-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemographic_data_analyzer.py
78 lines (60 loc) · 3.89 KB
/
demographic_data_analyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python3
"""
Author: Rudi César Comiotto Modena
Email: [email protected]
"""
import pandas as pd
def calculate_demographic_data(print_data=True):
# Read data from file
filename = "adult.data.csv"
df = pd.read_csv(filename)
# How many of each race are represented in this dataset? This should be a Pandas series with race names as the index labels.
race_count = df.race.value_counts()
# What is the average age of men?
average_age_men = round(df.loc[df["sex"] == "Male", 'age'].mean(), 1)
# What is the percentage of people who have a Bachelor's degree?
percentage_bachelors = round((df["education"] == "Bachelors").sum() * 100 / df.shape[0], 1)
# What percentage of people with advanced education (`Bachelors`, `Masters`, or `Doctorate`) make more than 50K?
# What percentage of people without advanced education make more than 50K?
# with and without `Bachelors`, `Masters`, or `Doctorate`
higher_education = (df["education"].isin(["Bachelors", "Masters", "Doctorate"])).sum()
lower_education = (~df["education"].isin(["Bachelors", "Masters", "Doctorate"])).sum()
# percentage with salary >50K
higher_education_rich = round((df["education"].isin(["Bachelors", "Masters", "Doctorate"]) & (df["salary"] == ">50K")).sum() * 100 / higher_education, 1)
lower_education_rich = round((~df["education"].isin(["Bachelors", "Masters", "Doctorate"]) & (df["salary"] == ">50K")).sum() * 100 / lower_education, 1)
# What is the minimum number of hours a person works per week (hours-per-week feature)?
min_work_hours = df["hours-per-week"].min()
# What percentage of the people who work the minimum number of hours per week have a salary of >50K?
num_min_workers = ((df["hours-per-week"] == min_work_hours) & (df["salary"] == ">50K")).sum()
rich_percentage = round(num_min_workers * 100 / (df["hours-per-week"] == min_work_hours).sum(), 1)
# What country has the highest percentage of people that earn >50K?
highest_earning_country_and_percentage = (df.loc[df["salary"] == ">50K", "native-country"].value_counts() * 100 / df["native-country"].value_counts()).sort_values(ascending=False)
highest_earning_country = highest_earning_country_and_percentage.index[0]
highest_earning_country_percentage = round(highest_earning_country_and_percentage[0], 1)
# Identify the most popular occupation for those who earn >50K in India.
top_IN_occupation = df.loc[(df["salary"] == ">50K") & (df["native-country"] == "India"), "occupation"].value_counts().sort_values(ascending=False).index[0]
# DO NOT MODIFY BELOW THIS LINE
if print_data:
print("Number of each race:\n", race_count)
print("Average age of men:", average_age_men)
print(f"Percentage with Bachelors degrees: {percentage_bachelors}%")
print(f"Percentage with higher education that earn >50K: {higher_education_rich}%")
print(f"Percentage without higher education that earn >50K: {lower_education_rich}%")
print(f"Min work time: {min_work_hours} hours/week")
print(f"Percentage of rich among those who work fewest hours: {rich_percentage}%")
print("Country with highest percentage of rich:", highest_earning_country)
print(f"Highest percentage of rich people in country: {highest_earning_country_percentage}%")
print("Top occupations in India:", top_IN_occupation)
return {
'race_count': race_count,
'average_age_men': average_age_men,
'percentage_bachelors': percentage_bachelors,
'higher_education_rich': higher_education_rich,
'lower_education_rich': lower_education_rich,
'min_work_hours': min_work_hours,
'rich_percentage': rich_percentage,
'highest_earning_country': highest_earning_country,
'highest_earning_country_percentage':
highest_earning_country_percentage,
'top_IN_occupation': top_IN_occupation
}