LlzYWpqijJlyqBGjRoICgrC2rVroaenh9KlS2Pr1q24efMmKleurNQ+ERERgX79+sHNzQ0AFIIvOWnTpo1CT4Hp06fn+l0BwA8//CDf3tnZGSNHjsTcuXPl9bd161ZUqlRJoT4/HaMsEolgbGyssI98rm3btpgyZQqSk5NhbGyMDx8+4OLFi/jtt98AZFyoS6VSzJ49W34SOm/ePNSpUwd+fn65ziMzdOhQ+evz589Hs2bNcObMGbRq1Qo7d+5EzZo15cE6V1dXBAYGYvv27ejYsSPKlSsHS0tL3Lp1Cy1atMCtW7fQp08febfEhw8fQiwWy39vee37OX0Pyti1axc6deokPxEZNWoUbty4oXDRvnbtWowbNw7NmjUDAJQoUQIvX77EgQMH0KFDB/j6+iI2Nhb79u2TnwyUKlVKIZ/PjzPK7Ivly5dXOE6MHDkSZ8+exblz59CzZ09ERETA2NgYDRs2hKmpKZycnOSBR2WOW5GRkahQoQIqVaoEALlerFtaWqJevXo4fvy4PFhx6tQpWFtbyy/Qtm/fjg4dOqB79+4AMr73+/fvY/v27dlexFlbWwMArKysFPbjmjVrKmw3c+ZM1KlTB7du3ULDhg1x7do1hIWFYdu2bfL3jRw5Ej/99JP8Pcru25nHvtevXxepYEVwcDBkMhlKly6d7etubm5ISEhATEwMypYti/Lly8PX11f+m/b19UXlypXl+3lev5FMvXv3lm+Tnc2bN6Nt27by46OLiwsmTZqE/v37Y/r06TA0NMSMGTPQpUsXLFq0CP/99x+GDRsm34eV+S1mMjExgaGhIdLS0hT2v2PHjuW57+zatQuDBg2Sf5bp06fjypUrudb569evIRQKlRqe0KFDB/mF9KhRo7B79248ePAA9erVy7Lt3r17UaFCBYXemnPmzEHz5s0RFBSEYsWKYffu3ZgyZYrCMbR69eoAsv8dxsfH4/3792jQoIG8bc5sE3Pz+ferzH4xePBg+fbOzs7o168fTpw4IQ9W5Hb+ZGlpCaFQCFNT0zzbwr1798qDFUFBQXj8+DEWLlyoVB1+ev7zqfT0dEyZMkV+M2TevHno0KEDHjx4AE9PzzyPidWrV0diYiKePn0KDw8P3L59G/369ZP3pPHz84O9vb3Kf2fKcnd3l7exLi4u2Lt3L27cuIE6derg+vXrePjwIY4cOSKvn8/P49LT0zFt2jT59xUREYHDhw/j1KlT8mNvv379cPnyZRw+fBg///wzHBwc0K9fP3kavXr1wtWrV/Hvv//KgxXp6elo1qwZnJyc5OXMlFcdRUREwMXFBdWrV4dAIJCnkR2hUIjWrVvj+PHj8nOEGzdu4P379/L08zrf+VxO5/h5tfeBgYG4fv069u3bJz/ezZ49G23btpW/R9nrHmNjY5iZmeXYU4oKLwYrVKxMmTIQCoXyx5lRdyCjC7C+vr7CHQo3NzeFiQUDAgKQlJSUpXFPTU1VmFDNyclJfvC4ffu2wsVPZs+B5ORkhRNhIOPi49MeCS1btsSZM2ewZcsWTJ8+XeEiNyAgAF26dClQPWR69uwZ/P39FYY1SKVSpKamIjk5GYGBgXBwcFAIPHw+tCM7qamp8oNapqdPn8LLyyvbO+sfPnxAdHS0/AIoU9WqVfHs2TOF5z5tQDIPyjExMXBzc0OvXr0wb948XL16FbVq1UKzZs1yDODkxMnJCaampvLHtra20NPTU4js29rayiPPyuwTffr0waxZs3Ds2DHUqlULLVu2zDOQktlwZMrruzI2Nsa1a9ewZcsWvHr1Ch8+fIBEIlF4PSAgAC1atMhXfXyuQYMG0NfXx/nz59G6dWucPn0apqam8ovNZ8+eITQ0NMvF4ee/kex8um9ZWlrC1dVVfqfu1atXaNy4scL2VatWxR9//CG/g+Tl5QU/Pz/UqlULL1++RPfu3bFt2zYEBgbi1q1b+Oabb+TjuJWpTyDr96CMwMBAdOvWTeG5ypUry7ulJiUlITQ0FDNnzsSsWbPk20gkEpiZmQHI2K8qVKiQ7V3PTJ8eZzLfk9e+mJSUhLVr1+LixYt4+/Yt0tPTkZqaKr8LVLt2bRQvXhytW7dG3bp1UbduXTRt2hTGxsYICQnJ87jVrVs3jBkzBk+ePEGdOnXQpEmTLL/rT7Vt2xazZ8/GtGnTYGBgAF9fX7Rq1Ur+ewsMDMxyd7NatWrYtWtXjmlm5+3bt1i9ejX8/PwQExMDiUSClJQUREREAMi40HBwcFA40ft0iBig/L6dedeR3WFzlzlEaMiQIZDJZDhx4oQ8oKDMbyTTp7/Rjh07yk+Wq1evjvXr1yMgIADPnj3L0nVdKpUiPDwcbm5usLS0xJw5czB48GBUrVpVoTu2Mr/FvOS177x//x5v3rxR2Of09fVRqVIl+VDQ7GS2tcrMKfRp22liYgIzM7Msd1AzBQQE4ObNm9kGBDPLm5aWluXz5MbS0hIdOnTAkCFDULt2bXlbWKxYsVzf9+n3q+x+cfLkSezevRuhoaFISkrK8roqzp9at26NZcuW4d69e6hSpQp8fX1RsWJFeQAmrzrMKVihr68vv2EGfDwPDQwMlA89ye2YaGFhgfLly8PPzw/6+voQiUTo2rUr1q5di6SkJNy6dQve3t4ACv47+xLlypVTeGxnZyffD58+fQoHB4cc6wbIuKny6b78/PlzSCQSfPvttwrbicVi+VwyEokEmzZtwr///ovo6GiIxWKIxWJ5D7Dy5cujZs2a6Ny5M+rUqYM6deqgefPm8t6IedVRhw4d8NNPP6Fdu3aoW7cuGjZsmOuNmbZt26JXr16Ijo6Gvb09fH190aBBA/n8Hsqc7ygjr/Y+KCgI+vr6CtcdpUqVUphnRNnrHiBjXhe2e0UPgxVKMDMzw/v377M8//79+ywH28+7cQsEgnxNzpOUlAQ7Ozts27Yty2ufBjU+ndiqUqVK+Ouvv+SPbW1t8fLlSwDAmjVr4ODgoJDOpxf5ycnJePLkCYRCocJ4WgBf1A0vU1JSEoYNG5ZttPxL0reyssoyHu/zbsEF9el3mHmClnky16VLF9StWxcXL17E1atXsXnzZowbNw69evWCnp5elpO+T+cnyC79nJ4TCATytJTZJ4YNG4Y2bdrg4sWLuHz5MtauXYtff/0VTZs2zfFzfj45Wl7fVXh4OEaMGIFu3bph5MiRsLS0xN27dzFjxgyIxWIYGxurZJ8RiURo3rw5jh8/Lr870KpVK3kdJSUlwcPDA4sWLcry3sy7beri4+ODv/76Sz4MyczMDF5eXrh165bCCVpmOZXZ99UxSW3mONiZM2fK755lyrxIV+a7ym4fyWtfXLp0Ka5du4Zx48ahZMmSMDIywpgxY+TjuU1NTfHnn3/Cz88P165dw5o1a7Bu3Trs3btXXu7cjlv169fHv//+i0uXLuHatWsYNGgQunfvjnHjxmX7GRo1aoRZs2bh4sWL+Oabb3Dnzh1MmDAhz8+eX9OmTUNcXBwmTpwIJycnGBgYoHfv3vmasE/ZfTtzEsmcetYVVqVKlYJAIEBgYGC2x7bAwEBYWFjI66V169ZYsWIFHj9+LD+BzpzrQJnfSKZPfwdr166VH9czf0NJSUno2rWrwmoZmTK7QgPArVu3IBQK8ebNGyQnJ8uD1qpqa9VxXLSyskJycjLEYnGuQ+yA/J3/JCUloVGjRhg9enSW1+zs7BAWFlag8s6bNw+9evXClStXcPLkSaxatQobN27M9SbIp9+vMvuFv78/Jk2ahGHDhqFu3bowMzPDiRMnsHPnTvm2qvhO7ezsUKNGDRw/fhxVqlTB8ePHFYLUedWhOnl7e8PPzw8ikQje3t6wtLSEm5sb7ty5g9u3b6NPnz7yMgL5/519ic/300/3Q2W+FyMjI4XgXFJSEoRCIfbv35/lIj5zGPC2bduwe/duTJgwAe7u7jA2NsbixYvlx3+hUIhNmzbB398fV69exZ49e7Bq1Srs3r1bfu6aWx15eHjg5MmTuHz5Mq5fv45x48ahVq1aOc47880336BkyZI4ceIEvv/+e5w5c0Ytq6bk1d4rQ9nrHiCj7VP3eR7pHgYrlODq6prtpI9PnjxRqrt9ptKlSyM9PR2PHz+WR7VfvXqlEAipWLEi3r17B6FQqHT3XiMjoyxdRsuUKQMDAwNERkbmOrZr6dKlEAgEWLt2LYYPH44GDRrI72S4u7vjxo0bSndR19fXz3JiUrFiRQQFBeXYpdXNzQ1RUVF48+aN/O5H5qRiualYsWKWyUnd3d1x5MiRbE+qzMzMYG9vD39/f4X68Pf3V7jDoAxHR0d069YN3bp1k4+p7dWrF6ytrZGYmIikpCR5A/b5BEEFoew+4erqCldXV/Tp0wcTJkzA4cOHcw1WZJdPbt9V5hjq8ePHyxvQf//9V2GbzH3m066vnxKJRJBIJHmWpW3btvjpp5/w4sUL3Lx5U2HMbsWKFXHy5EnY2NhkCRbm5d69e/KLh/j4eAQHB8u7lJcuXRp3795V2N7f3x+urq7yExRvb28sXrwYp06dkgcmfHx8cP36ddy9exd9+/ZVKGdu9fkl3NzccP/+fbRv317+3Ke/Gzs7O9jb2yMsLCzL3aBM7u7u+PvvvxEfH6/0HV1l9sW7d++iQ4cO8n0vKSkpS7dNfX191K5dG7Vr18aQIUNQt25d3Lx5E7Vr11bquGVjY4MOHTqgQ4cO+PPPP7F8+fIcgxWGhoZo2rQpfH19ERISAldX1yy92zLL/OlnKFOmTLbpZR5bPt+P7969i2nTpsmHkEVGRipMdOfq6oqoqCi8fftWfiHx8OFDhTSU3bdfvHgBfX39HMtYWFlZWaF27drYt28ffvjhB4UA9du3b3H8+HG0a9dOfqHh6OgIb29v+Pr6IjU1FbVq1ZIPZ1DmN5Kd7LpfV6xYES9fvsz1t+7v749t27Zh1apVWLFiBRYsWID58+cDyP9vUSQSZdvW5rXvFCtWDA8ePJAfuzLPRz6f/+lTFSpUAAC8fPlS/n9V8PDwwOnTp+Hk5JRtAN/FxQVGRka4ceOGwlw8mXL6HQIZdVGxYkUMGjQIvXr1kl/sK0OZ/SKzHfm0B1hmD6pMeZ0/ZfcdZqdt27ZYvnw5WrdujbCwMIXJNfOqw5ykp6fj0aNH8l42meehmT02lDkment74/DhwxAKhfI74j4+Pjhx4gSCgoLkx++C/s7Uxd3dHVFRUbkOk/lchQoVIJFIEBMTk+OE9v7+/mjcuDHatWsHIKNXVXBwsMIwJIFAgGrVqqFatWoYMmQIWrRogTNnzqBv375K1ZGZmRlatWqFVq1aoXnz5hgyZEiux4y2bdvC19cXDg4O0NPTk7dNgHLnO5/L7hw/r/be1dUV6enpePLkibznTEhIiMLNRmXPcUNDQ5Gamprr8YoKJ64GooRu3bohODgYCxcuREBAAF69eoUdO3bgxIkTChcneSldujTq1q2LOXPm4P79+3j06BFmzZqlcMJVu3ZtVKlSBT///DOuXr2K8PBw+Pv7Y+XKlbmu7vA5U1NT9O3bF0uWLMGRI0cQGhqKx48fY/fu3Thy5AiAjAmgDh06hEWLFqFOnTro168fpk6dKr9rN3ToUJw4cQJr1qxBYGAgnj17luukTc7Ozrhx4wbevn0rT2PIkCE4duwY1q1bhxcvXiAwMBAnTpyQz9heq1YtuLi4YOrUqQgICMDt27cVVlPISZ06dfDy5UuFZep69OiBxMRETJgwAY8ePUJwcDCOHTsm7+bfr18/bN26FSdPnsSrV6+wYsUKPH36FL1791a6XhcvXowrV64gLCwMjx8/hp+fn7wxqly5MoyMjLBy5UqEhobC19dXXtdfIq99IiUlBfPnz4efnx9ev36Nu3fv4uHDhzmO685JXt9VqVKlkJ6ejj179iA0NBTHjh3LsnzioEGD8PDhQ8ybNw8BAQEIDAzE/v375RdtTk5OePDgAcLDwxEbG5vjyZq3tzfs7OwwadIkODs7K9xtaNu2LaytrTFq1Cjcvn0bYWFh8PPzw8KFC3OccCrThg0bcP36dTx//hzTpk2DlZWVvJHt27cvbty4gfXr1yMoKAhHjhzB3r17FX7j7u7usLCwwPHjx+UnYz4+Pjh79qzCfBXK1OeX6N27Nw4fPoxDhw4hKCgIa9askfemyjRs2DBs2bIFu3fvRlBQEJ49e4ZDhw7JZ/xu06YN7OzsMGrUKNy9exehoaE4ffq0wuo3n1Pm+OTi4oIzZ87g6dOnCAgIwMSJExW+5wsXLmD37t14+vQpXr9+LR9r7+rqqtRxa/Xq1Th79ixCQkLw4sULXLx4Mc9x6W3btpUf7z4dKwtkHBeOHDmC/fv3Izg4WD7p4Kfjjz9lY2MDIyMjXLlyBW/fvpUHm11cXHDs2DEEBgbi/v37mDhxYpZje4kSJTBt2jQEBATg7t27WLVqFYCPPbiU3bfv3LkDLy8vlfUm+5pMmTJFPpnkrVu3EBkZicuXL+PHH3+Evb29wsoAQEadnjx5EqdOncry3ef1G1HWgAEDcO/ePcyfPx9Pnz5FcHAwzp49Kw9GJCYmYvLkyejZsyfq16+PRYsWycsE5P+36OzsjGfPnuHVq1eIjY2FWCxWat/p1asXtmzZgjNnziAwMBDz5s3Lttfop2xsbFCxYkWFyQBVoXv37khISMCECRPw8OFDhIaG4sqVK5g2bRokEgkMDQ0xYMAALF++HEePHkVoaCju3buHv//+W16uz3+HYWFh+O233+Dv74/Xr1/j6tWr8vmm8iOv/aJUqVKIjIzEiRMnEBoait27dyus6APkff7k5OSEW7duISoqKtfVO5o1a4akpCTMmzcPPj4+CkNm86rDnOjr62PhwoXy89Bp06ahcuXK8uCFMsdELy8vJCYm4uLFi/LgV2ZgsFixYgqBAFX9zlTBx8cHXl5eGD16NK5evYqwsDBcunRJYSWTz7m6uqJt27aYOnUq/vvvP4SFheHBgwfYvHmzfDW4UqVK4dq1a/D390dgYCDmzJmDd+/eydO4f/8+Nm3ahEePHiEiIgL//fcfYmNj5ftmXnW0Y8cOHD9+HIGBgQgKCsKpU6dgZ2eXpefBp9q2bYsnT55g06ZNaN68uUKvamXOdz6X3Tl+Xu29m5sbatWqhdmzZ+PBgwd48uQJZs+erdB7Rdnrntu3b6NEiRIFmiuOvm7sWaGEkiVLYvv27Vi5ciV++ukniMVilC5dGkuXLs124qjczJs3DzNnzkT//v1ha2uLkSNHKiwVmtnLYeXKlZg+fTpiYmJgZ2cHLy+vfK+/PXLkSNjY2GDz5s0ICwuDhYWF/G5DTEwMZsyYgWHDhsnvMg4bNgxXr17F3LlzsXTpUvj4+GDZsmXYsGEDtmzZIu/ynpNx48bh119/xcGDB2Fvb49///0XdevWxerVq7F+/Xr5TMClS5eWT/qjp6eH3377DTNnzkSPHj3g7OyMSZMmySf9yYm7uzsqVqyIf//9V94t0srKCps3b8by5cvRv39/6OnpoXz58vILyF69euHDhw/ymYjLlCmDVatW5at3jEQiwfz58xEVFQUzMzPUrVtX3qXc0tJSvmTWwYMHUbNmTQwdOhSzZ89WOv3s5LVPCIVCxMfHY8qUKXj37h2sra3RtGnTHHs35CSv76p8+fIYP348tm7dit9//x1eXl745ZdfMGXKFHkarq6u2LBhA1auXImePXvC0NAQlStXlt8NygyIdezYESkpKTh58mSOn7l169bYtm1bln3B2NgY27dvx4oVKzB69GgkJibC3t4eNWvWzLOnxS+//ILFixcjODgYFSpUwKpVq+R36Dw8PLB06VKsWbMGGzZsQLFixeQTrH5arurVq+PSpUvyid7c3d1hamoKV1dXhZVh8qrP3LRs2RIdOnTAsGHDsn29VatWCA0NxYoVK5CamopmzZqhW7duCj3AunTpAiMjI2zfvh3Lli2DsbExypUrJx+zn7n849KlSzFs2DBIJBK4ublh6tSpOZZLmePT+PHjMWPGDPzwww+wsrLCgAED8OHDB3kambOUr127FmlpaShVqhQWL14sn4g1t+NWZrl///13vH79GoaGhqhevXqeKwjVrFkTlpaWCAoKkk8AmKlp06aYNGkStm/fjkWLFqFEiRKYO3dujj079PX1MWnSJKxfvx5r1qxB9erVsW3bNsyePRuzZ89Gt27d4OjoiFGjRmHZsmXy9wmFQvz++++YNWsWevTogRIlSmDs2LEYMWKEvGuysvv2iRMnctw3CjsXFxfs27cPa9aswbhx4xAfHw87Ozs0adIEQ4cOzXKXsXnz5liwYAGEQmGWnmZ5/UaUVb58eWzbtg0rV65E3759IZPJULJkSfmQk0WLFsHY2Fg+EaK7uztGjRqFOXPmoEqVKnBwcMjXb7FLly7w8/ND9+7dkZSUhK1bt8LHxyfPfadv3754+/Ytpk2bBoFAgE6dOqFp06Z5Biy6dOmCo0ePZrsUbEHZ29tj586dWLFihfy8qnjx4qhbt668597gwYMhFAqxZs0aREdHo1ixYvL2Prvf4a+//opXr17h6NGjiIuLQ7FixdC9e3f5BH3Kymu/aNy4MX744QcsWLAAaWlpaNCgAQYPHqywJG5e50/Dhw/HnDlz0KZNG6SlpeHBgwfZlsXU1BQNGzbEv//+K19NKj91mB1jY2MMGDAAEydORHR0NKpXr66QtjLHREtLS5QrVw7v3r2TX3B7e3tDKpUqDIdUpj5z4+npiblz52Y76WNBrVixAkuXLsXEiRORnJyMkiVLZjuU5lNz587Fxo0bsXTpUkRFRcHa2hqVK1eW91YYPHgwwsLCMHjwYBgZGeG7775DkyZN5L8tMzMz3L59G7t27cKHDx/g5OSEcePGyVc9y6uOTE1NsW3bNgQHB0MoFKJSpUrySdlzUqpUKXh6euLBgweYOHGiwmvKnO98Lrtz/LzaewBYsGABZsyYgX79+sHOzg4///wzXrx4IQ+eKHvdc+LEiS+eB4a+TgJZbjMrFSKZd6L279+v1BJcpPsuXryIZcuW4dChQ7kesIn8/PwwYMAAXLlyRWFiJ12UnJyM+vXrY926dVyeq5C7e/cu+vTpg+PHjyt9t+jSpUtYunQpDh48mK+u3597/Pgxvv/+e9y+fVseeMuPI0eOoE2bNnnOY/A5tsVfn5SUFLRr1w6//vprrpPZ5ubVq1do3749fH191TI0jpRz+PBhLFmyJNuhzbomLCwM7dq1y7K8PH3dIiMj0bx5c2zatEk+cXpeXrx4gYEDB+Kff/7JtTdJXgra7ikzZw+pD3tW0FerQYMGCA4ORnR0NBwdHbVdHCKV8PPzQ40aNRioKITOnDkDY2NjuLi4ICQkBIsXL0a1atXy1a01OTkZc+fO/aJABVF+GBkZYcGCBYiLiyvQ++Pj43H69GmYmZmxrSalXbp0CV26dGGg4it348YNJCUloVy5cnj79i2WL18OZ2fnXHtqf+7NmzdYsGDBFwUq6OvFsx36quW3uy6RrmvQoIHCRFhUeCQmJmLFihWIiIiAlZUVatWqhfHjx+crjS9dGpioIL4keDpjxgw8fvxYvnwwkTJ69Oih7SKQCqSnp2PlypUICwuDiYkJqlatikWLFuWrp0Lt2rXVWELSdQxWEFGh5+Pjk+OYYCJNad++vcIKLkRFwe+//67tItD/dezYUaXzPxDlpW7duqhbt662i0FfMQ70JyIiIiIiIiKdwmAFEREREREREekUBiuIiIiIiIiISKcwWEFEREREREREOoXBCiIiIiIiIiLSKQxWEBEREREREZFOYbCCiIiIiIiIiHQKgxVEREREREREpFMYrCAiIiIiIiIincJgBRERERERERHpFAYriIiIiIiIiEin6Gu7AJoWGBio7SIQERFplbbbQm3nT0RERQvbna9TkQlW2NnZwcTEBJMnT9Z2UYiIiLTOxMQEdnZ2Gs2TbTEREWmLNto9+jJFJlhRqlQpPHnyBG/fvpU/d/78edSrVw/6+kWmGvItPT0dly9fZj3lgfWknLi4ODRt2hRnzpyBlZWVtoujs7g/KY91pZz09PQs9WNnZ4dSpUpptBzZtcWFGfdP5bCelMM2VDncn5RTFOtJG+0efZmisWf+X6lSpRR20NDQUFSrVg0ikUiLpdJtYrEYERERrKc8sJ6U8+7dOwBAlSpVYGtrq+XS6C7uT8pjXSlHLBbrTP183hYXZtw/lcN6Ug7bUOVwf1IO64m+Bpxgk4iIiIiIiIh0CoMVRERERERERKRTGKwgIiIiIiIiIp3CYAURERERERER6RQGK4iIiIiIiIhIpzBYQUREREREREQ6hcEKIiIiIiIiItIpDFYQERERERERkU5hsIKIiIiIiIiIdAqDFURERERERESkUxisICIiIiIiIiKdwmAFEWVr0aJFEAgE+OWXX+TPpaSkYPjw4bC1tYWZmRm6dOmCqKgo7RWSiIiIiIgKJQYriCgLPz8/bNiwAZUrV1Z4fvTo0Th27BgOHDiACxcu4PXr1+jcubOWSklERERERIWVvrYLoG1isVjbRdBpmfXDespdYaqnDx8+oGfPnli3bh0WLlwIqVQKsViM+Ph4bNmyBTt37kT9+vUBABs3bkTlypVx+fJl1KxZM0taqampSE1NlT+OiYkBkFFPhaGu1KUw7U/qxrpSjlgshkgkUnmalDvun8phPWWPbWjBcH9SDutJOepoP0l5AplMJtN2IbTlyJEj2i4Ckc75/fffYWZmhoEDB2Lq1KkoXbo0Bg0ahPv372PGjBnYtWsXzMzM5Nv/+OOPaNeuHdq3b58lrb1792L//v1Znt+zZw9MTEzU+jmISFGHDh1UlhbbTyL1YxtKpBtU2X5S/hT5nhXNmzdntCwXYrEYp0+fZj3lobDU0/79+xEdHY0jR47AyMgIy5cvR+nSpdGmTRvEx8fDwMAA3bp1U3iPi4sLrK2t0aZNmyzpNW3aFGvWrJE/jomJgbu7Oxo3bgxbW1u1f56vVWHZnzSBdaUcddw5Y53njfunclhP2WMbWjDcn5TDelIOe55oV5EPVohEIv5AlcB6Us7XXE+hoaEYO3YsTp8+DXNzcwCAQCCAnp4eRCIR9PUzDheffz6BQAChUJjt5xaJRAq9MD59/mutJ01iPSmPdaV5rHPlsa6Uw3pSxDb0y7CelMN6Il3GCTaJCABw+/ZtREdHo3r16tDX14e+vj4uXLiAlStXQl9fHw4ODkhLS0NcXJzC+6KiouDo6KidQhMRERERUaFU5HtWEFGGpk2b4sGDBwrP9e/fHxUqVMDEiRNRsmRJiEQinDlzBl26dAEABAQEICQkBLVr19ZGkYmIiIiIqJBisIKIAADm5ub45ptvFJ4zNTWFra2t/PmBAwdizJgxsLGxgYWFBUaOHInatWujVq1a2igyEREREREVUgxWEJHSVqxYAT09PXTp0gWpqalo2bIl1q5dq+1iERERERFRIcNgBRHl6Pz58wqPjYyMsGbNGoXZyYmIiIiIiFSNE2wSERERERERkU5hsIKIiIiIiIiIdAqDFURERERERESkUxisICIiIiIiIiKdwmAFEREREREREekUBiuIiIiIiIiISKcwWEFEREREREREOoXBCiIiIiIiIiLSKQxWEBEREREREZFOYbCCiIiIiIiIiHQKgxVEREREREREpFMYrCAiIiIiIiIincJgBRERERERERHpFAYriIiIiIiIiEinMFhBRERERERERDqFwQoiIiIiIiIi0ikMVhARERERERGRTmGwgoiIiIiIiIh0CoMVRERERERERKRTGKwgIiIiIiIiIp3CYAURERERERER6RQGK4iIiIiIiIhIpzBYQUREREREREQ6hcEKIiIiIiIiItIpDFYQERERERERkU5hsIKIiIiIiIiIdAqDFUSkMSYmJli9ejVMTEy0XRQiIqKviqmpKVauXMk2lIiKDH1tF4CIig5jY2MMHz5c28UgIiL66hgZGWHkyJHaLgYRkcYwWKEjktJTkSJJg55AD2b6RtDXE2q7SEQqlS6R4n1KKiRSKUwMDWBiINJ2kYhULjE+CWkpaRCK9GFhY6bt4hQZCckpSEuXQCQUwtLESNvFIVK5NKkYyZIUAICJ0AgiPbahVLjIZFJAFg/IJIDAEAI9c20XiXQAgxVakiBOwr8Rd+EfG4inCeGITImVv2agpw83M0dUsHBG/WKVUMuuvBZLSlRwlwJe4cyjl3gcFo1nkW8hlkjkrzlZW6CSsz283UqgXbWKvMCgr1LEq2j898cFPL72DC/uBCLuTYL8NRNzY5StVhruPmXQtGd9lK1WWoslLVxC38Xj6O3HuBccgSfh0YhNTJa/ZmZkgIpO9vimpAO+rV4R5Z2KabGkRAWTJknD1Xd3cC/uMQITQxCZHA0pZAAAPejB2cQRbqalUNXKA7Vsq0Ffj6f09PWRpd2DLMUXED8E0p8AssSPr+nZAaJvIBBVA4w7QSB01GJJSVt4ZNOwqJQ4bHl5Gv9F3kOqVJztNmnSdDxNCMPThDAcDrsBZ2NbfF+qHjqWrAWhgNOMkG6TSKXYd+0edl25i5B38Tlu9zo2Aa9jE3D64QusOHEZbaqWx7BmtVHcipF00n1Pb77AH3MO4NZJf0il0my3SXqfjPsXH+P+xcf4a9kxVKxZDj0md0bt9t4aLm3hcS84AutOX8eVZ0GQybLf5kNKGvwCw+AXGIZtF26jqktx/NS0BhpUdNNsYYkKICk9GQfDTuBs9FV8SE/MdhsppAhNeo3QpNe48OY6tgeZo7lDfXR0bglDoYGGS0yUf7Lk45AlbgLSH+W8kfQtkHoestTzwIeVkBk2gcBsJASiChorJ2kfgxUadDTsJlY/90Viekq+3hee/A7LA47g38i7mFqpK1xM7dVUQqIv8zL6HaYdOIX7IZH5el+KOB1/+z3CqQfPMeHbhuji842aSkj0ZdJSxdg5cz8OLDsGqST7IEVOntx4jhkdF6Nx97oYsWogLGwZmFNWqjgdq/69ip0X70CaU5QiB/7BERi29QjaVa+ISR0asRcX6ay7sY+w4eVuvEuLzXvjT8SL3+OvsOO4/NYPQ8v8AA/LcmoqIdGXkUneQJYwE0j9L5/vlACppzMCF2ZDAdPBEAg4FKoo4G16DUiXSjDzwR4sfnIw34GKTz2KD0G/67/jUnQuUUgiLTnz6AW6/r4734GKT31IScOMv05jwt7jCkNGiHRB3JsE/FJ3GvYvOZLvQMWnzu27gp+qjEPQo1AVlq7wevc+ET1X78P2C7fzHaj41LE7T9BlxS4ERseosHREqrEv5CgWPFmd70DFpyJT3mDWoxX453V+LwSJ1E8mfgjZu3YFCFR8SgzZh5WQxfwAmTQh783pq8dghZpJZFLMfLAH/0XeU0l6adJ0TL2/iwEL0ilnHr3AmF2+SE1XTYDB1z8AE/aegCSH7vVEmpYQ8wHjm8zC8zuBKknv3esYjGs8CyFPwlSSXmEVm5iM/uv/QsDrNypJLzLuPfqvO4CgNwW/ICRStd3Bh3Ew7IRK0pJBhh1BB3E0/LRK0iNSBZn4MWQxfQGpioLF4juQxfSHTPpBNemRzmKwQs22vDyN89EPVZpmRgBkL0ISVXPyRvQlAqNjMH7PcaSrOLBw6sFzrP3vukrTJCqoBT1WqLwnRPzbBExrtwjJiQXvcVfYjf3DV+U9Id59SMKIbUeQIk5XabpEBXH5jR8Oh/+r8nT/CP4bd2N5Y4u0TyZNgCx2MCB7r9qE0x9AFj9JtWmSzmGwQo2eJoRhV9B5taSdKhVj/qMDkMp455m0RyKVYuqBf1XWo+Jzm8/54XF4lFrSJlKW76b/cPv0fbWkHREYhS2Td6sl7a/d3qv+uPlSPUNlgt7EYuXJK2pJm0hZcWnx2PJqv9rSX/9yF5LSk/PekEiNZAnzAamazuVST0GW7KuetEknMFihRose/QWJGoMJD+ODcSTshtrSJ8rL/uv3v2iOirykS6WY8RfH3pL2xL9NwMZxO9Wax9E1/yLA74Va8/javHufiOW+l9Wax65Ld/E4jMFQ0p7tQX/luOKHKsSkxWFvyBG1pU+UF1nqNSDlkHrzSJjD4SCFGIMVanI75gWef4hQez5/hqj3ZI4oN39cvqv2PJ68joZfIMf1k3ac2HIWSe/Ve2dSJpPh0Mrjas3ja3PgxgMkp2W/vLeqSGUy7L7ir9Y8iHISkxqHa2/vqD2fc9HX2LuCtEaWtF0DmcQCKQzKFVYMVqjJ36GaGWsfkvQWfu+eayQvok9deRaEkHdxGslr3zXVTFBLlB9SqRS+GzQzSd3Fv64j7g1nNgcyhpf9df2BRvI66R+A+CTOGUKadzrqEqRQ/1DeVGkazkdfU3s+RJ+TScKB1AuayStpr0byIc1jsEIN0qUSXH37RGP5XXrDCZRI884+eqmxvC48CeTKIKRxgfeCERkUrZG8xKli+J1Qf0+lr8HjsGhExmumS29qugRXAoI0khfRp/xiNBeE94tRz5w7RLlKOQdoICAHAEh/Bll6iGbyIo1isEINghKjkSbV3CzjTxPCNZYXUaZH4Zq5iAOAZHG6ylcEIMqLqpYp1dX8dJWmJ9V9rMFjGREApEnFCEtW/1DhTIGJvIgjzZOlq3Y1xDyJNZwfaQSDFWrw7L1mgwcv3keodSJPos9JpFI8i9Ds0rm8oCBNY7BCOx6Hafa3run8iEISwzV63pYkSUZkCpe7Jw0TP9ZodrJ0zeZHmsFghRrEpml2RtpUqRjJ6WkazZOKtg8paWpbrjQnMYlJGs2PKC5as3NIaDo/XaXp33rMBx5bSLPixe81nmeCFvKkIk76rnDnRxqhr+0CFEZSmUzzeWpqTBgRtLSPS2X//xeIVN9qqTpB8v84UGQkIBRqtyy6TtV1pa8P2Ntn/F8q0exxVdP56arM37rG8tPC8YyKNm2cs0n/35MjJQWIKeSjKtmGKkcd9WRiAlhZyXNQTaLKYi/zQok9K9TAWGig0fwEEMBIw3lS0WZsIIJAoNk8TQxEAABeV5A6fbp/GZsZaTRvTeenqzJ/64U1PyIjPUPN5ynMyJNtKKmTwv4lMNVs5nomms2PNILBCjVwM3PUaH4lTGxhoMdOMqQ5RiJ9lLSx1GieZR3tAHy8E0CkDhLJx5Mt129KajRvTeenqzJ/65rLz1aj+RGVNHHSaH5CgR6cjDPOTdmGkjop7F/65TSat0DD+ZFmMFihBu7mzhBAc7edK1iU0FheRJk8nB00lpdAAHg4Z/TNF4s1li0VUZn7WLnqbhrN1927jEbz01UeJew1nJ/mjmVEAGBlYAEbAyuN5VfCuDgM9DJ6ELENJXUSiz8G/AWibzSbub6G8yONYLBCDcxERihrXlxj+VW11uwJNREA+LhpLkjm4eQAU8OMoU5pnEuW1CzzZL58jbIwNNbcELvKDTw0lpcuq1yqOAz0NTfQ3FuDxzKiTB4WmrsL7GHhLv8/21BSJ5kMSE///wMDH81lLDAHRBU0lx9pDIMVatLBuYZG8jERGqCFY1WN5EX0qbbVKmhsrHfXmp4AMhrB1FSNZElFWOY+Zmphgkbf19FInu7eZVC2WmmN5KXrLE2M0KKyZi7kqrgUh3txzQ47IQKA5g71NJZXM8eMvNLTOQyE1C+zDRUY1ASEGrqhatwJAgHn7yuMGKxQk5bFq8NUX/2TpbUsXh0m+pqfqInI3MgQbaupP4r9aT4pKRmrgRCpU0rKxztD7Ye10kieHTSUz9eie50qGsmnh4byIfqch6U7Smlg7goPi3LyfBIT1Z4dERITPxkKYtJDAzkKIDDpqYF8SBsYrFATE31DDCrTXK15mOsbo59bU7XmQZSbYc1qwcJYvcGyUS3ryHtw8ESLNCUpKeNfd+8yaNJTvXdA3b3c0LR3fbXm8bWp6uKElpXd897wC3iWdETrquXVmgdRbvq6fqfW9PWghx9cOwPIuHjMPK4RqZNE8kkvWJPugFDN8zEZd4dAn0PiCysGK9SoW6l6qGKlvm69v5RvDztDC7WlT5QXewszTGrXSG3p+7iVQM86VQFkNHwca0uakpj4sbv08JUDYeNopZZ8RAb6GLd1OIQanKPhazG1U2PYmBqrJW0DfSHmf98CQj2eBpH2VLaqiGZqHA7S3rk5ypq5AgA+fOCypaQ5799n7G8CgSEElguhtktOYQkIzCeoJ23SCWyl1Wz6N91gZ2iu8nTbFPdCK6fqKk+XKL86eHmgQ3XVTwxob2GKBd1aAsgY+hEXp/IsiHIkk33c5yxszDDpj1EQGah+ieghK/qhtGcpladbGNiYmWBhj1bQF6r+VGVKx8Zwc+CSpaR9fVy7wNVU9ZO8VrQoi24l2wLImDT4/XuVZ0GUI7E4I0AGAAKDqhCYjVF9JgJjCCyXQaBnqvq0SWcwWKFmxY1t8Fv1H1UasGjuWBWTKqm36yBRfsz5rjnaVFFdd2p7C1Ns/rELnKwzeg4lJHBSMNK81NSP3aarNfXE9D/HQmSoukllf1zyA9oPbamy9AqjuuVdsbRXG4iEqul5IhAAE9s3xHf/n7SXSJtkMhmMhUaY5jEKriaqC1iUN3fDpArDINITKQReiTTp/fuPq2sJzH4CTIerLnGBCQRW6yAwqKa6NEknMVihAaXNHLDBZziqfeESo/oCIX4s0wIzvvkeQgG/OtId+kI9LO7eGiOa14boC++C1nArgd3DuqOMfcZdzw8fOM6WtCcu7uPY29rtvfHrmZlwKuP4RWla2Jpj6t7R6Dau/ZcXsAho5lkOm3/qghI2ll+UjrWpMZb/8C1+qM9eiaQbBAIBAMBSZI5Z34xGPbsvX+qxmUM9TPf4GSb6xpDJZIiN/XjBSKRpMTEfbzbpmf8MgeWijGVGv4R+WQhsdkFgqJnVuki7eMWrIY7G1ljtPRhjyneAuX7+x+B6WJTElpoj0c+tKfQYqCAdpKcnwNBmtbB/RE94lnDI9/stjA0xrUNjbBvcVd6j4sOHjF4VRNoUE/MxYFGpTnlsuLcUnX9pm+9hIQKBAA2+q4XND5drbEnUwsLLzRl/j/0BPetWzfewEIEAaF3FHUfG9UFzT80siUqUX6b6JvjZfQDGlx8MWwPrfL/f0agYpnuMwuAyvWAoNPh/jwoBUlLUUFgiJUkkwNu3H1fYEhh3hsDOFzBsUoDUDAHTwRDYHoZA9I1Ky0m6S/UDcClXXUrVQVtnb5yK8MeR8Bt4lhAOKbKf8chEaIB6xSqhc8na8LRy0XBJiQqmvFMx7BvZE3eDXmPvtXs49/glktKyv62jJxCgkrM9vqvpibZVK8D4/6t+SKUZQQr2qCBdIJMB794BFhaAqSlgZGKIocv7ofvEjjix5Sz+3XYOr19G5vh+awcrNOlZD+2GtIBzueIaLHnhYmIgwpSOjfFT0xr468YDHLn1GKHv4nPc3s7cFN9Wr4Dva1dGSVsrzRWU6AvUsK0KLxtP+MXcx6nIi3iS8BzpsuzHQYoE+vC0qoCWjg1Q1aqS/GZWenpGrzBOSk26IDNgYWUFGBkBAqEjBNbrIUt/AVnSXiD5H0AWm3MCQjcITL4DjLtAoJf/QB593Ris0AIjoQHal6iB9iVqICk9Fc/fv0bgh0gkS8QQCgSwNjBDeQtnlDSxYy8K0piFCxfi77//xtOnT2FsbIw6depg8eLFKF/+41wUKSkpGDt2LPbt24fU1FS0bNkSa9euhYND1p4U1VydUM3VCVKpDK/exuBJeDRiPiRDIpPCxMAA5RxsUcGpGEwMDRTel5qacZLFOSpI1yQkACkpGSdc+voZQYieUzqj55TOiH+bgGe3AhH+IgJpKWKIDPRRrKQd3L3dYF/STttFL1TszE0xpFktDGlWCzEfkvA4PBrBb2KRli6BSChEcWtzVCrhAEcr1U9uTaQJQoEQtWyroZZtNYilYoQkvUZQYhiSJMkAADN9E7ialERJEyfo6ynO55KYmHGs4sofpEuk0oxeisbGgKUloKcHCPTLQmAxHbCYDpkkDBA/AiQRANIBGAH6pQFRJQj0rLRcetImBiu0zETfEFWsS6OKtfqWOCVSxoULFzB8+HD4+PggPT0dU6ZMQYsWLfD48WOYmmbMtDx69Gj4+vriwIEDsLS0xIgRI9C5c2dcuXIlx3T19AQoY28rn4MiOzJZxkVgYiLvBJFuS0sDoqMz7g6ZmgKGhhnPW9pZwKdVVfigqlbLV9TYmJmgXnlX1Cvvqu2iEKmFSE+EMmYuKGOWcw9bqTSjJ2JS0sfu9kS6KDk543zPxCSjDdX//5WoQFgCEKp+VRz6+hX5YIVYi7MOCQQChb9PyWQyhT9tyawfbdbT16Aw1NOxY8cUHm/atAnOzs64ceMG6tevj/j4eGzZsgU7d+5E/fr1AQAbN25E5cqVcfnyZdSsWTNLmunp6ZDJZNDX14fw/7P5f/jwASYmZpBKBUhLkyEtTYaUFBmkUvV/xq+FRCJW+Jdypq26SkzM+NPXB4yM9CASCWBgIIBQmDFHQuYhXZeO5SKR6lYyyUxTm/T09LJtPwHdqvdP/6XssZ6yJ5FIFNpQmUyGhIQEmJlZQCJRbEPZk+IjtqHK0WY9JSRk/BkYCGBomNF+ikQC6Oll9LrIlHkMl2rxJFEd7ScpTyDTZiuuZUeOHNF2EYh0VkREBIYOHYrff/8dLi4uuH//PmbMmIFdu3bBzMxMvt2PP/6Idu3aoX37rCsb7N27F/v378/y/J49e2BiYqLW8hORog4dOqgsLbafROrHNpRIN6iy/aT8KfLBiubNmzNalguxWIzTp0+znvJQ2OpJKpWic+fOiIuLw/nz5wFknDT9+OOP+PDhg8K2derUQcOGDbFw4cIs6aSmpiI1cxkFADExMXB3d8f9+xGwssp5WEhRJ5GIce/eaVSp0hxC4de/P6mTrtaV45etbqpyYrFYpRc3bD+VU9jaBnVhPWWPbWjB6Gq7oGt0tZ4Ke/tJ+VPkh4GIRCI2jEpgPSmnsNTT0KFD8ejRI1y+fFn+efT/P7Dw888nEAggFAqz/dwikUihF0YmoVCkUw2jrmI9KU/X6qoQHAbyVFiOd5rAulIO60kR29Avw3pSjq7VEw8B9CkuNUFECkaMGIF//vkH586dQ4kSHyc7cnR0RFpaGuLi4hS2j4qKgqOuhcGJiIiIiOirxmAFEQHImMRoxIgROHToEM6ePYvSpRVXqPHy8oJIJMKZM2fkzwUEBCAkJAS1a9fWdHGJiIiIiKgQK/LDQIgow/Dhw7Fnzx4cOXIE5ubmiIyMBABYWlrC2NgYlpaWGDhwIMaMGQMbGxtYWFhg5MiRqF27NmrVqqXl0hMRERERUWHCYAURAQDWrVsHAGjUqJHC89u2bUO/fv0AACtWrICenh66dOmC1NRUtGzZEmvXrtVwSYmIiIiIqLBjsIKIAGQMA8mLkZER1qxZgzVr1migREREREREVFRxzgoiIiIiIiIi0ikMVhARERERERGRTmGwgoiIiIiIiIh0CoMVRERERERERKRTGKwgIiIiIiIiIp3CYAURERERERER6RQGK4iIiIiIiIhIpzBYQUREREREREQ6hcEKIiIiIiIiItIpDFYQERERERERkU5hsIKIiIiIiIiIdAqDFURERERERESkUxisICIiIiIiIiKdwmAFERHpjO++a4Tvvmuk7WIQERFplLOzAMuWzdJ2MYh0CoMVREQA9u/fDmdngfzPzc0I9eq5Y+rUEXjzJkrbxStUnj17jGXLZiE0NEjbRSEiIhVgG6qcM2eOMyBBlA/62i4AEZEuGTduDkqVKo3U1BTcvHkZO3euw9mzx3H27EMYG5tou3iFwrNnj7F8+WzUrt0IJUu6Kry2Z88p7RSKiIi+GNvQ3J09exzbt6/B2LGzsrz28mUy9PV5aUb0Kf4iiIg+0aRJa1Sp4g0A6NlzEKytbbFx43L8++8RdOzYQ8ulK/wMDAy0XQQiIiqgotaGJiUlwsTEVCVpGRkZqSQdosKEw0CIiHJRt24TAEBIyKtct5NKpdi8+Xc0beoJNzcjeHoWQ69erXDv3i35Nunp6VixYi7q1CmD0qUNUbOmKxYunILU1FSFtOrUKYd58+bh5s0raNu2BtzcjFC7thsOHNipsJ1YLMby5bNRt245uLkZoVIlW3TsWA8XL56Wb5PTHBC//NIPNWu6yh+HhgbB2VmA9euXYvv2Nahd2w1lypigR48WCA8PhUwmw4oVc+HlVQJlyhijf/8OiI2NUUizZk1X9OnzLS5cOIXmzavCzc0IjRp54Pjxv+Xb7N+/HYMHdwUAdO3aWN5l+OrV8zmW9+3baIwdOxBVqjjAzc0IzZpVwZ9/7lDY5tPy79q1UV7Hbdr4wN/fL/svjYiI1ErZNjQm5h1GjvwB5ctboGJFK/z8c188enQPzs4C7N+/XWHbFy+e4scfv0OlSjZwczNC69beOHXqqMI2Z86cQalSBvDzu4JZs8bA07MYypY1xcCBnfDu3Zss+Z89ewKdOtVH2bKmcHc3xw8/tEVAwCOFbX75pR/KlTNDUNBL/PBDG7i7m2PEiF4AgBs3LuGnn7rCx6cUSpc2hLd3ScycORrJyckK79++fQ0AKAyZyZTdnBUPH95F796tUb68BcqVM0O3bk1x+/Z1hW0yh+Ao+1mJvibsWUFElIvg4JcAAGtr21y3Gzt2IP78czuaNGmNHj0GIT09HTdvXsKdO9fld5nGjRuEAwd2oG3b7/DTT2Nx9+4NrF69EC9ePMGWLYcU0ouIiMDQod3RvftAdO3aF/v2bcXo0f1QubIXypevBABYtmwWVq9eiJ49B6Fq1Rp4/z4B9+/fwoMHd9CgQfMCfd6//94NsTgN/fuPRFxcDNatW4IhQ7qhbt0muHbtPIYPn4igoBfYunUV5s4dh+XLtyq8/9Wr5xg69Hv88MMQdO3aF3/+uQ2DB3fF7t0n0aBBc9Sq1QADB47Cli0rMXLkFJQrVxEA5P9+Ljk5Gd991whBQS/Qr98IlCpVGv/8cwCjR/dDQkIc+vcfprD9oUN78OHDe/TuPRgCgQBr1y7BoEGdce1aIEQiUYHqhIiICkaZNlQqlaJfv3bw97+JPn2GomzZCvj33yP45Ze+WbYNCHiEjh3rwtHRGcOHT4KJiSmOHfsTAwZ0xKZNB9G6dSeF7adNGwlLS2uMGTMToaFB2Lz5N0ydOgLr1++Xb/PXX3/gl1/6olGjlpg6dTGSk5Owc+c6dOpUD//+e1dhuKJEko5evVrCx6cepk9fKh/a8s8/B5CcnIQ+fYbC2toW/v43sW3bKkREhGHjxgMAgN69ByMq6jUuXjyNlSv/yLPuAgIeoVOn+jA3t8DQoRMgEomwa9cGdO3aCH/9dQHVq9fM92cl+towWEFE9ImEhHjExLxFSkoK/PyuYMWKOTAyMkazZt/m+J4rV87hzz+3Y+DAUZgz53f580OGjIVMJgMAPHp0DwcO7EDPnoPw66+bAAD9+g2DnZ091q9fiitXzqFu3cby94aHh+PAgbOoUyfjuXbtusHHpyT279+GGTOWAgDOnPFFkyZtsGTJRpV9/sjIcFy+/BwWFpYAAIlEgtWrFyIlJRknTtySj6d99+4NDh3ajYUL18HQ0FD+/sDAZ9i06SDatOkMAOjRYyAaNqyA+fMnokGD5nBxcUONGvWxZctKNGjQHHXqNMq1PLt3b8Tz50+watUudO6ccQfrhx+GoEuXhliyZBq6dv1BYfvw8BBcvvwcVlbWAIAyZcqjf/8OOH/+XzRvnvN3SEREX64gbejJk4dx+/Y1zJ79GwYN+hkA0KfPUHTvnjXoPmPGz3B2LgVfXz9529O37zB07FgP8+dPzBKssLa2xd69pyAQZPRgkEql2Lp1JRIS4mFhYYnExA+YMWMUevYcpNCWdu3aFw0alMeqVQsUnk9NTcW333bF5MkLFfKZMmUxjI2N5Y979/4Jrq5lsWjRFISHh8DZuRS8vWvDzc0dFy+eRpcuvfOsyyVLpiE9XYxDhy7DxcUNAPDdd33QoEF5zJ8/AQcPXsjXZyX6GnEYCBHRJ7p3bwZPz2Lw8SmJYcO6w9TUDFu2HELx4s45vuf48YMQCAQYPXpmltcyTxrOnj0OAPjppzEKrw8ePBZARuDhUyVLlkTNmvXkj21ti8HNrTxCQgLlz1laWuHZs0cIDHyez0+Zs2+/7apwUpN556ZLl94KE39Vq1YTaWlpiIwMV3i/o6OTwsmiubkFvvuuDx4+vIvo6Mh8l+fs2eOwt3dUGOssEokwcOAoJCZ+wPXrFxW2b9/+e3mgAgBq1KgPAAr1RkRE6lGQNvT8+ZMQiUTo1etH+XN6enro12+4wnaxsTG4cuUsvv22GxIT3yMm5i1iYt4iNvYdGjVqiVevniMiQrFN6tXrJ3k7DAA1a9aHRCJBWFgwAODixdOIj49Dhw495OnFxLyFUChEtWo1ceXKuSzl7dNnaJbnPg1UJCUlIibmLby960Amk+Hhw7t51FpWEokEFy6cQsuWHeWBCgBwcCiOjh174ubNy3j/PiFfn5Xoa8SeFUREn5g/fw3c3Nyhr6+PYsUcUKZMeejp5R7XDQ5+CQcHJ1hb2+S4TVhYMPT09ODqWlbheXt7R1haWmU5mShWrFiWNKysrBEXFyt/PG7cHAwY0AH167ujQoVv0KhRK3Tp8gM8PCor81Gz5excSuGxuXlG4KJ48ZLZPh8fH6vwvKtrWYWTJQBwc3MHkDGvhL29Y77KExYWjNKly2X5DsqWzRg2Eh4eAhsblxzLnxm4+LycRESkegVpQ8PCgmFvXzzLaiGft5dBQS8gk8nw66/T8euv07NN6927aNjb28sff94mWFoqtgmvXmUE+7t1a5JteubmFgqP9fX1Ubx4iSzbhYeH4NdfZ+D06aMK7TSQ0dskv969e4Pk5CSUKVM+y2vlylWEVCrF69eh8mGhQN6flehrxGAFEdEnqlWrIZ9jQh0+v5DPSc4ndzL5/2rVaoArV17i1KkjuHDhFPbu3YxNm1Zg0aL16NlzUGaOCu/JJJFIsk1dKBTm6/nMYS664mspJxFRYaTONlQqlQIAhgwZh4YNW2a7zecBjrzahMw0V678A8WKZQ2mf76UqIGBYZb2WSKRoHv35oiLi8GwYRNRtmwFGBubIjIyHKNH95PnoW5s/6gw4jAQIqIv5OJSBlFRr7OsjvGpEiVcIJVK5XdxMr15E4X4+DiUKOGSwztzZ21tg++/74+1a/fCzy8UFStWVphN3MrKGvHxcVneFx6unm6hmXe+PhUY+AwA5JOUKRuwATLq7dWr51lO9l68eAog650kIiL6upQo4YLo6AgkJycpPB8U9ELhceZwCH19ERo0aJbtn5mZeb7ydnEpAwCws7PPNr285lUCgCdPHiAw8BlmzFiG4cMnomXLDmjQoBkcHZ2ybKts+2drWwzGxiZ4+TIgy2svXjyFnp4enJxKZvNO+lpt3LgRTk5OWc53OnTogAEDBmDWrFmoWrUqtm7dilKlSsHMzAzDhg2DRCLBkiVL4OjoCHt7e8yfP1/pPAUCAdatW4fWrVvD2NgYbm5u+Ouvv+Svnz9/HgKBAHFxcfLn/P39IRAIEBQU9KUfWSkMVhARfaE2bbr8f2nP2Vley7xwb9KkDQBg06bfFF7fuHE5AKBp07b5zjcm5p3CY1NTM7i6lkVa2selUF1cyuDly6cKy5c9enQPfn5X8p2fMiIjX+PEiY8rm7x/n4C//tqJSpWqyoeAZK5Jn5AQl2d6TZq0QXR0JI4e/TibeXp6OrZtWwVTUzPUqtVAtR+AiIg0qmHDlhCLxdi9e5P8OalUKl/mM5OdnT1q126EXbs2ICoqIks6BVmms1GjljA3t8CqVQsgFosLlGZmj4ZPA/UymQybN/+eZdvM9i+7mwifp9mwYQucOnUEoaFB8uffvInC4cN7UKNGvSxDVOjr1rVrV7x79w7nzn2cJyUmJgYnT55Er14ZE4y/fPkSJ06cwMmTJ7F3715s2bIFbdu2RVhYGC5cuIDFixdj2rRpuHHjhtL5Tp8+HV26dMG9e/fQq1cvdO/eHU+ePFH55ysoDgMhIvpCdes2RpcuP2DLlpV49eo5GjVqBalUips3L6FOncbo338EKlWqgq5d+2L37o1ISIhDrVoN4e9/EwcO7ECrVh0VVgJRVuPGHqhduxEqV/aClZUN7t27BV/fv9C//wj5Nt27D8DGjcvRs2dL9OgxEG/fRuOPP9ajfPlKWSbnUgU3N3eMGzcQ9+75wc7OAfv3b8WbN1FYvnybfJtKlapCKBRizZrFSEiIh6GhIerWbQI7O/ss6fXq9RN27dqA0aP74f792yhZ0hW+vn/Bz+8KZs/+Ld930YiISLe0atUR1arVwJw5YxEU9AJly1bAqVNHEReX0Vvx094ICxasQadO9dC0qSd69foRpUq54c2bKNy+fQ0REWH47797+crb3NwCCxeuw6hRP6BVq+po3747bG2LITw8BGfO+MLHpy7mz1+daxply1aAq2sZzJ07DpGR4TA3t4Cv78Fs54rw9PQCAEyfPgqNGrWEUChEhw7ds013woR5uHjxNDp2rIe+fYdBX18fu3ZtQFpaKqZOXZKvz0m6z9raGq1bt8aePXvQtGlTAMBff/0FOzs7NG7cGJcuXfr/Ci9bYW5uDg8PDzRu3BgBAQE4fvw49PT0UL58eSxevBjnzp1DzZo188gxQ9euXTFoUMbQ4blz5+L06dNYtWoV1q5dq7bPmh8MVhARqcCKFdvg4VEZe/duwbx542FubokqVbzh7V1Hvs3SpZvh4uKGP//cjpMnD6FYMUeMGDEZY8ZkXUVEGQMGjMLp00dx8eIppKamokQJF0yYMA9Dh46Xb1OuXEX8/vtOLF06A7Nnj0G5ch5YufIPHDq0B9eunf/Sj51F6dLlMG/eKsydOx6BgQEoWbI01q3bj0aNPo4vtrd3xKJF67F69UKMGzcQEokEBw6cyzZYYWxsjL/+Oo8FCybhwIEd+PAhAWXKlMfy5dvw/ff9IJFkvRNGRERfD6FQiJ07fTFjxs84cGAH9PT00KpVJ4wePRMdO9aFoaGRfFt3dw8cP34Ly5fPxp9/bkds7DvY2trjm2+qYfToGQXKv1OnnnBwcMKaNYuwfv2vSEtLhaOjM2rUqI/vv++f5/tFIhG2bz+G6dNHYfXqhTA0NELr1p3Qr98ING9eRWHbNm06Y8CAkThyZB/+/nsXZDJZjsGK8uUr4dChS1i4cDJWr14IqVSKatVqYuXKXfKVuqhw6dWrF3788UesXbsWhoaG2L17N7p37y6fJ8XV1RXm5h9v0jg4OEAoFCrMo+Lg4IDo6Gil86xdu3aWx/7+/l/2QVRIICvCs64cOXIEbdq0gUgk0nZRdJZYLMbx48dZT3lgPSnn3bt3sLOzw6NHb2FlZavt4ugsiUSMO3eOo3r1NhAKv579qWZNV5Qv/w127vxHY3nqal05ZR2qrFVisVilxya2n8ph26Ac1pNyilobevLkYQwc2AmHD1+Gj09dpd+nq+2CrtHVeirs7WduUlJS4ODggG3btsHHxwcuLi64desWqlevjlmzZuHw4cMKgYR+/fohLi4Ohw8flj/XqFEjVK1aFb/99lue+QkEAuzYsQN9+vSRPzd69Gj4+/vj3LlzuHjxIho2bIiYmBhYW2esLuPn54caNWrg1atXcHV1VdEnzxnnrCAiIiIiIq1JTk5WeCyRSLB16yqYm1vgm2+qa6lURJplZGSEzp07Y/fu3di7dy/Kly+P6tXVu/9fv349y+OKFTOWhy9WrBgAICLi4xwxmu51wWEgRERERESkNdOnj0RKSjK8vGojNTUVJ078jVu3rmLSpAUwNjbWdvGINKZXr1749ttv8ejRI/Tu3Vvt+R04cADe3t6oV68edu/ejZs3b2LLli0AgLJly6JkyZKYNWsW5s+fj2fPnmHZsmVqL9OnGKwgIiIiIiKtqVu3CTZsWIb//vsHqakpcHUti3nzVilMGE1UFDSo3xA2NjYICAhAz5491Z7f7NmzsW/fPgwbNgzFixfH3r174eHhASBjPpa9e/di6NChqFy5Mnx8fDBv3jx07dpV7eXKxGAFERGpxI0bQdouAhERfYU6deqJTp3Uf2FGpEsCAyJx/dwTvHgcjuePXuNtVAJkMhmq2AxA04oW2PXbVZT1CEatxhUxa9YszJo1S+H927dvz5Lm+fPn81UGJycnnDp1KsfX69ati/v37ys8p8kpLxmsICIiIiIiIlIzqVSKC8cf4Nje63jsH5LtNjKZDG8i4/EmMh5XzzzBzlX/waNqKbTrUQsN23gqrP5R2DFYQURERERERKRG4cFvsXza33h0Jzjf733sH4LH/iH4Z/8NjJ3XBU4uua8ItHv3bgwePDjb11xcXPDo0aN8l0EbGKwgIiIiIiIiUpN//76FtfP/QWqK+IvSeXQnGEO7rMLwqe3QopNXjtu1b98eNWvWzPa1zKVYNTmco6AYrCAiIiIiIiJSg4PbL2PTrydUll5qshjLp/2N9/HJ6NKvXrbbmJubw9zcXGV5akvRGfBCREREREREpCGnDt1WaaDiU5t+PYFTh26rJW1dke9ghVgshr6+Ph4+fKiO8hARERERERF91V4Hv8Oa+cfUmsea+cfwOvidWvPQpnwHK0QiEUqVKgWJRKKO8hARERERERF9taRSKZZNO4jU5C+boyIvqcliLJ/+91cx/0RBFGgYyNSpUzFlyhTExMSoujxEREREREREX60Lxx8UaNWPgnh4Owjnfe9rJC9NK9AEm6tXr8aLFy/g5OQEFxcXmJqaKrx+584dlRSOiIiIiIiI6GtybO91zea37wYaf1tFo3lqQoGCFR07dlRxMYiIiIiIiIi+boFPI/DYP0SjeT6+G4zAgEi4lXfUaL7qVqBgxcyZM1VdDiIiIiIiIqKv2vXzT7WS743zT/IdrFizZg1+/fVXREZGokqVKli1ahVq1KiR7bZisRgLFy7Ejh07EB4ejvLly2Px4sVo1apVgdPMC5cuJSKNMTc3xz///IMSJcxgYQEYGQFCobZLRfRl9PUBY2PA0hKwtgZsbLRdIiIqjMzNzXH06FE4O5vBzAwwNAT0eCZPXzGBABCJAFNTwMoqow0tDF48DtdKvs8fv87X9vv378eYMWMwc+ZM3LlzB1WqVEHLli0RHR2d7fbTpk3Dhg0bsGrVKjx+/BhDhgxBp06dcPfu3QKnmZcCHeIkEgmWLl2KGjVqwNHRETY2Ngp/RETZMTAwQNu2bWFhYQgzs4yLOgcHoFixjIZKINB2CYmUIxQC5uYZ+6+9fcYJlqlpRtDCyEjbpSOiwsjAwADt2rWDpaUhLCwAW1vA0THjXx536GsiEmUEJxwdM84BLS0BE5OMNrQweP4of0EDVXmRz3yXL1+OH3/8Ef3794eHhwfWr18PExMTbN26Ndvt//jjD0yZMgVt2rSBm5sbhg4dijZt2mDZsmUFTjMvBRoGMnv2bGzevBljx47FtGnTMHXqVAQFBeHw4cOYMWNGgQpSlElkYsSnhSJdmgyBQA/GQhuYiRy0XSwilQr7EI93KUmQyqQw0TdAaQsbGPy/W4VIlNFQmZsDiYnA+/daLixRDvT0AAuLjBOqz4NrSUmpeB0Rh7Q0CfT19WBfzAJWVibaKWgRkpiYWe/pEImEcLC3gKUl650KD4lUiqD3sXiflgoAsDQ0gou5NfT+fxAyNMz4k0iAhAQgOVmbpSXKmb5+xvmeoWHW15LTY/AhPRoymQRCgQEsDEpApPd1Ri/eRiVoKd94pbdNS0vD7du3MXnyZPlzenp6aNasGa5du5bte1JTU2H0WWTU2NgYly9fLnCaeSlQsGL37t3YtGkT2rZti1mzZqFHjx4oU6YMKleujOvXr2PUqFEFKkxREpcahKfx/yAi+S5iUwMhRbrC60ZCK9gZusPFrD7KWrSASI8nXvR1SRSn4VDgQ5wKfY4H7yIRm6p49mSgJ4S7lR1qOpRCT/eqKGNpCz29jICFkREQGwukp+eQOJEWGBllnGR9OnTp3v0QnDz9EI+ehCMsLAafL3PuYG+B8u7F0bRxRdStXQ5CIftsq8Lde8H499RDPH76GmHh2dS7gwUquBdHsyYeqF2zLOudvjqRSe+x//k9XHz9Co9jo5GcLlZ43UxkgEo2Dmjo5IZuZSvDztgUQmFGLy8jIyA+HpBKtVR4omyYmWWc42UG+qWydAR9uICX78/gTcpTJKW/UdheAD1YGpSCg7En3C3awMH4Gy2UOv/SxRLIPm+UNEQqlUGSLoFQP+8x1m/fvoVEIoGDg+INcgcHBzx9mv2cGy1btsTy5cvRoEEDlClTBmfOnMHff/8NiURS4DTzUqBgRWRkJDw9PQEAZmZmiI/PiOJ8++23mD59eoEKUlS8TQnAjTdrEZGc+/KuKZI4hCXdRFjSTdx8ux4VLNuhum1/Bi1I5yWK07Di3mXse+6PD+K0HLdLk0rwMCYKD2OisOWJH+o4umCyV2N42jpCJMroFhgbC6SkaLDwRDkwN8/4y3TxcgC27byMoOC3ub4vKjoBUdEJuHg5AMWKmaP7dzXQsb0X9PQ45qkgzl98iu1/XEZwyLtct4uKSkBUVAIuXAqAfTFzdO9WE53ae2molEQFF/YhHgtun8WpkOdIl+UcbfggTsONqFDciArFb/cu41vXiphUvRHsTcxgbAwYGADv3jHoT9onEHwMogEZQYqHsX/iQeyfSJbkfCyXQYq4tCDEpQUhIP4YbA3d4W03CCVNa2uo5AWjLxJCIBBoJWChpydQKlBRUL///jt+/PFHVKhQAQKBAGXKlEH//v0LPMRDGQW61VCiRAlEREQAAMqUKYNTp04BAPz8/GCYXb+eIixzR5XIxLj1diOOhAzOM1DxObE0EQ9i9+FgUD+8TrqtjmISqcSViCC0PLoFmx/fzDVQkZ2rkcHodHwnfr17AWkSyf8bN1mhGb9IXy8Li4+Bivj4JMxZcAQz5x7OM1DxuTdv3mPVujP4eexuhIbFqKGkhVdsXCJmzj2M2fOP5Bmo+Fz0m/dYueY//Dx2N8Jfx6qphERfblfAHbQ8ugXHgwNyDVR8Lk0qwd+BD9H86Gb8/fIhgIweYHZ2Gd3uibTJxuZjoCImNRBHQ4bg5tt1uQYqsvMu9Rn+DZ+AC5HzkSrR7fHCdg4WWsrXUvlt7ewgFAoRFRWl8HxUVBQcHbNfUaRYsWI4fPgwEhMTERwcjKdPn8LMzAxubm4FTjMvBQpWdOrUCWfOnAEAjBw5EtOnT0e5cuXQp08fDBgwoEAFKawEAgHSJIk4ETYa/jF/QAZJgdP6kB6B42Gj8SjuoApLSKQa25/eRu/T+xCWqPx4uc+ly6RY8+AafvhvH96npUIgEMDKKuMOEZE2mJpmdF0FgLDwGAwesQPnLnzZkmQPH4dj8IgduHsvWAUlLPxCQt9h8IgduHg54IvSuf8wDIOHb8e9B6EqKhmRaqRLpRhz+R9Mu3EKien5C/R/Kj4tBWOu/IOZN08DyJhjx9aWK4aQ9lhbf5yfIuTDNRwJ+QlvU7/sWP484SSOhAzGe3GkCkqoHuUqOWkl37L5yNfAwABeXl7ya3oAkEqlOHPmDGrXzr33ipGREZydnZGeno6DBw+iQ4cOX5xmTgp0+Fq0aBGmTJkCAPj+++9x6dIlDB06FH/99RcWLVpUoIIUVunSFPwbPh6RyfdUlKIM16J/w+O4QypKj+jL7Xx6G7NunoaqOrzdiApF/7MHkJwuhkCQMWM0VwohTdPXz+hVAQARkXEYPX4voqJVM2lWcnIaJk//C/cf8sI5N+GvYzF6wl68eaOau2iJSWmYNO0AHmlpWTmi7Iy74ou/Ax+qLL0dT2/LAxZCYcZcO0SaZmz8cXWPsMSb+C9iKiSyVJWknSAOxfGwUUhMz18PR00p6+GslXzLeeQvSDJmzBhs2rQJO3bswJMnTzB06FAkJiaif//+AIA+ffooTJZ548YN/P333wgMDMSlS5fQqlUrSKVSTJgwQek086tAwYqUzwaR16pVC2PGjEG7du0KVIjC7NqblYhKeaD6dKN/R3TyY5WnS5Rfd96EY5bffypP91Z0GOb6ZURmP71oJNKUzCCZRCLFrLmH8fbdB5Wmn5qajllzDyM+Pkml6RYW6ekSzJx7GDExiSpNNyVFjBlzDyHhPZdMIO3b8tgPh189Unm6O57exsH/Dwn59KKRSBP09D4GyRLF0TgbMRNSmTj3N+XTe3EEzkXMVmmaqlKrccUCv1f2BTfnajbKX77ff/89li5dihkzZqBq1arw9/fHyZMn5RNkhoSEyKd+ADJiANOmTYOHhwc6deoEZ2dnXL58GVZWVkqnmV8FClbY29ujb9++OH36NKScajhHYYk3ERB/TC1pyyDBxagFSJeqJkJJVBCpknSMv+ILqZomEdrz3B+XXr8CkNEdn2NvSVMyJ6gDgD37r+PZi6jc31BAsXFJ+H3NabWk/bX7Y881vAyMVkvaMTGJWLVW9UFWovwITIjBr3cvqC392X6nEZWU0SuJAX/SJHPzj8OPLkUtQZpUtcH+TJHJ/ngU+5da0v4SbuUd4VG1VJ7bpRsLkeRkjIRy5oitaoV3NWwQU8MW72rYILaqFRLKmSPJyRjpxnlPmulRzQVu5fM/L8SIESMQHByM1NRU3LhxAzVr1pS/dv78eWzfvl3+uGHDhnj8+DFSUlLw9u1b7Ny5E05OWXtz5JZmfhUoWLFjxw4kJSWhQ4cOcHZ2xi+//IJbt24VuBCFkVQmwZXopWrNIy4tGA9j/1RrHkS52fDoBl4mqHeiwGk3/pUHQ0xN1ZoVkVzmvhYVnYA/9lxVa17nLjzF7btBas3ja/M6Ig679xVsTXZl/Xf2Mfzvhag1D6LczL55GikS9S3XkZCWigW3zwHIGA7C3hWkCQLBx33t1fvzCEu6odb8/N5uQHJ6nFrzKIh2PWpl+7wMQKqtAeI9LBBf2QrJJU0gtjGA1FD4ccyzQACpoRBiGwMklzRBfGUrxHtYINXWIMch1+26FzwgoMsKPMHmgQMHEBUVhQULFuDx48eoVasW3N3dMWfOHFWX8asUkngV78UReW/4hR7HH4JUxnWpSPPSpVLsCrir9nyC38fhbNhLABmNH+euIHUTiT72qjjmexdiccEnRlbW34e50tOnjv5zFxKJ+ntu/n2E9U7a8TL+HS7+v+egOh0Pfoo3yRl3tU1M1J4dEUxMPvaq0MSiAOmyFDxL+Eft+eRXwzaeqFTdReE5iaEeEipa4ENZc6Sbi/KVXrq5CB/KmiOhogUkhoqX8N94uaJR28pfXGZd9EXzA5ubm6N///44deoU7t+/D1NTU8yerZtjhzTtSdxhjeSTlP4GIYnqvetHlJ1Toc8Qnayebn2f2/UsY7lfPb2Ps0oTqUvmHaH0dAmOn7yvkTyv33ypssk7v3Zpaek4cUr1cz1l58q153jzVreXwKPCac8zf5VNSp0bsVSKfc8zJnk3NOTKIKR+mW1obGoQIpP9NZLnk7ijkOVjuV9N0NPTw9h5XWBonBGUSClmiDhPK6Rb5C9I8bl0CxHiPK2QYpdxQmxoLMKYeZ0hKKR3877okJWSkoI///wTHTt2RPXq1RETE4Px48erqmxfLYk0DRFJdzSWX2jidY3lRZTpfHigxvK6GhGMNEnG3W3Rlx3jifKUuY89ex6F2DjNTH4plcpw67b677J+DZ4+i0BCgmYmv5RKZbh9J0gjeRF96nz4Sw3m9bG9ZhtK6pa5j4Vp8PrkQ3oE4tJ0b1ifk4sthk9th2RHIyS6mQFCFQUUhAIkljFDsqMRhk9tB6dStqpJVwcVKFjx77//om/fvnBwcMDQoUPh4OCAU6dOITg4mEuXAohJewkpNDc0423Kl61XTFQQD99pbn3rNKkEAXFvAHzsnk+kLh+DFZpdwz1Aw/npqmfP1TOZac75sd5Jsz6IUxGo5vmePvU4NhqS/0+IzzaU1Elf/+Nw3bepmr0+0XR+ykqxM0SSi3omXUtyMZX3sCisCjxnRXJyMnbu3InIyEhs2LABDRo0UHXZvlrvUl9oNL/Y1EDOW0EaJZZK8CxOs2tbP4rJuIDhiiCkTkLhx27SL9S0EkVOXqhpxZGvzYuXmq2H5xrOj+hp7BuNDAHJlJwuxqv/B0fYhpI6fdpzR9PXQ+9Snms0P2WERsXi191n1ZrHr7vPIjQqVq15aFOBDllRUVEwNzdXdVk0SiaTISkpCe/evYNIRX3ibGxsIBAIkCrR7LhjKdIhlibDUGiO5ORkJCWprtuyWCxWeT0VRkWlnkxMTGBsbIxEcRrSNTw2MD4t5f//kyIurvAelAFAIsnYn+Li3kEoLLz7kyqouq4MDYVwcLACALx/r5mhCJnef0j5+P/375GWlqaytMViMUxMTGBubv7F41rV0X4KhUL5Ou3v36fkvrGKffjwcQlwddR7UWgbvlRRqSdLS0vo6+sjLlWz+zjwsQ2VSNIQF1e452lhG6oc9dSTIaytzQBA49dDqdKP+3VsbCykUtWcpxa0/ZRKZZiz9RRS0tR7QzklLR1zt53ChondCuW8FQUKVmQGKqKjoxEdHZ1lZ6hcWfdnI3379i169uyp0jQTExNhYmICaDRermj9+vUYM2aM1vKnwu23337Dzz//rJU9XPb/5UuTk5NQqZKdFkpARUGlSpXw8OFDAIBMwzv6p/n99NNP2Ldvn8rziI6ORrFixb4oDXW0n1WrVsXduxmrC8k0XPGf5te/f38cPKj+2eupaPLz84O3tzdkWmhFM3O8cuUcWrVqpfH8qWj46aefsGHDhv8/0vR+/jG/KlWqIDQ0VKWp57f9PHXzKfyfh6u0DDm5+ywc/954ila1KmokP00qULDi9u3b6Nu3L548eSJv5AUCAWQyGQQCASQS9S/z9qUMDAxgZGSEBw8ewNraWiVpGhkZZaStZ6aS9JQlgBD6ehl5Dx48GH369FFZ2rGxsfD09FRpPRVGRaWeMgOTJvoi6AkEkGrwosLCIGNMnpGRCR490uwQFE2Lj49FkyaeOHv2ASwtC+/+pAqqriuR6OPoSFNTzY4D/TS/DRs2YPXq1SpLOzY2FuXKlYOBCgasq6P91NPTXr2bmHzMb+vWrZ+caH+5otI2fKmiUk8WFhYZ/4o0P8bcTJTx269duzHbUAKgnnqytPzYxoj0zJAs0VxPWAO9j2vz+vv7qyzwXdD288DZeyrJX1l/nb3HYEWmAQMGwN3dHVu2bIGDg8NX2eVEIBAgJSUF1tbWsLVV7QyqNoZlVJpeXqwMXCAUZHTfMjEx+X/vDtVRVz0VNkWhnmJjMxodQ6E+3Cxs8CL+ncbyrmhtDwCQSPRgZVV46zhTSkoKLC2ti8Rn/VKqriupNGPeCrfSX9YDIb/KutnL/595UaNqqmiv1dl+AkCZ0vb4D49Vnm5Oyrp9/J7VUe9FoW1QhaJUT+WtNXtsMdQTooxlRr0KBAZFol1hG6ocVdfTp6O4bAzLIEGs2t4NubExLPvx/zY2Kk8/P+3ns5A3uP/itcrLkJt7L17jeegblCup2eOLuhVogs3AwEAsWbIENWvWhKurK1xcXBT+ijobw7IQQKix/OyMymssLyrazMw+9hrytHXUWL5CgUAerBCLNZYtFVHp/x9e6l5Oc/t4Rn4OGs1PV2m6HjT9PRNZGRqjpJmlxvIrb10MIr2M81K2oaROYvHHIY2avj6xM9Sd66FL9zS3NLFCvv6BeW/0mTVr1sDV1RVGRkaoWbMmbt68meO2YrEYc+bMQZkyZWBkZIQqVarg5MmTCtvMmjULAoFA4a9ChQr5LlemAgUrmjZtinv3NNu15Wsi0jOGvXEljeXnbOKtsbyoaBOJREhOzph0sF7x0hrL19u+BIz0M8L1PNEidcucX7GCu6NGhyRUq8pgPwBUrOgEExPNrK8oELDeSTvqa7ANrVfcVf5/tqGkbpn7mCavT4yFtrA21NxvKi9Pg7SzytST4Pzlu3//fowZMwYzZ87EnTt3UKVKFbRs2RLR0dmvhjZt2jRs2LABq1atwuPHjzFkyBB06tRJPudUpkqVKiEiIkL+d/ny5QJ/pgIFKzZv3oytW7di9uzZOHjwII4eParw9zUwNDTE999/D0ND9ZyIVrTsoJZ0P2cktEJps0ZqS1/d9VRYFKV6yjyAfetaAVaGRhrJs7d7NQAZ0foUzU+irnEGBhn7k4FB4d+fvpQ66ipzHzM0FKFV829Ulm5uqld1QamS6uuubGhoiJkzZ6rkGKXu452xkQGaN9FMwN+7emk4O6lvTHtRahu+RFGsp17lq2kkHz2BAD3/34aKxcBXMK3cF2Mbqhx11VNmG1rMqALsDAt+Rz0/ylt+Cz2BetblLUj7+SRYs0ufZ3qaz2DF8uXL8eOPP6J///7w8PDA+vXrYWJigq1bt2a7/R9//IEpU6agTZs2cHNzw9ChQ9GmTRssW7ZMYTt9fX04OjrK/+zsCj4xfoGCFdeuXcOVK1cwe/ZsdO3aFR07dpT/derUqcCF0SRDQ0P06NFDbQ1jafPGMBaqfrzU58pbfAuhnvruQKm7ngqLolRPmUO9DIX6+L5sFbXnV8zYFK1cMrr2JSdrfoUGbShK+9OXUkddpaV9vDPU/ttq0NNT/7xMHdtXV2v6hoaGmDVrlsqCFerePzu2rw5NTIeliXrnbzlvRbGeKtk4wKuYs9rzaeJcBiX+P+QkMVHt2emEorg/FYS66ikp6eO5modVZ5WmnR096KOiZXu1pV+Q9jM6VjvLA0fHfFB627S0NNy+fRvNmjWTP6enp4dmzZrh2rVr2b4nNTVVvqBEJmNj4yw9J54/fw4nJye4ubmhV69eCAkJycenUFSgYMXIkSPRu3dvREREQCqVKvx9DSuBaIJQIEKtYiPVmoepvj2q2PRWax5EuRnuWRuOJuZqzWOmTzP5WNuicqJF2peUlPFvqZK26NzBS615eVd3Rf267mrN42vj6mKHDu3UG0io6eOGOrXK5r0hkZrMqtEc+oICnYorxUioj6neTQBkTBz8/1GcRGollX7sXVHOoiXsjdTbQ7GKTW+Yiuzz3lBD0tMlWruxJpXJkC6RKrXt27dvIZFI4OCgOE+Ug4MDIiMjs31Py5YtsXz5cjx//hxSqRSnT5/G33//jYiICPk2NWvWxPbt23Hy5EmsW7cOr169Qv369fH+fcECOAU6Qr579w6jR4/O8uFIURmLZnA1a6C29Os7TISB0FRt6RPlxcLACItqq2+99jYu5fGta8YyTMnJHGtLmpOY+HF/G9S/AUo4q2eogImJAcaNbq2WtL92Pw1sCKfiVmpJ29TUEGN/Ud+xi0gZnraOGPJNLbWlP75aQ5S2yOjl+/590eiZSLohISFjfxMI9NDAcTKEAvX0ArcxLItqtn3VknZB6esLNdIzMDt6AgH0heoLgP7+++8oV64cKlSoAAMDA4wYMQL9+/dXWH68devW6Nq1KypXroyWLVvi+PHjiIuLw59//lmgPAv0aTp37oxz584VKMOipp7DBFgZuKo83ao2fVHCtIbK0yXKr0bOZTDCs47K0y1naYcFtTIuJiQSID5e5VkQ5SouLuNky9BQhFnTOqp8sk09PQEmj28LB3v1LFP6tTM2MsDMqR1gquLJNoVCPUyd+C2K2am3VxiRMn6uUhcNnFQ/MWBblwroXzFjgsPUVPZMJM2SSDICFgBgZVAK9R0mAlDtFbyR0ApNis9W21wVX8LeWjvti72NWd4b/Z+dnR2EQiGiohTnuYiKioKjY/arZBUrVgyHDx9GYmIigoOD8fTpU5iZmcHNzS3HfKysrODu7o4XL14oXbZPFShY4e7ujsmTJ6Nfv35YtmwZVq5cqfBHHxkJLdGmxG+wNlBdQ1TFuje87QapLD2iLzWuWgMMqVRTZemVtyqG3c27w8rQGEBGoEKqXK82IpURi4EP/x/+WcbNHr8u7AYLc9VMKquvr4dpk9qhXh0O/8iNezlHLJ7fDWZmqgkUiURCzJjSHrVrcvgH6QaRnhAbGnVWacCijUt5rKjXDnoCAaTSjMArkaYlJmYEygCgrEUL1HeYCAGEKknbWGiDNiV+g5VBKZWkp2oVXbQzLKWCi/KjHgwMDODl5YUzZ87In5NKpThz5gxq166d63uNjIzg7OyM9PR0HDx4EB065LywxIcPH/Dy5UsUL15c6bJ9qkChqM2bN8PMzAwXLlzAhQsXFF4TCAQYNWpUgQpTWJno2+Lbkmtw/c1KPE84mfcbcmCoZ47a9r+grEULFZaOSDUmeTWGu1UxzPb7D/FpBV+y47synpjh0xQWBhkXhfHxRWMFENJN798DQiFgYgJULO+EtSv7YPGy43jwMKzAaZZwtsbEcW3xjYf6J9crDCp5OGPt7xn1/uhxeIHTKVnSBpPGtoVHRScVlo7oyxnri7C58Xf4/f5lrH94HZICjtcw1BPi5yr1MLhSTQj19CCTATExRWMFENJNMTGAnR0gEgHlLdvCXOSIi5GL8CE9+zkRlOFs4o36DpNgJtLd6QgquDrg/N2XGs+3Yj6CFQAwZswY9O3bF97e3qhRowZ+++03JCYmon///gCAPn36wNnZGQsXLgQA3LhxA+Hh4ahatSrCw8Mxa9YsSKVSTJgwQZ7muHHj0K5dO7i4uOD169eYOXMmhEIhevToUaDPVKCeFa9evcrxLzAwsEAF0TRfX1+MHz8eFhYWsLa2RseOHRVeDwkJQdu2bWFiYgJ7e3uMHz8e6enpBc7PUGiOho5T0cJpMSxFJfP1XgGEcDNrgi6uf2glUCEWi+Ht7Q2BQAB/f3+F1+7fv4/69evDyMgIJUuWxJIlSzRePm0KCgrCwIED4e7ujm7duqFChQqYOXMm0tLSFLYrKvXUucw3ONV+INq6VIAwnwP23CxssLXJd1hat61CoKIwd11dtWoh2rTxgbu7OSpXtseAAR3x4kWAwjYpKSmYMmU4KlWyRblyZvjxxy5480Y763frgtWrF8HZWYAZM36RP5eWloZp00aprY7i4j5OuOnsZI3ffu2JEUOawsrSJF/pGBmJ8P13NbB5XX+1BSrCw8PRu3dv2NrawtjYGJ6enrh165b8dZlMhhkzZqB48f+1d99RUVxtGMCfZekgRWmiFLFhBxER7L0Qo8bYE3uPLcbYe2yxR2NLjCWJLcaoid1gjF2xYAcLIkWaIiBFWHb3+2M/Jq60Bbcpz++cnMjs7L13787OO/POnTvlYWZmhjZt2uDhw4fFqkPb8RMAXCqWxZoV/TB6eCtYW5sV671mZsbo09MPm9cP0kmigjG0YIyh/zEWi/G1d3Ps79gf9e2Kv536O7nhr48GYnQdf4gNDCCTAS9eKJ5u9CFi/CyZ/GKoJvtJLlfeDp3NfdDdfTtq2XQv9jwW5uJyaOwwCR0rrtJYoiK/GHrt2jXhdVVjaDOvyiVuw7tMLdPUq+DbMfLTq1cvLF++HLNnz4aXlxdCQkJw7NgxYV7KyMhIpckzX79+jZkzZ6JmzZro1q0bKlSogHPnzsHGxkZYJzo6Gn369EH16tXRs2dPlCtXDpcuXYK9vX2JPpNGb/KxsrJCSEhIofex6MK+ffswbNgw9OrVC2PGjIFIJMKdO3eE16VSKQIDA+Hk5IQLFy4gNjYW/fv3h5GRERYtWvROdbtaBsDVMgAx6cEITfkTcZk3kSl9mWc9EcSwMXaFm2VTeFp/rNPs4fbt2+Hs7Ixbt24pLU9NTUW7du3Qpk0bbNy4Ebdv38bgwYNhY2OD4cOH66i12hUaGgqZTIZ169YhKioK9vb2GDVqFNLT07F8+XIApa+fHM3LYF3zrohJT8HOByE4EfkQj1NfQJbPlSI7U3P4ObqiTzUvNCnvLiyXShUniLnDBz9Uly79iwEDvoCXly9ycnKwZMl09O3bDkFBN4V15s79EkFBh7Fp015YWVljxowxGDr0Exw8eF6HLdeNkJBg/PrrJtSoUVdp+ZYtW3Dr1l2N9lFysuK2kDJlFHNNdO/WAB9/5I1/z4bi6InbCA2LRUZG3rMCIyMxqlR2RJuWNdCubR1Yqnneize9fPkSjRs3RsuWLXH06FHY29vj4cOHsLX9b3LQpUuXYs2aNdi+fTsqVaqEWbNmoX379rh3716ex5HlR5fx08BAhB7dfdGlszdOnwnF8ZN3cD8sFpmZefvd2NgQVSo7oE2rmmjXurba5xspDsbQgjGG5lXXrjz+6NQft1/E4dew6zgXG4GY9NR813W1tEHzCh74rJo3qtv+dyKQna3YZ71jjlCvFRQ/T5++BxMTxUnw/PmTcOrUUcbP/ysohmq6n3ITZ1ZWgIUFYGRgDn+HCfAuNxgPU47g8asgJGU/hkyedxZ1YwNLOJjWRDXrj+Bu2VSj81MUFEPfPBFXNYZWdbFH3SrOuPXoWaF15pgC2WWAHDNAagbIjKCY2kMOGEgAcSZgmAkYvwIMixhlXK+KM6q6FD8hMGbMGIwZMybf106fPq30d/PmzXHv3r1Cy9u9e3ex21AYkVyuubmBy5Qpg5s3b+pVsiInJwfu7u6YN28e7Ozs0KlTJxgZGSmtc/ToUXz00Ud49uyZkFnauHEjpkyZgsTERBgbq3eyr3RJApKynyBHlgmRSAwzsQ3KmVSFoYF67o1+F3/99RdGjx6NQ4cOwcvLCzdu3ICXlxcAYMOGDZgxYwbi4uKEPpk6dSoOHDiA0NBQHbZa+yQSCY4cOYJOnTph9erV2LBhgzDKiP0EZEiycf9lAl68zoBULoe5oRGq2dihvEXeiQXT0/+bRbq0efEiEXXrOmDv3iAYGb1ClSqN4e3tjO+/34mPPvoUAPDoUSiaN6+BP/+8CB8fzc0ir2/S09PQvn19LFq0HmvWLEDNml6YP381Xr58Di+v8li79hd8/HFvAJrtI7EYsLEB8nvcemTUC8Q8e4nsbCkMDQ3g6GAFdzc7GBqq5x7dokydOhXnz5/H2bNn87wmkUhgaGgIZ2dnfPXVV5g0aRIAICUlBY6Ojti2bRt69+5daPn6GD9lMjmiY5IQHfMSEomi350creHuZgexBmdEVxVjqGoYQwuX9DoD918m4FW2IoNvY2KGGrYOsDZRPk6UyRS3rn3IIxILkhs/9+37F76+/jh7di8GDhzI+Pl/+cXQOXOWab2fjI0VMdTwrZyDVC7By6wnSM+Jh0wuhVhkAmtjF1gbV1Rr/YUpKIZKJBIYGRlBLpcXK4Yeu3Qfs344mqceOYBsa+B1OSCnGA91NEwHTF8Axin5T1X6zfCO6NCohuoFvid0H8m17Pr164iJiYGBgQG+/PJLuLq6omPHjkpXhi5evIg6deooPZq1ffv2SE1Nxd27d9XeJgsjB7hY+KFSmRZwt2wKR7M6epGoiI+Px6hRozBhwgSYm+cd7nzx4kU0a9ZM6eCzffv2CAsLw8uXeUeLlBYpKSkoW7as8Df7CTA3MoaPQ0W0c62Gjm7V0byCh1KiQiZTTGQYH6+49aM0JioAIDVV8cgTGxvFlfDbt69DIpGgadM2wjpVqniiQgVXXLt2USdt1JXp079A69aBaNasjdLy27evIycnB02atBaWabKPpFLFFaLERMWtIW9uq64u5eDvVwXNm1ZHY/+qqFLZUWuJCgD4888/0aBBA/To0QMODg7w9vbGjz/+KLz+5MkTxMXFoU2b//rQ2toafn5+uHix6L7Sx/hpYCCCq0s5BDT6r98rezjoRaKCMbRkGEPzKmtqjsbl3dHBrTo6uFVHIydXpURFTo4idsbHl85EBfBm/FRsO48fP2b8fENBMVTb/ZSdDSQkKOayeHM+MrHICHam1eBm2RSVyrSAq6W/VhMVgPpjaLuGnvCqqnzLp9QYSPUA0lyLl6gAFOunuSreL30r7+9drQLa+3kWr8D3hO6juZblZurnzp2LHj164MCBA7C1tUWLFi2QlJQEAIiLi1M60AIg/B0XV/IJYd4ncrkcAwcOxLBhw1ClSv6zprOf8nr06BHWrl2LESNGCMvYT4qZgP/55x+kpKTg5s2byMiQICMD+P33vzB06EjExSlGU5TmScBkMhnmzJkAX9/GqF69NgAgMVFxJdHa2kZpXXt7RyQmlo5tBwAOHtyNO3euY9q0xXleS0yMg6Ghodb7SCJRDLOOi1MkL1JTgcxMxYGYJO9IVq0IDw/Hhg0bULVqVRw/fhyjRo3CuHHjsH37dgD/7W/y2x+psi9i/FQdY2jJMIbmlZycjJ9++gmpqanIycnBjRs3kJEhwdmzl7BgwWIkJipO/tLTS2+i/8346empiJ8vX75k/Py/wmKorvrp9WtFwiI+XvH/V68Uy3Q5x0pBMfTnn38GUPwYamAgwuzB7WBqrBhG8toWSK5a/CTF23IsFOW8/v8dnqbGhpg9uD1ExZwr7n3xwSQrpk6dCpFIVOh/ufdGAsCMGTMQEBCA+vXrY+vWrRCJRNi7d6+OP4XmqdpPa9euxatXrzBlyhRdN1knVO2nN7148QKdO3dGjx49MGzYMB21XD+lpqaiVatWuHjxIry8vBARkYrkZODUqbO4fv2GrpunF6ZP/wJhYXewfr167/V738XERGH27PFYu3aHSnMqaJtcrphbJS0NePkSeP5cMepCF2QyGerXr49FixbB29sbw4cPx7Bhw7Bx48ZC33fr1i389ttvjJ8qYAxVDWOo+mRkZGDo0KG4e/cuUlJSUL9+fUREpGLXrj/wxx8HdJYc1SeMnwXT9xgqlSqSFK9eKZIWz5/rri0FxdA3R1cUl4ujLb7u1wqZdkB6RajvzNtAUV6mHfB1v1ao6GCjpoL1j0Yn2NSmr776CgMHDix0HQ8PD2FG05o1a+LFixcAABMTE3h4eCAyMhIA4OTkhCtXrii9Nz4+XnjtfaZqP506dQoXL16EpaUl5HK5kK1r0KAB+vXrh+3bt8PJyUnol1ylrZ9yPXv2DLNmzULLli3xww8/KK33IfeTquzs7CAWi5GQkKC0PDExHvb2paMPCjNjxhj8/fch/PHHGTg7V4RUqjj6tLd3QnZ2NlJSkpWuepSmfrt9+xqeP09Ahw71hWVSqRSXLp3Btm3f45dfDiMnJwcpKckoW/a/iaVKUx/lKl++PGrWrKm0rEaNGti3bx+A//Y38fHxSs87t7W1xWeffYYZM2YUWDbjpwJjqGoYQ9UnN37Gx8ejWrVqwvLSuI/Lz9vxM5etrW2pj59A0TF09uzZ7Kf/K2kMjY+PF+Yiyk9WWSCjfIEvv5OM8oryP2QfTLLC3t5epUei+Pj4wMTEBGFhYbCzswOgmDglIiICbm5uAAB/f38sXLgQCQkJcHBwAACcPHkSVlZWeTbi942q/bRmzRosWLAAEokEZ8+eRZUqVRAYGIg9e/bAz88PgKKfZsyYIUw8Ayj6qXr16kqzz7+PVO0nQPGYozZt2qBy5crYvHkzDAyU06Yfcj+pytjYGD4+PkqTFslkMpw7F4RBg/Kfgbg0kMvlmDlzLI4d24+9e0/D1bWS0ut16tSHkZERzp0LQmBgdwDAo0dhiImJhI+Pvy6arHVNmrRGUNBtpWUTJw5C5cqe+OKLKXB0dIKhoSHOnz+Fzp17ASh9fZSrcePGCAtTfnTfgwcPhNhWqVIlODk5ISgoSDiwSk1NxY0bNzB+/Hh4ehZ+v2tpj58AY6iqGEPVJzd+BgUFoWnTpgAYP4Gi42flypVLffwECo+ho0ZNRELCffbT/xUUQ11dXQEUHEMvX76MUaNG5VtmRPJLzD11SqPtnnvqFHwrVIC7zYe5PyxRsmLixIkqrdeoUSNUqKCZZ8mXlJWVFUaOHIk5c+Zg6NChqFy5MlavXg0A6NGjBwCgXbt2qFmzJj7//HMsXboUcXFxmDlzJr744guY5DcF/Aco94cpkUgQGRmJqlWrAlDs/CtWVGSu+/bti3nz5mHIkCGYMmUK7ty5g++++w6rVq3SWbu1LSYmBi1atICrqyv69euHxMRE4WAqNwPLflKYOHEi+vfvDwB4/DgMe/ZsR2ZmOnr1GqTjlunO9Olf4MCBndiy5SAsLcsgIUFxz6OFhWIyPisra/TuPQTz5k2EjU1ZlCljhZkzx8LHx7/UzGRuaVlGuAc5l7m5BWxty8HTszakUgnatGmDb76ZjLJlHUplH+X68ssvERAQgEWLFqFnz564cuUKfvjhB+FKtUgkwoQJE7BgwQJUrVpVeOyas7MzunbtWmT5jJ+qYwxVDWOoaiZOnIgBAwagevXqABSPmmT8zD9+liljDWNjQ1hYWKBXr0GlOn4ChcfQ6tVrIz09kv30fwXF0PXr1wMofgyVyeWYfPwEMjX8DOHMnBxMOXECu3v0/CDnrShRsuLGjRu4ceMGJBKJsON88OABxGIx6tf/b5iRSCTSy4OTZcuWwdDQEKtXr8bKlSvh5+eHU6dOCRl6sViMQ4cOYdSoUfD394eFhQUGDBiA+fPn67jl+sXa2honTpzAF198AR8fH9jZ2WH27Nkf5HPPC3Ly5Ek8evQIjx49wqm3Mqe5TwVmPyn06tULERERmDp1Krp3b4Hatb3x66/HYG/vWPSbP1A//7wBAPDppy2Ulq9YsRmVKyuuXM+duwoGBgYYPrw7srKy0KJFeyxatF7bTdVrgwcPxqFDp0p9H/n6+mL//v2YNm0a5s+fj0qVKmH16tXo168fJP+/sX3y5MlIT0/H8OHDkZycjCZNmuDYsWMq38vM+Kk+jA2Moarq1asXEhMT8e233wIAQkPvMH4WED9XrtyKTz/tBwCYPXs5xGLDUh8bisJ+Uigohvbt21dYpzgx9K+wUFx9FqOVtgfHxODPsFB08fzwHl0qksuLP3fwypUrcfr0aWzfvl04QHn58iUGDRqEpk2b4quvvlJ7QzXh4MGD+T4nnv7z5rPP2U8FYz+p5sWLF7Czs8Pdu89hY1NO183RW1KpBNevH0H9+p0gFnN7Koy+9pWzs65boOzNIfTqwPipGsYG1bCfVMMYqhp9jQv6Rl/76UOJnz1278a12GcaaFH+fJydsbdXb63Vpy0lmpN0xYoVWLx4sdK9gra2tliwYAFWrFihtsYRERERERERvS/uJyZqNVEBANeePcN9XT2OTINKlKxITU1FYj6dkZiYiFevXr1zo4iIiIiIiIjeN0Hhj3VS76nwcJXXPXPmDDp37gxnZ2eIRCIcOHCgyPecPn0a9evXh4mJCapUqYJt27blWWfdunVwd3eHqakp/Pz88jwhrLhKlKzo1q0bBg0ahD/++APR0dGIjo7Gvn37MGTIEHzyySfv1CAiIiIiIiKi99Gdtx63rC23E1SvNz09HfXq1cO6detUWv/JkycIDAxEy5YtERISggkTJmDo0KE4fvy4sM6ePXswceJEzJkzB9evX0e9evXQvn17JCQkFPuz5CrRBJsbN27EpEmT0LdvX2HSLkNDQwwZMgTLli0rcWOIiIiIiIiI3le33+Hk/F0UJ0nSsWNHdOzYUeX1N27ciEqVKglTPtSoUQPnzp3DqlWr0L59ewCKeS2HDRuGQYMGCe85fPgwtmzZgqlTpxbjk/ynRCMrzM3NsX79erx48UJ4MkhSUhLWr18PCwuLEjWEiIiIiIiI6H0Wp6NpEeLS0jRW9sWLF9GmTRulZe3bt8fFixcBANnZ2bh27ZrSOgYGBmjTpo2wTkmUaGRFLgsLC9StW/ddiiAiIiIiIiJ670mkUhT7UZtqIpPLkSOTwdCgROMRChUXFwdHR+XHJTs6OiI1NRWZmZl4+fIlpFJpvuuEhoaWuF71fxIiIiIiIiKiUsZILIZIR3UbiEQaSVTo0of1aYiIiIiIiIh0xKlMGd3Ua2mpubKdnBD/1pwY8fHxsLKygpmZGezs7CAWi/Ndx8nJqcT1MllBREREREREpAZ1HBx0Um/tt27BUCd/f38EBQUpLTt58iT8/f0BAMbGxvDx8VFaRyaTISgoSFinJJisICIiIiIiIlIDTSYNClPHQfV609LSEBISgpCQEACKR5OGhIQgMjISADBt2jT0799fWH/kyJEIDw/H5MmTERoaivXr1+O3337Dl19+KawzceJE/Pjjj9i+fTvu37+PUaNGIT09XXg6SEm80wSbRERERERERKTQ2qMyVl64UMJ3y4ESznrRysND5XWvXr2Kli1bCn9PnDgRADBgwABs27YNsbGxQuICACpVqoTDhw/jyy+/xHfffYeKFSti8+bNwmNLAaBXr15ITEzE7NmzERcXBy8vLxw7dizPpJvFwWQFERERERERkRrUsLeHT3lnXIt9Vuh6hiYSmFplwcgsB0amEhgYySASAXI5IJMYQPLaCJJMQ7xONUFOllGhZfk4O6OGvb3KbWzRogXk8oKfW7Jt27Z833Pjxo1Cyx0zZgzGjBmjcjuKwmQFERERERERkZp85lWvgGSFHKbWr2FRNhPGFpJ83ysSAWJjGcTGWTC1ykIZx3RkpxshPckMr1NMkd/Ii8/q1VPvB9ATnLOCiIiIiIiISE06V/dEA+cKSsvExjkoV+klbF1SC0xUFMTYQgJbl1SUq/QSYuMcpdd8K1TAx9U937nN+ojJCiIiIiIiIiI1MRCJsLR9O5gZKm5kMLPJhH2VF8VOUrzN2EICuyovYGaTqSjX0BBL27WHSFSyeS70HZMVRERERERERGrkbmOLua1awaJcOmwqpkKkpjNvAwPApmIqLMqlY26rVnCzsVFPwXqIyQoiIiIiIiIiNTO3yYRV+TSNlG1VPg3m/x9h8aFisoKIiIiIiIhIjaIznmNl6EGN1rEy9CCiM55rtA5dYrKCiIiIiIiISE1kchkW3t2L17J3m6OiKK9lEiy6+3uhjyF9nzFZQURERERERKQmf8fdxK3kCK3UdTP5CU7GhWilLm1jsoKIiIiIiIhITf6IuqjV+vZHX9JqfdrCZAURERERERGRGjx89Qy3U55qtc5byRF49CpWq3VqA5MVRERERERERGpwPvG+3td75swZdO7cGc7OzhCJRDhw4ECR7zl9+jTq168PExMTVKlSBdu2bVN6fe7cuRCJREr/eXp6FvNTKGOygoiIiIiIiEgNwlJjdFJv6KtolddNT09HvXr1sG7dOpXWf/LkCQIDA9GyZUuEhIRgwoQJGDp0KI4fP660Xq1atRAbGyv8d+7cuWJ9hrcZvtO7iYiIiIiIiAgAEFaMpIFa6y1GkqRjx47o2LGjyutv3LgRlSpVwooVKwAANWrUwLlz57Bq1Sq0b99eWM/Q0BBOTk6qN7oIHFlBREREREREpAYJr1N1Um/i6xSNlX3x4kW0adNGaVn79u1x8aLyRKIPHz6Es7MzPDw80K9fP0RGRr5TvUxWEBEREREREb2jHJkUcsh1UrcMcuTIpBopOy4uDo6OjkrLHB0dkZqaiszMTACAn58ftm3bhmPHjmHDhg148uQJmjZtilevXpW4Xt4GQkRERERERPSODA3EEEGkk4SFAUQwNBBrvd5cb95WUrduXfj5+cHNzQ2//fYbhgwZUqIyObKCiIiIiIiISA0cTK10Uq+9qbXGynZyckJ8fLzSsvj4eFhZWcHMzCzf99jY2KBatWp49OhRietlsoKIiIiIiIhIDaqXqaibeq0qaKxsf39/BAUFKS07efIk/P39C3xPWloaHj9+jPLly5e4XiYriIiIiIiIiNRAk0mDwngWI0mSlpaGkJAQhISEAFA8mjQkJESYEHPatGno37+/sP7IkSMRHh6OyZMnIzQ0FOvXr8dvv/2GL7/8Ulhn0qRJ+PfffxEREYELFy6gW7duEIvF6NOnT4k/E5MVRERERERERGrQxL5mid9rAFmJ39vYvobK6169ehXe3t7w9vYGAEycOBHe3t6YPXs2ACA2NlbpSR6VKlXC4cOHcfLkSdSrVw8rVqzA5s2blR5bGh0djT59+qB69ero2bMnypUrh0uXLsHe3r7En4kTbBIRERERERGpQZUy5VHH2g23U54Wul45ozS4WzyHg3Ea7E1ewVKcBZEIkMuBNKkJErPKICHbEhHpdnghsSy0rLo27qhSRvXbLVq0aAG5vOBJQLdt25bve27cuFHge3bv3q1y/apisoKIiIiIiIhITT5x8S8gWSFHVYsE1LGKQXnT1HzfKxIBZQyzUMYwCx4Wz9HINgKxr61wO7UCHqY7ABDleU+3io3U+wH0BJMVRERERERERGrSxqke9kdfwq3kCGGZtWEGWtmHwdk0pdjllTdNRXnTVNR+/QynEqsjJcdceK2eTSW0dfJSQ6v1D+esICIiIiIiIlITA5EBZtTqAVMDIwBADctY9KpwtUSJijc5m6agV4Wr8LSMBQCYGhhheq0eEInyjrb4EDBZQURERERERKRGFc3tMNGzC+pZRaGVfRiMDEo+eeabjAxkaG0fhnpWUZjo2QUVzcuppVx9xNtAiIiIiIiIiNTMs0wcUso91kjZTco9hmeZOI2UrS84soKIiIiIiIhIjV5lR+Fq4nKN1nE1cTleZUdptA5dYrKCiIiIiIiISE3kchkuJXwDqfy1RuuRyl/jUsKCQh9D+j5jsoKIiIiIiIhITZ6mnUTi65taqSvxdQiepp3QSl3axmQFESEiIgJDhgxBpUqVYGZmhsqVK2POnDnIzs5WWu/WrVto2rQpTE1N4eLigqVLl+qoxURERERE+ulByu9are+hluvTFk6wSUQIDQ2FTCbDpk2bUKVKFdy5cwfDhg1Deno6li9X3GuXmpqKdu3aoU2bNti4cSNu376NwYMHw8bGBsOHD9fxJyAiIiIi0r2XWQ/w/PUtrdaZ+PoWXmY9hK1JVa3Wq2kcWUFE6NChA7Zu3Yp27drBw8MDH3/8MSZNmoQ//vhDWGfHjh3Izs7Gli1bUKtWLfTu3Rvjxo3DypUrddhyIiIiIiL9EZN+Tu/rPXPmDDp37gxnZ2eIRCIcOHCg0PVjY2PRt29fVKtWDQYGBpgwYUK+6+3duxeenp4wNTVFnTp1cOTIkWJ8grxK/cgKiUSi6ybotdz+YT8V7kPsp6SkJNja2gqf6fz582jSpAlEIpGwrHXr1vj222+RkJAAW1vbPGVkZWUhKytLqUwAkEolkEo/nL5St9y+YR8VTV/7St92BRKJBEZGRmovkwr3IcYGTWA/5Y8xtGT0NS7oG33tJ33bDZQkfiZlhWqoNeqrNz09HfXq1cPgwYPxySefFLl+VlYW7O3tMXPmTKxatSrfdS5cuIA+ffpg8eLF+Oijj7Bz50507doV169fR+3atVVu25tE8g916lAVHDx4UGd1i8VilC1bFjY2NrC2toaFhQXEYjHkcjkkEglSU1ORnJyMly9f4tWrVzprJ5VOsbGx+OqrrzBw4EC0a9cOADBnzhw4Ojpi9OjRwnpRUVEYO3Ys1q5dCxcXlzzlnD9/HklJSfDx8UGdOnVgbW0NsVgMR0dHvH79GsnJyUhJSUFSUhKkUqnWPh+RuhgbGyvty01NTSEWiyGTyZCdna20jWdmZuq0rV26dFFbWbqMn0Dh/Z6VlYWUlBS96XeikhCJRLh27RqSk5Ph4+MDT09PWFhYQC6Xw8nJCRkZGUhOThaOFYneR+bm5ihbtiysra1hbW0NY2NjGBgYQCqVIjMzEykpKUhOTkZSUpJOk5nFjZ8HIj5GRk68hlpTMHNDJ3R1L358FolE2L9/P7p27arS+i1atICXlxdWr16ttLxXr15IT0/HoUOHhGWNGjWCl5cXNm7cWOx2ARxZgbZt26r9alNRDAwMYGBgAJFIVOA65cqVE/4tl8shlUp18kgaiUSCkydP6qSf3if62k/Tp08X5pwoyK1bt+Dp6Sn8HRMTg6+++gq9evVS2gl9//33cHV1RadOnYRl9+7dAwA0a9YMNWrUEJbnbuNF7dwrVKgAAJDJ5EhPlyEtTYacHJU/3gdLKpXg5s2TqFevLcRi/dme9JGu+srYWARLSwOYm4sK3Zfb29sL/5bJZJDJZDrbl6ubLvZ3IpFIiJ+F9buDg4Pwb133uz7GBn3DflKWG0M//vjjQtdzdXUFAOTkyJGWJkN6ugwymTZaqN8YQ1Wjy34yM1PEUFPTgmcksLGxQfny5QEozoXkcrlO9uUliZ8ZOQkaaEnRMnVUb66LFy9i4sSJSsvat29f5C0mhSn1yQojIyOdB0Z5ThSQ8xCQZwIQAWI7wLAmRAaWABQHZ4aGuv2q9KGf3gf61k+TJ0/GkCFDCl3Hw8NDaPOzZ8/Qrl07BAQEYPPmzTAw+C+IlC9fHomJiUqfL3dIqouLS6GfOyMnE0/So5AieQU55DAxMIaruTMcTO0AAAYGIpQpI0aZMmJkZAApKUDpHfP1H7HYiAdaKtJWX4nFgI0NYGKivFwqk+FxfBKiXiQjS5IDI0MxnKzLoLqzHYz/v//OPQH5UOjD/k4qlSHyXjRiHsZCkiWBobEhHFztUKmuG4xNFG3Th37Xh756H7Cf8peYmo6w2ES8eq24JcTKzBQ1nO1R1tIcAGBoKIKNjRjW1mK8egWkpemytfqDMVQ12uwnExPA2hp4+7QmSyrBo1exiM9KhlQug4mBEVzM7eBmYQ8D0X8Jal3vy1Uhk+cA0M1BrBwyyOQ5MBDp5rwxLi4Ojo6OSsscHR0RFxdX4jJLfbJCF+RyGZB9FvKM34DsYECenM9aIsjF7oBpG4jMekNkmHeIPVFR7O3tla7sFiYmJgYtW7aEj48Ptm7dmicg+Pv7Y8aMGUr37p08eRLVq1fPd76KhNfPcTzuDIKTbiLudSLk+ey4LQ0tUNOqCto4NoW3bS0AgLm5IpglJwNv3KpLpHMWFoCVFZB7QT9LkoOjN8NwMPge7kTFIVOSd1iQodgA1Zzs0MnbE918a8Ha3FTLrf7wZGVm45/d53Bi22k8uPoYWZnZedYxNDKER11XtOrXFO0HtoSljYUOWkpUcjcjY/HbpVs4/+ApEl+l57tOeZsyaFLNHb3968LT2QEikWIfZWqqiKEcqUj6InfbtHhjV/wyOw2HYoIRFHcT4enxkMrzDgsyFxujhrULPnL2RUvHOjAy0P9TV0WiQARdJCxEMNBZokJTPqxP8x6Qv/4b8leLAWlUUWsC0idA+o+Qp/8EuUkbiKxmQSR2LOJ9RMUXExODFi1awM3NDcuXL0diYqLwmpOTEwCgb9++mDdvHoYMGYIpU6bgzp07+O6777Bt2zalsl5kvcSWJ7/hatJNyIrYUaflpONK0k1cSboJJ1N79HfvDt+y9SAWA+XKKUZYpOd/jEakVTY2ikQaoLht6eez1/DjqWCkZLwu9H05UhnuxSTgXkwCvj9+AT0a1cHYDo1hbsyrfcUllcrw+4o/sefbg3j1svBLxzmSHDy4Fo4H18KxbeZufDSyLQbM7w1Tc5NC30eka7ciY7Hw4D+4E130/e6xya+w98pt7L1yG/XdK2Bm15aoXt4exsaAnR2QlARk583lEWmVgYHimC530FR6zmusf3gUR55dRbas8IxahjQb15Ie41rSY6x5cAiDPFqju0uAFlr9bswNHXQyZ4WZoUPRK2mQk5MT4uOVP3d8fLxwLlES+j+W5gMhlyVDljwR8uTRKiQq3iYDsk5A/rwT5Bn7NNI+Kt1OnjyJR48eISgoCBUrVkT58uWF/3JZW1vjxIkTePLkCXx8fPDVV19h9erV6NGjh7DOqfgLmBgyH1eSQopMVLwt7nUiloZuxHcPtiBNkv7/OpWz8ES6YGv7X6LiSUISPl+/B8sPnS0yUfG215Ic/HL2Brqv/AXBj6M10NIPV+T9aIwPmIHNU3cUmah42+uMLPy+8hBGek3C3fO6maGdqCjZOTlYceQsPtuwR6VExduuR8Sg19qd2PD3JUhlMuEE0dhYA40lUtHbiYorLx7g84urcCD6UpGJire9zE7DytCDGHt1E55lJmmgtepT1sSz6JU+oHpz+fv7IygoSGnZyZMn4e/vX+IymazQArk0HvIXfYDXh4peudCCXkGeOg2y1CXqaRjR/w0cOFCYvOjt/95Ut25dnD17Fq9fv0Z0dDSGDRsmvLY94ndsePwLMqTFO4F727nnwZh1ZzmSspIBKBIWphw5TzpiZQWYmSn+HfL0Gfp9vxs3n8a+U5lRL1Iw7Id9OHT9vhpa+OG7ffY+xvrPQFjwo3cqJ+ZRHCa1mofTey6oqWVE6pGRLcHILQew5d+rkMpKPnRcIpXh+5MX8eWvhyDJkUIkAsqWVcy1Q6QLtrb/JSoORF/GV9e3IP518juVef1lOIZd/h4PUmPevYEa8j4kK9LS0hASEoKQkBAAwJMnTxASEoLIyEgAwLRp09C/f3+l9+Sun5aWhsTERISEhAiT7QPA+PHjcezYMaxYsQKhoaGYO3curl69ijFjxpT4MzFZoWFy2UvIkwYA0sfqKzRjC2SvVqqvPKJ3tOPpfhx6FlT0iiqKzozD/HvfIVWiuIJqba3IzhNpk7HxfyN77sckYOTm/UjNVM9EKjkyGabvPo4Ttx6qpbwPVVjwI8wIXISM1Ay1lJcjycHiz77D+QNX1FIe0buS5EgxdvufuPy4uKNuCxZ09zEm7TwCmUwOAwPFCSORtllY/DcZ9dFn17D8/v5ij7otSLIkHROub0ZEmm6fflGQChZNdVRvE5XXvXr1Kry9veHt7Q0AmDhxIry9vTF79mwAQGxsrJC4yJW7/rVr17Bz5054e3srPSUwICAAO3fuxA8//IB69erh999/x4EDB1C7du0SfyYe/muYPGU6IA1Xf8HpGyHP+lf95RIV07Wk2zgQc0Lt5cZkxmHT418BKK4KWVurvQqiAolEinkqRCIgM1uCib8cQtpr9d78LZPLMfO344hJSlFruR+KzLTXWNBrFTLT3m201ttkUhmWDlyHhKjnai2XqCS+P3kRlx5FFr1iMf199xG2n7sGQDnxSqQNhoaKkYkA8CQtHkvv/5HvROvvIkWSgVm3d0BSzNtJtMHWpCrsTOtqtU5707qwNamq8votWrTId0R17lx027Ztw+nTp5Xek9/6ERERSuv06NEDYWFhyMrKwp07d5SSGSXBZIUGyTMPAlnqu9qcp/yUmZDLUjVWPlFR0nIysOnxDo2VfyXpJs4lBgNQDMXnE+1IW8zN/3u02uoj5xD1QjMJhYwsCWbvPamRst93P0z+BXERmrlqlpGagVXDNmqkbCJV3Y6Kw9YzVzVW/trjFxCeoLi3v0yZ/55kRKRpudubVC7Dwru/FXt+ClWFp8Vha7jmzrXeRTXrT7VaX1Ut16ctTFZoiFyerXjqhybJ4iFP58EW6c4f0UfxUqLZq8LbI35Hzv+DHK8Mkbbkbmvh8S+w80KIRuu6/CiKt4O85cntSBzepNkkztUTN3k7COnU4j9Pv9McFUXJypFi2eEzABS3UubOv0OkSQYG/801dvTZNdxP1eyE0r9GnEZcZrJG6ygJN8u2sDetp5W67E294GbZTit1aRuTFZry+igg08JMtRn7IJer5x5qouLIlmbjnwTNT1SXLEnFpRc3ACgOtDh3BWmasfF/oyp2X7wFuRYelb5LwwmR982f64/lmeBXM/Uc13gdRPm5Gx2Pm5HvNlmvKs6FRQgjw5jwJ20wN/9vFM++KM0fJ0rlMhyMuaTxeopLJDJAI4dZEIs0O0u8WGSKRo6zIPpAh07xsF9D5Bm7tFTRS0VihEjLLry4hrQc9Ux6V5TjcYorQyLRf5M1EWlK7tXHzGwJ/rx2r/CV1ST4cbQwXLu0y0x7jaAdZ7VS142g24h5qPkTRqK3/Xb5llbqkcnl+P3KbQCKWyn5ZBDStNwYei8lCg9ePdNKnX/FBCNHJtVKXcVRxtgFDewnabSOBvaTUMaookbr0CUmKzRALssAJCHaqy/rotbqIsp1OyVUa3U9eBWOLKlickPOW0GalruN3Y2OV/ukmoW5rIFJ9t5HoZcfqn1SzYLI5XKEnL6rlbqI3nTpkfqe/lF0Xf/tWxhDSdNyRyZeS3q3x00Xx8vsNDxJj9dafcVR2aozvMuN10jZ9e0moLJVZ42UrS+YrNCEnPsAZFqs74726iL6v/A07Z1YySDD0wzFPY880CJNy93G7kVr95Fo2q5PXz24roEnaBXi4TU1PlqcSAUpGa8RrcWnAD2Iew6JVHHVmTGUNMnI6L9bQEJTY7Rat7brK44atn3h5zBTbbeEiEWm8HOYCU+bPmopT58xWaEJOdq74qyoLxxyufau/hFJZBI8y9RuBjsiXZGsyM3YE2mCWPzfgVZYbKJW6w57pt369FX4zQgt1/dUq/URaXvfkp0jxZOElwAYQ0mz3ty+HqVp5xYQoT4t3XJSUpWtOqOTy6/vPOmmvakXOrn8+sGPqMjFXZYmyNK1XKEUkGcAImMt10ul1WtpFmRqfl52UTKkmQD46DXSrDe3r3Qt3gICAK9ec7JkAMhIzdRqfekp2pl7hyhXepb2LzCl/X//whhKmqQUQ3O0G9PSc7Rz++C7KGPsgjYVNuJp2kk8TPkdia9Vn7vG3rQuqlp/CjfLthCJSs94AyYrPhilZ6Ml3RNB+0c7Bv/fxg0MAGdnrVevVRKJ4v9OThyyWxSN9pWWN3MDnkUAgNZnNBcZsN9Ju3QRQ3O3c1NTxlBS0HQ/aXsrf19O4EUiA7iXaQ/3Mu3xMushYtLPISkrFElZocjMSYAcMohgADNDB5Q18URZE09UsGgCW5Oqum66TjBZoQkGtlqu0AgQmWu5TirNTMWmMBSJkSPX3szLlobcxkm7bMzNtFqftblmH2/2vrAqZ6nV+sqU1W59RNYW2v+tW5tx/0LaZW1kgaTsNK3VZ2Wk3ZitDrYmVfMkIWTyHBiIeIqe6/1IQb1vjDy1W59hNYi4UZMWGRqIUdG8vFbrdLdw0Wp9RJ7O9lqtr0YFB63Wp68qe1XSan1VvLVbH1F1JzutjqQyNzaCu522L6RRaVe1jHaPE6uV+TCGDDFRoYzJCk0wrA5Ai+POjGprry6i//OwcNNaXUYiQ7iaV9BafUQAULOidpMHtSo6arU+fVW1vscHXR+RuYkx3O21lzzwdLaHAW93Ii2rblVRu/WV0W59pB1MVmiASGQMGPtrrz6T5lqriyhXfdtaWqurjo0nDA3EWquPCFCMdChXRju3H4kNRAiopr0EoD6r5lsZ1nZWWqlLbCiGT9u6WqmL6E1Nq7trra4mWqyLKFejctW1VlcFs7Jwt+ToxA8RkxUaIjLX0nNvDcoDJi21UxfRGxqUrYuyxjZaqau9UzOt1EP0JiOxGN0bamfkWvMaHnCyKaOVuvSdsYkROgzWTlwL6OKLcs5ltVIX0Zt6NaqrlSdzGInF6O7LEbikfe6WDqhvq52Ra10q+mmlHtI+Jis0xaQlINb8PfYi834QiXjFmbRPLBJrJYngZGoPLxvtjeIgelPPRnVhbKj5fWy/Jl4ar+N98tHIdjA00vx9u13HdtR4HUT5cbOzRZNq7hqvp0PdarArY6Hxeojy86lrY43XYSY2xkfOvhqvh3SDyQoNEYkMILL6RrOVGFYFLAZqtg6iQnR2boOKZk4aK18EEUZU7geD9+RxVPThcbIpg9FtG2m0jk5e1eFXxVWjdbxvnNwd0G9md43W0bZ/c9RtVlOjdRAVZnqXljDTYFLO2twUkwKbaqx8oqI0d6iNxnY1NFrHqKodYW3MhNyHimcAGiQyCQDMemmodDFE1ksU82MQ6YiRgRFGV+kPAw3tSto6NUVta+3d80iUn0EtGqC2hia/LFfGHNO78la+/PSZ1k1jT+oo51wWo1cP0kjZRKpyLWeD8R2aaKz8aZ1bcFQF6dzkmp+gjKFmHita39YD3V0CNFI26QcmKzRMZDUDMGqggXLnQmRUR+3lEhVX1TKVMNSjt9rLrWlVFQPcNHtllUgVYgMDrOr/EZysLdVarpmRIb7r3xk2Fu/fs+G1QWwoxuzfJ6l9TgkzS1PM2TcJljY8iSPd+7yJN7r6qH+ET/8m3uhcX7NXtIlUYWdihW/q9oOxgXpHEVUwK4e5dfqqtUzSP0xWaJhIZAqR7Q+AsbqGERtAZDUPInNNjdggKr62Tk0xzKMPDKCe2cJqW1XH1BqjYSzmyCHSD+VtrbB1VA9ULGutlvIsTY2xYWg3eLl/GM+F15TylRyw/NQcOLjaqaU8SxsLLD46AzX8qqqlPCJ1mP9pW3RroL65mfo38caUzi3UVh7Ru/ItVxVL6g2AqYGRWspzNbfH2gbDUc6EE1N/6Jis0AKRgSVEtj8BFmMAvMOPVOwKUdlftPekEaJiaOfUDHNqTYCjSclPKgxFYvR0+Qgzao6FmdhUja0jencu5WywZ3xfBHp7vlM5DTwqYO+EfmjgwWfCq6JiNWesv/otWvR6t6G+Xi1rY/21pajV+N2+PyJ1ExsYYEGPdpjXvQ0sTUuepLcxN8Wyvp2YqCC95GdXDT/5jUNNq3d7AEHnCg2x2W8MHE1t1NMw0muan2qbAAAikRFEZcZBbtoW8lfLgOzzAOQqvtkKMO8NkeUXEIk4XJj0V03raljuNRO/Rx/B33HnkC7NUOl9IohQ18YTn7l1g7uF5p+iQ1RS1uam+LZvR7SvVw3rTlxE2LNEld/rbGuFwS0aoHdAPQ228MNkbWeFGbu+RPMeAfhl/l6E33qq8nudKjmg15Su+Gh4Ww22kOjdfdqwDhpXc8eqo2dx4vZDSKQyld5nYihGoLcnJnRognKW5hpuJVHJuVs6YGPD0fg98jx2PT2LxKwUld9bw6oihldpj4blqmmwhaRvmKzQMpFRDYjKboE8JwLyzN+A7CuAJAxAlvKKBvaAUS2ITNoCZh8xSUHvDVOxCT5z64YeFQNx7nkwriSFIDwtEsmSVKX1jA2M4GZeETWtq6KNQ2M4mTnoqMVExdeqVmW0qlUZIRHPsD/4Lm5FxiI8IQlSmXIS2qWcNWq7OCHQ2xPNPCvBwEA9t0qVVk0+8UOTT/xw51woTmz/B/cvPURkaAxkb5zUiUQiOFd2RDXfKmjdtyl8O3rBwIADSen9UN6mDJb26YTJH6VjX/AdXHwYiXsxCUjPylZaz8rMBDUrOKJJdTd80qA2rM05GpHeD2KRAXq5NUV3lwCcT7yPk3EhCE2NRuzrl3nW87BwRC0bN3Su4AtPK45GLI2YrNARkaE7RGUmAwDk8hxAGgnIMwCIAYOyEIk1M/M8kbaYiI3R2rExWjsqnrGdlJ2MVMkryORymIpN4GhqB7FIrONWEr0bL3dnYd6JzGwJopNSkC2RwsjQAI7WZXgCoSG1m3iidhPF7RyZ6a8RF54ASZYEhsaGcHC14+SZ9N6zK2OBEa38MKKVHwAg8kUy0l4rLmxZm5migprmzyHSFUMDMZo71kZzx9oAgJTsdCRkpUAql8HEwAjOZmVhIlbPHBf0/mKyQg+IRIaAoYeum0GkUWWNbVDW2EbXzSDSGDNjI1R1Us9EkKQ6MwtTVKrjqutmEGmUazkbXTeBSKOsjS1gbcxEMynjuEgi0pqsrCwcOHAAWVlZRa9MREREguzsbPzxxx+MoURUajBZQURak5aWhm7duiEtLU3XTSEiInqvvHr1Ct27d2cMJaJSg8kKIiIiIiIiItIrTFYQERERERERkV5hsoKIiIiIiIiI9AqTFURERERERESkV5isICIiIiIiIiK9wmQFEREREREREekVJiuIiIiIiIiISK8wWUFEREREREREeoXJCiIiIiIiIiLSK0xWEBEREREREZFeYbKCiIiIiIiIiPQKkxVEREREREREpFeYrCAiIiIiIiIivcJkBRERERERERHpFSYriIiIiIiIiEivMFlBRERERERERHqFyQoiIiIiIiIi0itMVhARERERERGRXmGygoiIiIiIiIj0CpMVRERERERERKRXmKwgIiIiIiIiIr3CZAURERERERER6RUmK4iIiIiIiIhIrzBZQURERERERER6hckKIiIiIiIiItIrTFYQERERERERkV5hsoKIiIiIiIiI9AqTFURERERERESkV5isICIiIiIiIiK9wmQFESnJysqCl5cXRCIRQkJClF67desWmjZtClNTU7i4uGDp0qW6aSQREREREX3QmKwgIiWTJ0+Gs7NznuWpqalo164d3NzccO3aNSxbtgxz587FDz/8oINWEhERERHRh8xQ1w0gIv1x9OhRnDhxAvv27cPRo0eVXtuxYweys7OxZcsWGBsbo1atWggJCcHKlSsxfPhwHbWYiIiIiIg+RKU+WSGRSHTdBL2W2z/sp8J9CP0UHx+PYcOG4ffff4eRkREAxefJ/Uznz59HkyZNIBKJhGWtW7fGt99+i4SEBNja2uYpMysrC1lZWcLfSUlJecqlvD6E7Ulb2FeqkUgkwu9anWVS4bh9qob9lD/G0JLh9qQa9pNqNBE/SXUiuVwu13UjdOXgwYO6bgKRXpDL5fjmm2/g6emJnj17Ij4+HiNGjMDKlSvh4eEBAJgzZw4cHR0xevRo4X1RUVEYO3Ys1q5dCxcXlzzl7tq1C3v27MmzfOfOnTA3N9fcByKiPLp06aK2shg/iTSPMZRIP6gzflLxlPpkRdu2bZktK4REIsHJkyfZT0XQ136aPn06li9fXug6t27dwt9//43ff/8dQUFBEIvFiIiIQLVq1XDlyhV4eXkBADp16gR3d3esX79eeO+9e/fg5eWFmzdvokaNGnnKzu+qULVq1RAbG4ty5cqp50N+gPR1e9JH7CvVSCQStZ7cMH6qhtunathP+WMMLRluT6phP6lG3fGTiqfU3wZiZGTEH6gK2E+q0bd+mjx5MoYMGVLoOh4eHpg1axYuXboES0tLpdf8/f3Rr18/bN++HeXLl0diYqLS58sdkuri4pLv5zYyMspTZu5yfeonfcV+Uh37SvvY56pjX6mG/aSMMfTdsJ9Uw34ifVbqkxVEHzJ7e3vY29sXud6aNWuwYMEC4e9nz56hffv22LNnD/z8/AAoEhczZsxQunfv5MmTqF69er7zVRAREREREZUUkxVEBFdXV6W/c6/kVK5cGRUrVgQA9O3bF/PmzcOQIUMwZcoU3LlzB9999x1WrVql9fYSEREREdGHjckKIlKJtbU1Tpw4gS+++AI+Pj6ws7PD7Nmz+dhSIiIiIiJSOyYriCgPd3d35Df3bt26dXH27FkdtIiIiIiIiEoTA103gIiIiIiIiIjoTRxZUQKRkZF4/vy5rpuhFTk5OXj8+DFu3LgBQ0NuLgVhP6kmOTkZAHDz5k3Y2NjotC36jNuT6kpbX9nZ2eWZY0Yb3o57panP30Vp2z5Liv2kGsZQ1XB7Ug37STU5OTn59o+u4nFpwy2zmCIjI1GjRg1kZGTouilE763WrVvruglE7yVzc3Pcv39fqwdIjHtE+oUxlEj3dBGPSyMmK4rp+fPnyMjIwOLFi+Hh4aHr5hARUSkRHh6OadOm4fnz51o9OGLcIyIi+o+u4nFpxGRFCXl4eKBmzZq6bgYREZFWMO4RERGRNnGCTSIiIiIiIiLSK0xWEBEREREREZFeYbKCiIiIiIiIiPQKkxVEREREREREpFeYrCAiIiIiIiIivcJkBRERERERERHpFSYriIiIiIiIiEivMFlBRERERERERHqFyQoiIiIiIiIi0itMVhARERERERGRXmGygoiIiIiIiIj0CpMVRERERERERKRXmKwgjVu/fj0+/fRTjZQ9Y8YMjBs3rsj1pk2bhh9//FH4u3379vjll19UricmJgZ16tRBaGhoidpZGhw4cAABAQG6bsZ7RdXtl4qvuL9xTfrtt98wZswYXTfjg6VP33VxaLLdderUQVBQUKHrJCcno3nz5oiJidFIG0g7goODUadOHaSmpuq6Ke81TR6rlnaq7I+0ZdWqVVi0aJGum0HFwGSFDsTFxWHWrFlo1aoVvL290a5dOyxZsgTJycm6bppGDBw4EJs3bxb+1vYJWlhYGM6ePYt+/foJy3bt2lWsoOTk5IR//vkHVapUUUub3vfkR34H2R06dMBff/2loxa9n6ZOnYoFCxbouhmlgi4Plrp164b79+/j2rVrOqlf1wYNGoRvv/02z/LSnuB8Ow5pexv94Ycf0LJlS1SoUEFrddK7ye+35OXlhX/++QdlypTRUauIVKfr49+BAwfizz//RFRUlE7qp+JjskLLoqKi0KtXL0RGRuLbb7/FkSNHMGvWLFy+fBmfffYZUlJSNFq/RCLRaPn5MTc3h42NjdbrzbVz5060a9cO5ubmwrKyZcvCzMxM5TLEYjHs7OxgaGioiSaqjS6+31ympqYoV66czurXJ6p+D2XKlIGVlZXG2iGVSiGTyTRWPqnGyMgInTp1wo4dO3TdFMqHrvabxY1D6pSZmYn9+/ejW7duOqn/Q6PL2GtkZAQ7OzuIRCKdtUFf6PJ7KIo+t600sbW1RUBAAH777TddN4VUxGSFli1cuBBGRkbYtGkTfH19Ub58eTRt2hQ//vgjEhISsGbNGgDAd999h759++Z5f/fu3bFhwwbh73379uHjjz+Gj48POnfujN27dwuv5WYvjx07hoEDB8LHxweHDx/Ot13Xr1/HgAED0KBBA7Rp0waLFy9GRkYGAODPP/9Ew4YN8fTpU2H9BQsWoHPnzsjMzASgGC0yefJkNG7cGA0bNkSvXr1w69YtAMpD69avX48///wT//zzD+rUqYM6deogODhYKOOrr75CQEAAGjdujLFjxyoNT5VKpVi6dCkCAgLQpEkTrFy5ssj+lkqlOHnyJFq0aKG0/O2RAXXq1MG+ffswfvx4+Pr6IjAwEP/880+evnwzE/zw4UOMHDkSDRs2RPPmzTFt2jS8fPlSeF0mk2HLli3o1KkT6tevj7Zt2+KHH34AoBiFAAA9evRAnTp1MGjQIACK4Zx9+vRBw4YNERAQgM8//xzPnj3L97MV9v0Wtl0AwMqVK/HRRx/B19cXHTp0wNq1a/ME0tOnT6N3797w8fFB06ZNMX78eACKKzvPnj3D0qVLhe8QUL5KGhERgTp16iA8PFypzJ9//hkdO3ZUuQ/flltHUFAQAgMD4ePjgxEjRiAuLk5pvT179qBjx47w9vZG586dlUZ8LF++HF988YXw9y+//II6derg3LlzwrJOnTph3759wt/q+p297e1RRoMGDcLixYuxcuVKNG7cGC1atMD69euV3pOamop58+ahefPm8PHxQbdu3fDvv/8q9c8///yDLl26wMfHB7GxscjOzsby5cvRunVrNGzYEH379hV+d4BiOPjkyZPRunVr+Pr6olu3bjhy5IhSvSdOnEC3bt3QoEEDNGnSBEOHDhX2EUX1kUQiwcKFC9GyZUv4+PigXbt2SqOt3nThwgX4+PjkGdK8ZMkSDBkyRPj75MmT6Nq1K+rXr4/27dtj+/btBfZz+/btAQATJkxAnTp1hL+joqIwduxYNG/eHA0bNkTv3r1x8eJFpfcmJiZi9OjRaNCgATp06IDDhw/n2X+kpqZizpw5aNasGRo1aoQhQ4YgLCxMqZzmzZvj9OnTeP36dYHtLO1yfw/btm1Dy5Yt0aRJEyxYsEBp3/TixQuMGTNG+D4OHTqUp5yivo/cmLRv3z506NABPj4++bZHJpNh8+bN6NChAxo0aIDu3bvjxIkTAAC5XI6hQ4dixIgRkMvlAICUlBS0bt0a33//vVBGQftRQDkOFbSNAsCpU6fQs2dP+Pj4oEOHDtiwYQNycnKE158+fYoBAwbAx8cHXbp0wYULF4rs67Nnz8LY2Bj16tVTWv7o0SN88cUXaNSoEfz8/DBgwADhCqRMJsOGDRvQunVr1K9fH59++qnSfjN3X/j3339j8ODB8PX1Rffu3RESEiKs8+zZM4wZMwYBAQFo2LAhunbtijNnzgDIf6RNUFCQEGOA/767/fv3o23btmjYsCEWLFgAqVSKLVu2oEWLFmjevLkQa3MVtU2EhYVh8ODB8PPzQ6NGjdCzZ0/cvXu3wP6rU6cO9uzZg7Fjx6Jhw4bCbaZFfVfbt29Ht27d0LBhQ7Rp0wYLFixQ2o8CwI0bNzBo0CD4+voiICAAI0aMQEpKCmbMmIGrV6/i119/FWJvTEyM0m0gaWlpaNCgAc6ePZunH/38/JSO2Qo73npbbh1nzpzBJ598Ah8fH/Tr1w8PHz5UWq+w/fLOnTuVkmO53+2bJ41Dhw4VjoNV6c+CvgdVbN68Gc2bN4efnx9mz56NrKysPOsUdSylyrHv2/uZorZFVeLS7t27hWOg5s2bY+LEicJrhe23AMV+asqUKWjWrBkaNGiAwMBA7N+/P98+2rt3L1q1apXnosfYsWMxa9Ys4e/CjrneVtDx7507dzBs2DA0bdoU/v7+GDhwIO7du6f03vDwcPTv31/Y1128eDHPiDRVtu0WLVrg6NGjBbaR9It+Xyb+wKSkpODChQsYN24cTE1NlV6zs7NDp06dcOzYMcycOROBgYHYvHkzoqKi4OLiAkBxEPHgwQOsWrUKAHDo0CGsW7cO06dPh6enJ0JDQzF37lyYmZmhS5cuQtmrV6/GpEmT4OnpCRMTkzztioqKwsiRIzF27FjMnz8fL1++xKJFi7Bo0SIsWLAAH3/8Mf79919MnToVv/zyCy5cuIB9+/bh119/hZmZGTIyMjBo0CA4ODhg7dq1sLOzw7179/K9ojtw4ECEh4cjLS1NGP5ubW0NiUSCESNGoF69eti2bRsMDQ2xadMmjBw5En/88QeMjIywfft2HDx4EPPnz4eHhwe2b9+OoKAgNGzYsMA+f/DgAV69eoWaNWsW+f1s2LABEydOxFdffYWdO3di6tSpOHHiBKytrfOsm5qaiqFDh+KTTz7B5MmTkZWVhVWrVmHSpEn46aefhH7ft28fJk+ejPr16yMxMRFPnjwBoBj+26dPH/z444+oUqUKjIyMkJOTg/Hjx6N79+5YunQpJBIJbt++XeTVkre/X1W2CwsLCyxYsAD29vZ4+PAh5s6dCwsLCwwePBgAcObMGUyYMAHDhg3DokWLIJFIhIOf1atXo3v37vj0008LvJXG3d0dtWrVwuHDhzF27Fhh+eHDh9GpUyeV+zA/mZmZ+PHHH4XE38KFC/H1118LB/1BQUFYsmQJpkyZgkaNGuHff//FrFmz4OjoiIYNG6JBgwb4448/IJVKIRaLcfXqVdja2iI4OBhNmjRBfHw8oqKi4OvrC0B9vzNV/fnnn+jfvz927tyJmzdvYubMmfDy8kJAQABkMhlGjRqFjIwMLF68GC4uLggPD4eBwX9558zMTGzZsgXz5s2DtbU1ypYti0WLFuHx48dYunQpHBwcEBQUJPy23NzckJWVhZo1a2Lw4MGwsLDAmTNnMH36dLi4uKBOnTpITEzElClT8OWXX6J169ZIT0/H9evXhTqL6qMdO3bg9OnTWL58OcqXL4+4uLg8CaZcfn5+KFOmDP7++2988sknABRJx2PHjgmJnbt372LSpEkYNWoUOnTogJCQECxcuBDW1tbo2rVrnjJ37dqF5s2b45tvvkGTJk2E/srIyEDTpk0xbtw4GBsb488//8TYsWPx119/oXz58gCA6dOnIzk5GVu2bIGhoSGWLVuGpKQkpfK/+uormJqaYsOGDbC0tMTevXsxdOhQHDp0SNh/1KpVC1KpFLdv3xa2LcorODgY9vb2+OmnnxAVFYWvv/4anp6ewr5m5syZSExMxE8//QRDQ0MsWbKkRN9HZGQkTp48iVWrVin9ft60efNmHDp0CLNmzYKrqyuuXbuGadOmwdbWFr6+vli4cCE++eQT7NixA5999hnmz58PR0dHjBw5EkDh+9G3FbSNXrt2DTNmzMDUqVNRv359REVFYf78+QCAUaNGQSaTYcKECShXrhx27tyJV69eYenSpUX28/Xr11GjRg2lZfHx8Rg4cCB8fX3x008/wcLCAjdu3BBODn/99Vf8/PPPmD17Njw9PbF//36MHTsWBw4cgJubm1DOmjVrMGnSJLi6umLNmjWYMmUKDh8+DENDQyxcuBASiQTbtm2DmZkZwsPDlUY9qiIqKgpnz57Fxo0bERUVhYkTJyI6Ohpubm7YunUrQkJCMHv2bDRq1Ah169YFUPQ2MXXqVHh6emLmzJkQi8UIDQ0tciTl+vXrMWHCBEyePBmGhoZFflcAYGBggGnTpqFChQqIjo7GggULsHLlSsycORMAEBoaiqFDh6Jbt26YOnUqxGIxrly5AplMhqlTp+Lp06eoUqWKMAeOra2t0gUNS0tLNGvWDEeOHEHTpk2F5YcPH0arVq1gZmam0vFWQVasWIEpU6bAzs4Oa9asEfaXRkZGRe6XGzRoIPxey5YtqxR7e/bsCYlEglu3bglJaVX6M7/vQRXHjh3Dhg0bMGPGDHh7e+Ovv/7Czp07UbFiRWGdouKaKse++e1nitoWi4pLd+/exZIlS7Bo0SJ4eXkhJSVFKR4Xtd/6/vvvER4ejg0bNsDGxgaRkZH5JmoAoF27dli8eDGuXLmCRo0aAVCcy5w/f164kFLUMdfb8jv+BYD09HR8/PHHmDZtGgBFYm/06NE4fPgwLCwsIJVKMX78eJQvXx47d+5Eeno6li9frlS2qtt27dq1ER8fj5iYGN4G9x5gskKLnj59CrlcjkqVKuX7uoeHB1JTU5GUlIQqVaqgevXqOHz4sHDgc/jwYdStWxeurq4AFDvoSZMmoU2bNgCAihUr4vHjx9i7d6/SSdRnn30mrJOfzZs3IzAwEJ9//jkAwM3NDVOnTsWgQYMwa9YsmJiYYPbs2ejevTuWLFmCv//+G6NHj0atWrWEdr18+RK7d+8WDgRz2/g2c3NzmJiYIDs7G3Z2dsLyv/76CzKZDPPmzRNOzhcsWICAgAAEBwcjICAAv/76K4YOHSp8llmzZuH8+fOF9vmzZ88gFotVuj2hS5cuwon0uHHjsGPHDty+fRtNmjTJs+6uXbvg6empdJVs/vz5aNu2LSIiImBvb48dO3Zg+vTpwnfh4uKC+vXrA1AcYACAjY2N0A8pKSl49eoVmjVrJiSoPDw8imz329+vKtvFiBEjhPUrVKiAgQMH4ujRo0Ky4ocffkCHDh2URiBUr14dgCK5JBaLYWFhofQdvi0wMBC7du0SkhURERG4d+8eFi9erFIfuru751tuTk4Opk+fLhyELliwAF26dMHt27dRp04dbNu2DV26dEHv3r0BKBInt27dwrZt29CwYUPUr18f6enpCA0NRc2aNXHt2jUMHDhQGEkTHBwMBwcHtf/OVFWtWjXhQMzNzQ27du3C5cuXERAQgEuXLuHOnTs4ePCg0D+528qb/TNz5kzh+4qNjcWBAwdw4sQJODg4AFAkDc+dO4cDBw5g/PjxcHR0xMCBA4Uy+vXrhwsXLuD48eNCsiInJwdt2rSBs7Oz0M5cRfVRbGws3NzcUL9+fYhEIqGM/IjFYnTs2BFHjhwRkhWXL1/Gq1evhPJ//vln+Pn5CftGd3d3hIeHY9u2bfkmK8qWLQtAcdvNm9ts9erVhX4CFFeLTp06hX/++Qd9+/ZFeHg4Ll26hN27dwv7u3nz5iEwMFB4z/Xr13Hnzh38+++/MDY2BgBMmjQJp06dwokTJ9CjRw8AgJmZGSwtLQscKUUKVlZWmD59OsRiMTw8PNC0aVNcvnwZn376KSIiInDu3Dns2rULtWvXBqD4Pt78Har6fUgkEixatEjYNt6WnZ2NzZs344cffoCXlxcAxW/txo0b2Lt3L3x9feHo6IjZs2djxowZeP78Oc6ePYu9e/cKJ0yF7UffVtA2umHDBgwZMkQpjnzxxRdYtWoVRo0ahUuXLiEiIgKbNm0Sft/jxo1TOpnLz7Nnz4T1c+3evRuWlpZYunSpcFD/5n54+/btGDx4sDA6buLEiQgODsYvv/winGwDiv1Ls2bNAABffPEFunbtisjISHh4eCA2NhZt27YV9h9v779UIZfL8c0338DCwgKVK1dGw4YNERERgfXr18PAwACVKlXCli1bcOXKFdStW1elbSI2NhYDBw4UYu6byZeCdOrUSWmkwKxZswr9rgAIx1mAIvaOHTsW33zzjdB/W7ZsQa1atZT68825soyMjGBmZlZk7J0+fToyMzNhZmaGtLQ0nDlzBqtXrwagOFEv6nirIKNGjRJeX7hwIdq0aYOgoCB06NChyP1y1apVYW1tjatXr6Jdu3a4evUq+vfvL9wed+fOHUgkEuH3VtS2X9D3oIpff/0V3bp1E2LMuHHjcPnyZaWT9qLimirHvm/vZ1TZFouKS7GxsTAzM0Pz5s1hYWEBZ2dnIfGoyn4rLi4Onp6eQkwr7GTd2toaTZo0wZEjR4RkxYkTJ2BrayskIoo65npbfse/gOJCxZvmzJmDgIAAXL16Fc2bN8fFixcRHR2NrVu3Cu8bO3Yshg8fLrxH1W07d9/37NkzJiveA0xW6LHcoVkjR46EXC7H0aNHhUCXkZGBqKgozJkzB3PnzhXeI5VKYWlpqVRO7g4JALp27SocLNevXx8bN25EWFgYHjx4kGfoukwmQ0xMDDw8PGBtbY358+djxIgR8PLyUhqOHRYWBk9Pz3xHIKjqwYMHiIqKyrOzysrKQlRUFF69eoXExESl4aCGhoaoVauWMAQ3P1lZWTA2NlbpXs43T77Mzc1haWmZ54pdrrCwMFy5ciXfHXFue7Ozs/N8nsJYW1ujS5cuGDlyJPz9/dGoUSO0b98e9vb2hb7vze9X1e3i2LFj2LFjB6KiopCRkZHn9bCwMHTv3l3ltuenY8eOWLFiBW7evIl69erh8OHDqFGjhnAwWFQfFpSsMDQ0FE5UAEVCp0yZMggPDxduPXl7xIe3tzd+/fVXAIqToerVqyM4OBiGhoYwMjJCjx49sH79emRkZODq1ato0KABgJL/zt5F1apVlf62s7MTtsPQ0FA4OjoW2DeA4mD2zW354cOHkEql+Oijj5TWk0gkwlwyUqkUP/74I44fP46EhARIJBJIJBJhBFj16tXh5+eHTz75BAEBAQgICEDbtm2Fq0BF9VGXLl0wfPhwdO7cGY0bN0bz5s0LPSAODAxEv379kJCQAAcHBxw+fBjNmjUT5vd48uQJWrZsqfQeLy8v/PLLL8KIGVVkZGRg/fr1OHPmDJ4/f46cnBxkZWUJoz4iIiJgaGiodAXa1dVVaZ6RsLAwZGRk5Elq5u673mRqasrbQIpQuXJlpe8vd/QXoBgCbGhoqDRSLvf3n0vV78PZ2Vk4gbh27ZrSyU/uyIHMzEylA2FA8bt5c3to3749goKC8NNPP2HWrFlKJ7nq2I8+ePAAISEhSrc1yGQyZGVlITMzE+Hh4XB0dFRKPLx9a0d+cmPjm0JDQ+Hj45PvlfW0tDQkJCQIJ0C5vLy88ODBA6Vlb+5/ck8qkpKS4OHhgX79+mHBggW4cOECGjVqhDZt2hSYwCmIs7MzLCwshL/LlSsHAwMDpREy5cqVE/abqmwT/fv3x9y5c/HXX38JsbeoRMrb+/yiviszMzNcvHgRP/30E548eYK0tDRIpVKl18PCwtCuXbti9cfbmjVrBkNDQ5w+fRodO3bEyZMnYWFhIZxsFnW8VZg3ty1ra2u4u7sLI0ZV2S/7+PggODgYjRo1wuPHj9G7d29s3boV4eHhuHr1KmrXri3M46JKfwIli73h4eHo2bOn0rK6desKt0eqEtdUOfZ9cz+T+56itsWi4pK/vz/Kly+Pjh07onHjxmjcuDFat24NMzMzREZGFrnf6tmzJyZOnIj79+8jICAArVq1yvO7flNgYCDmzZuHmTNnwtjYGIcPH0aHDh2E31tRx1yqev78Ob7//nsEBwcjKSkJUqkUr1+/RmxsLABFPHZ0dFRKcLx5TgCovm3njn5lPH4/MFmhRa6urhCJRAgPD0fr1q3zvB4eHg4rKythx9axY0esWrUK9+7dE3ZUufd65d7jOGfOHOEKc663h7S+OYHX+vXrhSGduT/WjIwM9OjRQ+lpGblyh0IDwNWrVyEWi5GYmIjMzEzhYOFdhrznysjIQM2aNbFkyZI8r+VmYUvCxsYGmZmZkEgkhQ5tBJBn+KBIJCpwcsKMjAy0aNECX375ZZ7X7OzsEB0dXaL2LliwAP369cP58+dx7NgxrF27Fj/88EOhB59vfr+qbBchISGYOnUqRo8ejcaNG8PS0hJHjx7Fzz//LKyrju/Uzs4ODRs2xJEjR1CvXj0cOXJE6eCgqD7UpAYNGiA4OBhGRkZo0KABrK2t4eHhgevXr+PatWvo37+/0Eag+L+zd/H2dvrmdqjK92JqaqqUnMvIyIBYLMaePXvynMTnDr/eunUrduzYgcmTJ6NatWowMzPDt99+K8wVIBaL8eOPPyIkJAQXLlzAzp07sXbtWuzYsUNIaBTWRzVr1sSxY8dw7tw5XLp0CZMmTUKjRo0KnHemdu3acHFxwdGjR9GrVy8EBQVp5Kkpy5cvx8WLFzFp0iS4uLjA1NQUEydOLNZEaBkZGbCzs8PWrVvzvPb27PwpKSnvtD97X1laWuLVq1d5lr969SpP0q84++H8qPp9vPl7rVWrFn7//Xfh73LlyuHx48cAgHXr1sHR0VGpnDdP8jMzM3H//n2IxWKleZ0A9cXG0aNH5ztq613Kt7GxyTMvzNu3p5bUm99h7r4o96JC9+7d0bhxY5w5cwYXLlzA5s2bMWnSJPTr1w8GBgZ5Lj68OT9BfuUXtEwkEgllqbJNjB49Gp06dcKZM2dw7tw5rF+/HsuWLcv3WC3X2/v8or6rmJgYjBkzBj179sTYsWNhbW2NGzduYPbs2ZBIJDAzM1PLNmNkZIS2bdviyJEjwii1Dh06CH2kqeMtVfj6+uL3338XbkOytLSEj48Prl69qnShILedqmz7mpikVpXYr8p3ld82UtS2WFRcsrCwwG+//Ybg4GBcvHgR69atw4YNG7Br1y6h3YXtt5o2bYrjx4/j7NmzuHjxIoYOHYrevXtj0qRJ+X6GFi1aYO7cuThz5gxq166N69evY/LkyUV+9uKaOXMmkpOTMWXKFDg7O8PY2BifffZZseOxKtt27sMMChpZR/qFyQotsrGxgb+/P3bv3o3PP/9c6cDg+fPnOHLkCDp37iwEdycnJzRo0ACHDx9GVlYWGjVqJNzOYGdnBwcHB0RHR+e5YlqY/IZf16hRA48fPy7w1g1AcYK7detWrF27VnhG8cKFCwEorqL88ccfSElJUWl0hZGRUZ6Dzxo1auDYsWMoW7ZsnoPXXPb29rh9+7YQzHJycnDv3r08992+ydPTEwDw+PFj4d/qULNmTZw8eRLOzs75Hji5ubnB1NQUly9fVroHMlfuCalUKs3zWo0aNVCjRg0MHToU/fr1E072VaHKdnHz5k2UL19eKfOem7nOVa1aNVy+fLnAoZX5fYf5CQwMxMqVK9GxY0dER0crTa5ZVB8WJCcnB3fv3hUy6k+ePMGrV6+EERseHh64ceOG0tDwGzduoHLlysLfDRo0wIEDByAWi4UrHL6+vjh69CgiIiKEOQVK+jvTlGrVqiE+Pr7Q22Te5unpCalUiqSkpAInEgwJCUHLli3RuXNnAIqrV0+fPlW6DUkkEsHb2xve3t4YOXIk2rVrh6CgIAwYMEClPrK0tESHDh3QoUMHtG3bFiNHjix0nxEYGIjDhw/D0dERBgYGwrByAKhUqRJu3LiR5zO4u7sXOKrC0NAwzzabu53knpBkZGQo3abh7u6OnJwc3L9/X7h6FxkZqXSSV6NGDbx48QJisbjQ4aRRUVHIysoqdH/1oXJ3d8930sf79++rNNw+V6VKlYT9fu7oqtzffy5Vv483mZqa5ol/lStXhrGxMeLi4gqdY2T58uUQiURYv349vvjiCzRr1ky4qlfUfvRt+W2jNWrUQERERIHx2cPDA/Hx8UhMTBRG4eVO8FeYGjVq5JmctFq1ajh48GC+yX1LS0s4ODggJCREqT9CQkKURrqpwsnJCT179kTPnj2FuZ369esHW1tbpKenIyMjQ0ikvj1RbUmouk24u7vD3d0d/fv3x+TJk3HgwIFCkxX51VPYd5U7n8HXX38tnPAeP35caZ3cbebNW4feZGRklO9xw9sCAwMxfPhwPHr0CFeuXFGaO0qV462C5B4/AIoTvqdPnwq3NquyX27QoAG+/fZbnDhxQjiW8/X1xaVLl3Djxg0MGDBAqZ2F9ee78PDwwK1bt/Dxxx8Ly9783agS+4t77Auoti0WFZcAxb7C398f/v7+GDlyJBo3bowrV67A399fpf1W2bJl0aVLF3Tp0gW//fYbVq5cWWCywsTEBK1bt8bhw4cRGRkJd3f3PKPbijrmelNBx783btzAzJkzhVgfFxenNOG6u7s74uPj8fz5c+GC1p07d5TKUHXbfvToEQwNDQtsI+kXPg1Ey6ZPny5MAHP16lXExcXh3LlzGDZsGBwcHJSeDAAoAs6xY8dw4sQJpfukAcWVgJ9++gk7duxAREQEHjx4gP379xc6K35+Bg8ejJs3b2LhwoUIDQ3F06dPcerUKSEZkZ6ejmnTpqFv375o2rQplixZIrQJUNwvaGdnh3HjxuHGjRuIiorCyZMnlWYAf1OFChXw4MEDPHnyBC9fvoREIkFgYCBsbW0xbtw4XLt2DdHR0QgODsbixYuFoW/9+vXDTz/9hKCgIISHh2PBggX5Xq17U9myZVGjRg2lyYfUoXfv3khNTcXkyZNx584dREVF4fz585g5cyakUilMTEwwePBgrFy5Unie882bN/HHH38I7TI1NcX58+fx/PlzvHr1CtHR0Vi9ejVCQkLw7NkzXLhwQbjPtziK2i5cXV0RFxeHo0ePIioqCjt27FCaSRlQ3Jd69OhRrFu3DuHh4Xjw4IHSpJfOzs64evUq4uPjC316R5s2bZCRkYEFCxbA19dXaahyUX1YEENDQyxevBi3bt3C3bt3MXPmTNStW1dIXgwcOBAHDx7Enj178PTpU2Ei1jfnZPDx8UF6ejrOnDkjHDDlJgbt7e2VEgHq+p2pg6+vL3x8fPDll1/iwoULiI6OxtmzZ5Vm5H+bu7s7AgMDMWPGDPz999+Ijo7G7du3sXnzZmEWfldXV1y8eBEhISEIDw/H/Pnz8eLFC6GMW7du4ccff8Tdu3cRGxuLv//+Gy9fvhS2zaL6aPv27Thy5AjCw8MRERGBEydOwM7OLs/IgzcFBgbi/v37+PHHH9G2bVulq9kDBgzA5cuXsXHjRkRERODgwYPYtWuX0oHu2ypUqIDLly/j+fPnwlUVNzc3BAUFITQ0FGFhYZgyZYrSyaKHhwcaNWqEefPm4fbt27h//z7mzZunNHrF398f9erVw/jx43HhwgXExMQgJCQEa9asUXqawLVr11CxYsUS3aP/vuvZsyeePn2KxYsXIywsDE+ePMH27dtx9OjRQr+zt1WqVAmNGzfG/Pnzhd//3LlzlRL/qn4fRbGwsMCAAQOwdOlSHDx4EFFRUbh37x527NiBgwcPAlBMoLl//34sWbIEAQEBGDhwIGbMmCFsX0XtR9+W3zY6cuRI/PXXX9iwYQMePXqE8PBwHD16VHhiQqNGjeDm5oYZM2YgLCwM165dU3qaQkECAgLw+PFjpcel9+nTB+np6Zg8eTLu3r2Lp0+f4q+//hKG+Q8cOBBbtmzBsWPH8OTJE6xatQqhoaH47LPPVO7Xb7/9FufPn0d0dDTu3buH4OBgYT9St25dmJqaYs2aNYiKisLhw4eFvn4XRW0Tr1+/xsKFCxEcHIxnz57hxo0buHPnToHzixWkqO/K1dUVOTk52LlzJ6KiovDXX3/leXzi0KFDcefOHSxYsABhYWEIDw/Hnj17hDjr7OyM27dvIyYmBi9fvizwokGDBg1gZ2eHqVOnokKFCkqjA1Q53irIpk2bcOnSJTx8+BAzZ86EjY2NcFKtyn65WrVqsLKywpEjR4STaV9fX5w6dUppvgpV+vNdfPbZZzhw4AD279+PiIgIrFu3ThhNlauouFbcY19Atf1TUXHp33//xY4dOxAaGopnz54Jc765u7urtN/6/vvvcerUKURGRuLRo0c4c+ZMkceZgYGBwv7u7XMRVY653pTf8W/u5/7rr78QHh6OW7duYcqUKXn27RUrVsTMmTMRFhaGGzduYO3atQD+G8Gl6rZ9/fp1+Pj4qG00GWkWR1ZomZubG3bv3o1169Zh0qRJSElJgZ2dHVq1aoVRo0blyc62bdsWixYtglgszpPh7969O0xNTbFt2zasWLECZmZmqFq1qtIETqqoXr06tm7dijVr1mDAgAGQy+VwcXERbjlZsmQJzMzMhIkQq1WrhnHjxmH+/PmoV68eHB0dsWnTJixfvhyjR4+GVCqFh4cHZsyYkW993bt3R3BwMHr37o2MjAxs2bIFvr6+2LZtG1atWoUvv/wS6enpcHBwgJ+fn5AdHTBgAJ4/f46ZM2dCJBKhW7duaN26dZEJi+7du+PPP//M91GwJeXg4ICff/4Zq1atwvDhwyGRSFC+fHk0btxYuGIyYsQIiMVirFu3DgkJCbC3txdugzA0NMTUqVOxceNGrFu3DvXr18eyZcvw5MkT/Pnnn0hOToa9vT169+4tTAinqqK2i5YtW+Lzzz/HokWLkJ2djWbNmmHEiBFKj8T19fXFihUrsGnTJvz000/CUM1cX3zxBebPn49OnTohOzsbt2/fzrctFhYWaN68OY4fPy7M4l2cPsyPmZkZBg8ejClTpiAhIQH169dXKrt169aYOnUqtm3bhiVLlqBixYr45ptvlK4yWFtbo2rVqnjx4oUQpBs0aACZTKY0DFWV/ixMnTp18M033+Q76WNJrVq1CsuXL8eUKVOQmZkJFxeXfG+ledM333yDH374AcuXL0d8fDxsbW1Rt25d4QrGiBEjEB0djREjRsDU1BSffvopWrVqJfy2LC0tce3aNfz6669IS0uDs7MzJk2aJMw2X1QfWVhYYOvWrXj69CnEYjFq1aolTIZXEFdXV9SpUwe3b9/GlClTlF6rWbMmli9fjnXr1mHTpk2wt7cXJvIryKRJk7Bs2TLs27cPDg4OOH78OL7++mvMnj0bn3/+OWxsbDB48GCkpaUpvW/RokWYPXs2Bg4cCDs7O4wfPx6PHj0Skie5V9XXrFmDWbNmISkpCXZ2dvDx8VGa2Pfo0aPvPH/B+8rFxQXbtm3DmjVrhN96pUqVsHz58nwnMC7MggULMGfOHAwaNAjlypXD2LFjlR4Vqur3oYqxY8eibNmy2Lx5M6Kjo2FlZSWMektKSsLs2bMxevRo4Srj6NGjceHCBXzzzTdYvnx5kfvRt+W3jTZu3Bjff/89Nm7cKDyRplKlSsLEgAYGBli9ejXmzJmDPn36oEKFCpg6daowyWFBqlWrhho1auD48eNCXLKxscHmzZuxcuVKDBo0CAYGBqhevbpwAtmvXz+kpaUJT8SpXLky1q5dW6zRMVKpFAsXLkR8fDwsLS3RuHFjYUi5tbW18Ojmffv2wc/PD6NGjcK8efNULj8/RW0TYrEYKSkpmD59Ol68eAFbW1u0bt26wNENBSnqu6pevTq+/vprbNmyBd999x18fHwwYcIETJ8+XSjD3d0dmzZtwpo1a9C3b1+YmJigbt26wqjE3IRY165d8fr1axw7dqzAz9yxY0ds3bo1z7ZgZmZW5PFWQSZMmIBvv/0WT58+haenJ9auXStcKVdlvywSiVC/fn2cPXtWmHC8WrVqsLCwgLu7u9KTYYrqz8K0b98eXbp0wejRo/N9vUOHDoiKisKqVauQlZWFNm3aoGfPnkojwIqKa0ZGRsU69s39/EXtn4qKS7lPy1q/fj2ys7Ph6uqKb7/9VpiItbD9Vm67v/vuOzx79gwmJiaoX79+kU8Q8vPzg7W1NSIiIoSJ6HOpcsz1pvyOf7du3Yp58+Zh3rx56NmzJ5ycnDBu3DisWLFCeJ9YLMZ3332HuXPnok+fPqhYsSK++uorjBkzRrglR9Vt++jRowVuG6R/RPLCZif8wB08eBCdOnUqci6DN+Vm4/bs2aPS4zBJ916/fo3OnTtj2bJlhU4iVJgnT57g448/xuHDhzUyJJFUc+DAASxdujTfIeX6Jjo6Gp07d87zWD96v8XFxaFt27b48ccfhQnrivLo0SMMGTIEhw4dKnQ0SVHu3buHXr164dq1a8KBvqpUmbenIIx7H6YzZ85gxYoV2L9/f6GJQ6Lg4GAMHjwY58+fV5pgWB9lZmaiadOm2LBhAx8T/YG7ceMG+vfvjyNHjqg8avHs2bNYvnw59u3bV6xbkN/2LvGYiocjK+iDZ2pqikWLFiE5OblE709JScHJkydhaWkJJycn9TaOPlhnz55F9+7dmah4z12+fBkZGRmoWrUqnj9/jpUrV6JChQqFXiF/W2JiIhYtWvROiQoidWvWrBmePn2KhIQExjb6YAQHB6Nhw4ZMVHyAgoKCYGZmBjc3N0RGRuLbb7+Ft7d3sW6vzMzMxDfffPNOiQrSLn5TVCq8S9CaPXs27t27Jzy2iUgVffr00XUTSA1ycnKwZs0aREdHw9zcHF5eXliyZEmxRin4+/trsIVEJVfc20aJ9F2zZs2UJmSmD0d6ejpWrVqF2NhY2NjYoFGjRvj666+LVca7PhqYtI/JCqIifPfdd7puAv1f165d1Tr/A1FRcp9jT0RUWvn6+hY4NxWRtnz88cdKT3Ch0oE3KRIRERERERGRXmGygoiIiIiIiIj0CpMVRERERERERKRXmKwgIiIiIiIiIr3CZAURERERERER6RUmK4iIiIiIiIhIrzBZQURERERERER6hckKIiIiIiIiItIrTFYQERERERERkV5hsoKIiIiIiIiI9AqTFURERERERESkVwx13YD3VXh4uK6bQEREpYiu446u6yciItIHjIfaw2RFMdnZ2cHc3BzTpk3TdVOIiKiUMTc3h52dnVbrZNwjIiJSpot4XBoxWVFMrq6uuH//Pp4/f67rpmhFTk4Ozp07hyZNmsDQkJtLQdhPqklOTkbr1q0RFBQEGxsbXTdHb3F7Ul1p6ys7Ozu4urpqtc784t7p06dLTZ+/i9K2fZYU+0k1jKGq4fakGvaTanJycvLtH13E49KIW2YJuLq6lpqNUyKRIDY2Ft7e3jAyMtJ1c/QW+0k1L168AADUq1cP5cqV03Fr9Be3J9Wxr7Tj7bgXFRXFPlcBt0/VsJ9UwxiqGm5PqmE/qUYikbB/dIgTbBIRERERERGRXmGygoiIiIiIiIj0CpMVRERERERERKRXmKwgIiIiIiIiIr3CZAURERERERER6RUmK4iIiIiIiIhIrzBZQURERERERER6hckKIiIiIiIiItIrTFYQERERERERkV5hsoKIiIiIiIiI9AqTFUQkOHz4MPz8/GBmZgZbW1t07dpV6fXIyEgEBgbC3NwcDg4O+Prrr5GTk6ObxhIRERER0QfLUNcNICL9sG/fPgwbNgyLFi1Cq1atkJOTgzt37givS6VSBAYGwsnJCRcuXEBsbCz69+8PIyMjLFq0SIctJyIiIiKiDw2TFUSEnJwcjB8/HsuWLcOQIUOE5TVr1hT+feLECdy7dw9///03HB0d4eXlhW+++QZTpkzB3LlzYWxsrIumExERERHRB6jUJyskEomum6DXcvuH/VS4972fgoODERMTA7lcDi8vL8THx6NevXpYvHgxateuDQA4d+4cateujbJlywqfs1WrVkhNTUVISAi8vb3zlJuVlYWsrCzh76SkJACKfnpf+0ob3vftSZvYV6qRSCQwMjJSe5lUOG6fqmE/5Y8xtGS4PamG/aQaTcRPUp1ILpfLdd0IItKt3bt3o0+fPnB1dcXKlSvh7u6OFStW4MSJE3jw4AHKli2L4cOH4+nTpzh+/LjwvoyMDFhYWODIkSPo2LFjnnLnzp2LefPm5VmekpICKysrjX4mIiKi9xljKBGVdpxgk+gDNnXqVIhEokL/Cw0NhUwmAwDMmDED3bt3h4+PD7Zu3QqRSIS9e/eWuP5p06YhJSVF+C85ORkJCQkoU6aMuj4iERHRB4kxlIhKu1J/GwjRh+yrr77CwIEDC13Hw8MDsbGxAJTnqDAxMYGHhwciIyMBAE5OTrhy5YrSe+Pj44XX8mNiYgITE5OSNp+IiKjUYgwlotKOyQqiD5i9vT3s7e2LXM/HxwcmJiYICwtDkyZNACju0YuIiICbmxsAwN/fHwsXLkRCQgIcHBwAACdPnoSVlZVSkoOIiIiIiOhdMVlBRLCyssLIkSMxZ84cuLi4wM3NDcuWLQMA9OjRAwDQrl071KxZE59//jmWLl2KuLg4zJw5E1988QWv/BARERERkVoxWUFEAIBly5bB0NAQn3/+OTIzM+Hn54dTp07B1tYWACAWi3Ho0CGMGjUK/v7+sLCwwIABAzB//nwdt5yIiIiIiD40fBoIEREREREREekVPg2EiIiIiIiIiPQKkxVEREREREREpFeYrCAiIiIiIiIivcJkBRERERERERHpFSYriIiIiIiIiEivMFlBRERERERERHqFyQoiIiIiIiIi0itMVhARERERERGRXmGygoiIiIiIiIj0CpMVRERERERERKRXmKwgIiIiIiIiIr3CZAURERERERER6RUmK4iIiIiIiIhIrzBZQURERERERER6hckKIiIiIiIiItIrTFYQERERERERkV5hsoKIiIiIiIiI9AqTFURERERERESkV5isICIiIiIiIiK9wmQFEREREREREekVJiuIiIiIiIiISK8wWUFEREREREREeoXJCiIiIiIiIiLSK0xWEBEREREREZFeYbKCiIiIiIiIiPQKkxVEREREREREpFeYrCAiIiIiIiIivcJkBRERERERERHpFSYriIiIiIiIiEivMFlBRERERERERHqFyQoiIiIiIiIi0itMVhARERERERGRXmGygoiIiIiIiIj0CpMVRERERERERKRXmKwgIiIiIiIiIr3CZAURERERERER6RUmK4iIiIiIiIhIrzBZQURERERERER6hckKIiIiIiIiItIrTFYQUZFatGiBMWPGYMyYMbC2toadnR1mzZoFuVxe5Hvd3d2xYMEC9O/fH5aWlnBzc8Off/6JxMREdOnSBZaWlqhbty6uXr0KAJDL5bC3t8fvv/8ulOHl5YXy5csLf587dw4mJibIyMhQ/4clIiJSI8ZQIqKSYbKCiFSyfft2GBoa4sqVK/juu++wcuVKbN68WaX3rlq1Co0bN8aNGzcQGBiIzz//HP3798dnn32G69evo3Llyujfvz/kcjlEIhGaNWuG06dPAwBevnyJ+/fvIzMzE6GhoQCAf//9F76+vjA3N9fUxyUiIlIbxlAiouJjsoKIVOLi4oJVq1ahevXq6NevH8aOHYtVq1ap9N5OnTphxIgRqFq1KmbPno3U1FT4+vqiR48eqFatGqZMmYL79+8jPj4egOIqVO6B1pkzZ+Dt7a207PTp02jevLkmPiYREZHaMYYSERUfkxVEpJJGjRpBJBIJf/v7++Phw4eQSqVFvrdu3brCvx0dHQEAderUybMsISEBANC8eXPcu3cPiYmJ+Pfff9GiRQvhQEsikeDChQto0aKFOj4WERGRxjGGEhEVH5MVRKRxRkZGwr9zD9byWyaTyQAoDsLKli2Lf//9V+lA699//0VwcDAkEgkCAgK0+AmIiIh0gzGUiEorQ103gIjeD5cvX1b6+9KlS6hatSrEYrHa6xKJRGjatCkOHjyIu3fvokmTJjA3N0dWVhY2bdqEBg0awMLCQu31EhERaQJjKBFR8XFkBRGpJDIyEhMnTkRYWBh27dqFtWvXYvz48Rqrr0WLFti1axe8vLxgaWkJAwMDNGvWDDt27OC9tkRE9F5hDCUiKj6OrCAilfTv3x+ZmZlo2LAhxGIxxo8fj+HDh2usvubNm0MqlSrdV9uiRQscPHiQ99oSEdF7hTGUiKj4RHJVHvJMRKVaixYt4OXlhdWrV+u6KURERO8VxlAiopLhbSBEREREREREpFeYrCCiEjt79iwsLS0L/I+IiIjyxxhKRFQ43gZCRCWWmZmJmJiYAl+vUqWKFltDRET0/mAMJSIqHJMVRERERERERKRXeBsIEREREREREekVJiuIiIiIiIiISK8wWUFEREREREREeoXJCiIiIiIiIiLSK0xWEBEREREREZFeYbKCiIiIiIiIiPQKkxVEREREREREpFf+BwDFV9ztwxzaAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -476,7 +478,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.13" + "version": "3.9.19" } }, "nbformat": 4,