-
Notifications
You must be signed in to change notification settings - Fork 13
/
reedsol.c
172 lines (149 loc) · 4.67 KB
/
reedsol.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/**
*
* This is a simple Reed-Solomon encoder
* (C) Cliff Hones 2004
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
// It is not written with high efficiency in mind, so is probably
// not suitable for real-time encoding. The aim was to keep it
// simple, general and clear.
//
// <Some notes on the theory and implementation need to be added here>
// Usage:
// First call rs_init_gf(poly) to set up the Galois Field parameters.
// Then call rs_init_code(size, index) to set the encoding size
// Then call rs_encode(datasize, data, out) to encode the data.
//
// These can be called repeatedly as required - but note that
// rs_init_code must be called following any rs_init_gf call.
//
// If the parameters are fixed, some of the statics below can be
// replaced with constants in the obvious way, and additionally
// malloc/free can be avoided by using static arrays of a suitable
// size.
#include <stdio.h> // only needed for debug (main)
#include <stdlib.h> // only needed for malloc/free
#include <string.h> // only needed for memset
#include "reedsol.h"
static int gfpoly;
static int symsize; // in bits
static int logmod; // 2**symsize - 1
static int rlen;
static int *log = NULL, *alog = NULL, *rspoly = NULL;
// rs_init_gf(poly) initialises the parameters for the Galois Field.
// The symbol size is determined from the highest bit set in poly
// This implementation will support sizes up to 30 bits (though that
// will result in very large log/antilog tables) - bit sizes of
// 8 or 4 are typical
//
// The poly is the bit pattern representing the GF characteristic
// polynomial. e.g. for ECC200 (8-bit symbols) the polynomial is
// a**8 + a**5 + a**3 + a**2 + 1, which translates to 0x12d.
void rs_init_gf(int poly)
{
int m, b, p, v;
// Return storage from previous setup
if (log) {
free(log);
free(alog);
free(rspoly);
rspoly = NULL;
}
// Find the top bit, and hence the symbol size
for (b = 2, m = 0; b <= poly; b <<= 1)
m++;
b >>= 1;
gfpoly = poly;
symsize = m;
// Calculate the log/alog tables
logmod = (1 << m) - 1;
log = (int *)calloc(logmod + 1, sizeof(*log));
alog = (int *)calloc(logmod, sizeof(*alog));
for (p = 1, v = 0; v < logmod; v++) {
alog[v] = p;
log[p] = v;
p <<= 1;
if (p & b)
p ^= poly;
}
}
// rs_init_code(nsym, index) initialises the Reed-Solomon encoder
// nsym is the number of symbols to be generated (to be appended
// to the input data). index is usually 1 - it is the index of
// the constant in the first term (i) of the RS generator polynomial:
// (x + 2**i)*(x + 2**(i+1))*... [nsym terms]
// For ECC200, index is 1.
void rs_init_code(int nsym, int index)
{
int i, k;
if (rspoly)
free(rspoly);
rspoly = (int *)malloc(sizeof(int) * (nsym + 1));
rlen = nsym;
rspoly[0] = 1;
for (i = 1; i <= nsym; i++) {
rspoly[i] = 1;
for (k = i - 1; k > 0; k--) {
if (rspoly[k])
rspoly[k] =
alog[(log[rspoly[k]] + index) % logmod];
rspoly[k] ^= rspoly[k - 1];
}
rspoly[0] = alog[(log[rspoly[0]] + index) % logmod];
index++;
}
}
// Note that the following uses byte arrays, so is only suitable for
// symbol sizes up to 8 bits. Just change the data type of data and res
// to unsigned int * for larger symbols.
void rs_encode(int len, const unsigned char *data, unsigned char *res)
{
int i, k, m;
memset(res, 0, rlen);
for (i = 0; i < len; i++) {
m = res[rlen - 1] ^ data[i];
for (k = rlen - 1; k > 0; k--) {
if (m && rspoly[k])
res[k] =
res[k -
1] ^ alog[(log[m] +
log[rspoly[k]]) % logmod];
else
res[k] = res[k - 1];
}
if (m && rspoly[0])
res[0] = alog[(log[m] + log[rspoly[0]]) % logmod];
else
res[0] = 0;
}
}
#ifdef TEST
// The following tests the routines with the ISO/IEC 16022 Annexe R data
int reedsol_main(void)
{
register int i;
static const unsigned char data[9] = { 142, 164, 186 };
unsigned char out[5];
rs_init_gf(0x12d);
rs_init_code(5, 1);
rs_encode(3, data, out);
printf("Result of Annexe R encoding:\n");
for (i = 4; i >= 0; i--)
printf(" %d\n", out[i]);
return 0;
}
#endif