forked from XiSHEN0220/RANSAC-Flow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetResults.py
357 lines (245 loc) · 12 KB
/
getResults.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import numpy as np
import torch
import kornia.geometry as tgm
import pickle
import os
from PIL import Image
from torchvision import transforms
from torch.nn import functional as F
import cv2
from pathlib import Path
import h5py
from tqdm import tqdm
import argparse
from sklearn.cluster import KMeans
from sklearn import preprocessing
from sklearn.metrics import pairwise_distances
import kornia.geometry as tgm
import json
def getResizedSize(minSize, I_size, strideNet):
w, h = I_size
ratio = min(w / float(minSize), h / float(minSize))
new_w, new_h = round(w/ ratio), round(h / ratio)
new_w, new_h = new_w // strideNet * strideNet , new_h // strideNet * strideNet
return new_w, new_h
def norm_kp(org_size, new_size, K, kp):
"""
Transforms pixel coordinte to image plane coordiante
"""
w, h = org_size
w_n, h_n = new_size
cx = (w - 1.0) * 0.5
cy = (h - 1.0) * 0.5
cx += K[0, 2]
cy += K[1, 2]
# Get focals
fx = K[0, 0]
fy = K[1, 1]
cx *= (w_n / w)
cy *= (h_n / h)
fx *= (w_n / w)
fy *= (h_n / h)
return (kp - np.array([[cx, cy]])) / np.array([[fx, fy]])
def matches_from_flow(flowFine, matchBinary, sizeA, sizeB, angle):
matchBinary = matchBinary.astype('bool')
wA, hA = sizeA
wB, hB = sizeB
tmp_g_x, tmp_g_y = np.meshgrid(np.arange(wB), np.arange(hB))
gridB = np.stack((tmp_g_x, tmp_g_y), axis=2)
k = angle // 90
gridB = np.rot90(gridB, k)
pts2 = gridB[ matchBinary]
pts1 = flowFine[matchBinary]
pts1[:, 0] = (pts1[:, 0] + 1) * (wA - 1) / 2
pts1[:, 1] = (pts1[:, 1] + 1) * (hA - 1) / 2
return pts1, pts2
def opencv_decompose(pts1, pts2, ransac, threshold):
"""
Estimates and decompose essential matrix with opencv
"""
res = None
num_inlier = 0
mask_final=None
if pts1.shape[0] >= 5:
if ransac:
E, mask_new = cv2.findEssentialMat(
pts1, pts2, method=cv2.RANSAC, threshold=threshold
)
else:
E, mask_new = cv2.findFundamentalMat(
pts1, pts2, method=cv2.FM_8POINT
)
if E is not None:
new_RT = False
# Get the best E just in case we get multiple E from
# findEssentialMat
for _E in np.split(E, len(E) / 3):
_num_inlier, _R, _t, _mask_new2 = cv2.recoverPose(
_E, pts1, pts2, mask=mask_new)
if _num_inlier > num_inlier:
num_inlier = _num_inlier
R = _R
t = _t
mask_final = _mask_new2
new_RT = True
if new_RT:
res = (R, t)
else:
res = None
return res, mask_final
def evaluate_R_t(R_gt, t_gt, R_pred, t_pred):
"""
Compares R_pred and t_pred with their ground truth R_gt, t_gt
"""
t_gt = t_gt.flatten()
t_pred = t_pred.flatten()
R = R_gt @ R_pred.T
err_q = np.arccos((np.trace(R) - 1) / 2) * 180 / np.pi
t_pred = t_pred / (np.linalg.norm(t_pred))
t_gt = t_gt / (np.linalg.norm(t_gt))
err_t = np.arccos(t_gt[None, :] @ t_pred[:, None]).item() * 180 / np.pi
return err_q, err_t
def getFlow(pairID, finePath, flowList, coarsePath, maskPath, multiH, th) :
find = False
for flowName in flowList :
if flowName.split('_')[1] == str(pairID) :
nbH = flowName.split('_')[2].split('H')[0]
find = True
break
if not find :
return [], []
flow = torch.from_numpy ( np.load(os.path.join(finePath, 'flow_{:d}_{}H.npy'.format(pairID, nbH))).astype(np.float32) )
param = torch.from_numpy ( np.load(os.path.join(coarsePath, 'flow_{:d}_{}H.npy'.format(pairID, nbH))).astype(np.float32) )
match = np.load(os.path.join(finePath, 'mask_{:d}_{}H.npy'.format(pairID, nbH)))
matchBG = np.load(os.path.join(maskPath, 'maskBG_{:d}_{}H.npy'.format(pairID, nbH)))
return _getFlow(flow, param, torch.from_numpy(match), matchBG, multiH, th)
def _getFlow(flow, param, match, matchBG, multiH, th):
h, w = flow.size()[2], flow.size()[3]
#### -- grid
gridY = torch.linspace(-1, 1, steps = h * 8).view(1, -1, 1, 1).expand(1, h * 8, w * 8, 1)
gridX = torch.linspace(-1, 1, steps = w * 8).view(1, 1, -1, 1).expand(1, h * 8, w * 8, 1)
grid = torch.cat((gridX, gridY), dim=3)
warper = tgm.HomographyWarper(h * 8, w * 8)
coarse = warper.warp_grid(param)
flow = F.interpolate(input = flow, scale_factor = 8, mode='bilinear')
flow = flow.permute(0, 2, 3, 1)
flowUp = torch.clamp(flow + grid, min=-1, max=1)
flow = F.grid_sample(coarse.permute(0, 3, 1, 2), flowUp).permute(0, 2, 3, 1).contiguous()
match = F.interpolate(input = match, scale_factor = 8, mode='bilinear')
match = match.narrow(1, 0, 1) * F.grid_sample(match.narrow(1, 1, 1), flowUp) * (((flow.narrow(3, 0, 1) >= -1) * ( flow.narrow(3, 0, 1) <= 1)).type(torch.FloatTensor) * ((flow.narrow(3, 1, 1) >= -1) * ( flow.narrow(3, 1, 1) <= 1)).type(torch.FloatTensor)).permute(0, 3, 1, 2)
#match = match.narrow(1, 0, 1) * (((flow.narrow(3, 0, 1) >= -1) * ( flow.narrow(3, 0, 1) <= 1)).type(torch.FloatTensor) * ((flow.narrow(3, 1, 1) >= -1) * ( flow.narrow(3, 1, 1) <= 1)).type(torch.FloatTensor)).permute(0, 3, 1, 2)
match = match.permute(0, 2, 3, 1)
flow = torch.clamp(flow, min=-1, max=1)
flowGlobal = flow[:1]
match_binary = match[:1] >= th
if multiH :
for i in range(1, len(match)) :
tmp_match = (match.narrow(0, i, 1) >= th) * (~ match_binary)
match_binary = match_binary + tmp_match
tmp_match = tmp_match.expand_as(flowGlobal)
flowGlobal[tmp_match] = flow.narrow(0, i, 1)[tmp_match]
flowGlobal, match_binary = flowGlobal.squeeze().numpy(), match_binary.squeeze().numpy() * matchBG
return flowGlobal, match_binary
def fix_org_size(org_imsizes_idB, resized_shapes_idB, flow) :
h, w = flow.shape[0], flow.shape[1]
w_org, h_org = org_imsizes_idB[0], org_imsizes_idB[1]
w_resize, h_resize = resized_shapes_idB[0], resized_shapes_idB[1]
if (h - w) * (h_org - w_org) >= 0 :
return org_imsizes_idB, resized_shapes_idB
else :
return (h_org, w_org), (h_resize, w_resize)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
## model parameters
parser.add_argument('--gtPath', default = '../../data/YFCC/images/', type=str, help='ground truth file')
parser.add_argument('--testPair', type=str, default = '../../data/YFCC/pairs', help='RGB image directory')
parser.add_argument('--multiH', action='store_true', help='multiple homograhy or not')
parser.add_argument('--ransac', action='store_true', help="using ransac to filter the outlier or not (default False )")
parser.add_argument('--threshold', type=float, default = 0.0005, help='ransac threshold')
parser.add_argument('--minSize', type=int, default = 480, help='min size')
parser.add_argument('--coarsePth', type=str, help='prediction file coarse flow ')
parser.add_argument('--finePth', type=str, help='prediction file fine flow')
parser.add_argument('--maskPth', type=str, help='prediction file mask')
parser.add_argument('--th', type=float, default=0.95, help='threshold for matchability tensor')
parser.add_argument('--outRes', type=str, default='out.json', help='output json file')
parser.add_argument('--scene', type=int, choices=[0, 1, 2, 3], help='RGB image directory')
args = parser.parse_args()
print ('\n\n\n')
print (args)
print ('\n\n\n')
minSize = args.minSize
strideNet = 16
scene = ['notre_dame_front_facade', 'buckingham_palace', 'reichstag', 'sacre_coeur']
test_scene = [scene[args.scene]]
res = {}
for scene in test_scene :
finePath = os.path.join(args.finePth, scene)
coarsePath = os.path.join(args.coarsePth, scene)
maskPath = os.path.join(args.maskPth, scene)
flowList = [item for item in os.listdir(finePath) if 'flow' in item]
rotation = os.path.join(args.maskPth, scene, 'rotation.json')
with open(rotation, 'r') as f :
rotation = json.load(f)
print('evaluating for scene {} ....'.format(scene))
res[scene] = []
with open(os.path.join(args.testPair, scene + '-te-1000-pairs.pkl'), 'rb') as f :
pairs_ids = pickle.load(f)
scene_path = os.path.join(args.gtPath, scene, 'test')
with open(os.path.join(scene_path, "images.txt")) as f:
images_name = [tmp.strip() for tmp in f.readlines()]
with open(os.path.join(scene_path, "calibration.txt")) as f:
calib_name = [tmp.strip() for tmp in f.readlines()]
r_list = list()
t_list = list()
geoms = list()
resized_shapes = list()
org_imsizes = list()
K_list = list()
# Read image infos
for im, calib in zip(images_name, calib_name):
calib_h5 = h5py.File(os.path.join(scene_path, calib))
r_list.append(np.array(calib_h5["R"]))
t_list.append(np.array(calib_h5["T"]).T)
geoms.append(calib_h5)
org_imsizes.append(np.array(calib_h5['imsize'][0]).tolist())
K_list.append(np.array(calib_h5['K']))
resized_shapes.append(getResizedSize(minSize, Image.open(os.path.join(scene_path, im)).size, strideNet))
#for i, (idA, idB) in tqdm(enumerate(pairs_ids)):
for i, (idA, idB) in enumerate(pairs_ids):
if i % 50 == 49 :
print (i, ' ...')
## read flow and matchability
flow, match = getFlow(i, finePath, flowList, coarsePath, maskPath, args.multiH, args.th)
if len(flow) == 0 :
res[scene].append(180)
continue
#org_imsizes[idB], resized_shapes[idB] = fix_org_size(org_imsizes[idB], resized_shapes[idB], flow)
# compute relative pose
r = r_list[idB] @ r_list[idA].T
t = t_list[idB] - r @ t_list[idA]
nbH = 11
pts1, pts2 = matches_from_flow(flow, match, resized_shapes[idA], resized_shapes[idB], rotation[str(i)])
if len(pts1) == 0 :
res[scene].append(180)
continue
norm_pts1 = norm_kp(org_imsizes[idA], resized_shapes[idA], K_list[idA], pts1)
norm_pts2 = norm_kp(org_imsizes[idB], resized_shapes[idB], K_list[idB], pts2)
decomposed, mask = opencv_decompose(norm_pts1, norm_pts2, args.ransac, args.threshold)
if decomposed is None:
res[scene].append(180)
else:
res[scene].append(max(evaluate_R_t(r, t, decomposed[0], decomposed[1])))
print (i, max(evaluate_R_t(r, t, decomposed[0], decomposed[1])))
print ('Scene ', scene, 'Acc@5: ', np.sum(np.array(res[scene]) < 5) / float(len(res[scene])))
print ('Scene ', scene, 'Acc@10: ', np.sum(np.array(res[scene]) < 10) / float(len(res[scene])))
print ('Scene ', scene, 'Acc@15: ', np.sum(np.array(res[scene]) < 15) / float(len(res[scene])))
print ('Scene ', scene, 'Acc@20: ', np.sum(np.array(res[scene]) < 20) / float(len(res[scene])))
resTotal = []
for scene in res :
resTotal = resTotal + res[scene]
print ('Total ', 'Acc@5: ', np.sum(np.array(resTotal) < 5) / float(len(resTotal)))
print ('Total ', 'Acc@10: ', np.sum(np.array(resTotal) < 10) / float(len(resTotal)))
print ('Scene ', scene, 'Acc@15: ', np.sum(np.array(res[scene]) < 15) / float(len(res[scene])))
print ('Total ', 'Acc@20: ', np.sum(np.array(resTotal) < 20) / float(len(resTotal)))
with open(args.outRes, 'w') as f :
json.dump(res, f)