-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathl02sol.v
227 lines (92 loc) · 3.19 KB
/
l02sol.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
Module Lecture2.
Require Import List.
Require Import Arith.
Require Import Omega. (* the `omega` tactic knows arithmetic *)
Import ListNotations. (* `[]`, `[a; b; c]` notation *)
Print list.
Definition x : list nat := 1 :: 2 :: 3 :: nil.
Print x.
(* Let's define our own functions on lists and prove
some things about them.
These functions are recursive on the `list` type,
so they are defined with `Function` (not `Definition`). *)
(* xlength should return the length of a list. *)
Function xlength {A} (x:list A) :=
match x with
| nil => 0
| _ :: x' => S (xlength x')
end.
(* xappend should append two lists together. *)
Function xappend {A} (x y:list A) :=
match x with
| nil => y
| a :: x' => a :: (xappend x' y)
end.
Eval compute in xlength [].
Eval compute in xlength [1;2;3;4].
Eval compute in xlength [[];[];[1]].
Eval compute in xappend [1;2;3] [4;5;6;7].
(* xreverse should reverse a list in O(N^2) time. *)
Function xreverse {A} (x:list A) :=
match x with
| nil => nil
| a :: x' => xappend (xreverse x') [a]
end.
Check list_rec.
Eval compute in xreverse [3;2;1].
(* xireverse should reverse a list in O(N) time. *)
Function xireverse {A} (x y:list A) :=
match x with
| nil => y
| a :: x' => xireverse x' (a :: y)
end.
Eval compute in xireverse [1;3;495;10] [].
(* Use `Eval compute` to test out your functions. *)
(* Now, prove some things! *)
Lemma xappend_length {A} :
forall l1 l2:list A, xlength l1 + xlength l2
= xlength (xappend l1 l2).
Proof.
intros.
induction l1.
auto.
simpl.
rewrite IHl1.
reflexivity.
Qed.
(* At this point in class, we tried to prove
something for which we lacked the tools. *)
Lemma xreverse_reverse {A} (x:list A) :
xreverse (xreverse x) = x.
Proof.
induction x; auto.
simpl.
Abort.
(* WHAT YOU SHOULD DO: Try to prove xreverse_reverse! *)
(* I proved xreverse_reverse using 3 additional lemmas and the
following tactics only: `induction`, `simpl`, `auto`, `rewrite`.
`try` is useful for shortening proofs but not required.
You'll learn most by trying to prove xreverse_reverse yourself.
That will give you experience in detecting when you're stuck and
finding and proving helper lemmas. Think about basic properties
of mathematical objects, and things that are true about list
operations. For instance, associativity: is `xappend`
associative? Would that ever be useful?
If you get really stuck, the lemma statements I used are below,
after some space. Fun fact: two of my lemmas have the *exact same
proof statement*. *)
Lemma xappend_empty {A} (x:list A):
xappend x [] = x.
Abort.
Lemma xappend_assoc {A} (x y z:list A):
xappend (xappend x y) z =
xappend x (xappend y z).
Abort.
Lemma xreverse_append {A} (x y:list A):
xreverse (xappend x y) =
xappend (xreverse y) (xreverse x).
Abort.
Lemma xreverse_reverse {A} (x:list A):
xreverse (xreverse x) = x.
Abort.
End Lecture2.