-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathl05sol.v
158 lines (132 loc) · 3.73 KB
/
l05sol.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
Require Import Arith.
Require Import Omega.
Require Import Recdef.
Require Import List.
Require Import Program.Tactics.
Import ListNotations.
Section Lecture5.
(* Define some local variables to this section. *)
Definition A := nat.
Definition LE := le.
Hint Unfold LE.
(* Some facts about lists. *)
Print list.
Check In.
Print In.
Check app.
Print app.
(* Let's prove our own list fact. *)
Lemma in_middle: forall (a:A) xs1 xs2,
In a (xs1 ++ a :: xs2).
intros.
induction xs1.
simpl; auto.
rewrite <- app_comm_cons.
apply in_cons.
auto.
Qed.
(* Now, write an inductive Prop `Dec`, with a single
`list A` argument, where `Dec l` is true iff the
elements of `l` are in decreasing order by `LE`. *)
Inductive Dec : list A -> Prop :=
| DNil : Dec []
| DSingleton : forall a, Dec [a]
| DCons : forall a b l,
LE a b ->
Dec (b :: l) ->
Dec (a :: b :: l).
Hint Constructors Dec.
Example DecExample : Dec [1;2;3;3;4].
auto 7.
Qed.
(* Do it again. *)
Inductive Dec2 : list A -> Prop :=
| D2Nil : Dec2 []
| D2Cons : forall a l,
(forall b, In b l -> LE a b) ->
Dec2 l ->
Dec2 (a :: l).
Hint Constructors Dec2.
Example Dec2Example : Dec2 [1;2;3;3;4].
Proof.
apply D2Cons; intros.
simpl in H; repeat destruct or H; unfold LE in *; omega.
apply D2Cons; intros.
simpl in H; repeat destruct or H; unfold LE in *; omega.
apply D2Cons; intros.
simpl in H; repeat destruct or H; unfold LE in *; omega.
apply D2Cons; intros.
simpl in H; repeat destruct or H; unfold LE in *; omega.
apply D2Cons; intros.
simpl in H; repeat destruct or H; unfold LE in *; omega.
auto.
Qed.
(* Prove the definitions equivalent. *)
Lemma Dec_Dec2 l:
Dec l -> Dec2 l.
Proof.
(* Here's a first, long, interactive proof. *)
intros.
induction H.
auto.
apply D2Cons; intros. destruct H.
auto.
apply D2Cons.
intros.
inversion IHDec.
destruct H1.
rewrite <- H1; auto.
apply H4 in H1.
apply le_trans with (m:=b); auto.
auto.
(* Clean it up with an outline. *)
Restart.
intros; induction H.
- auto.
- apply D2Cons; intros. destruct H. auto.
- apply D2Cons; intros.
+ inversion IHDec. (* invert Dec2 inductive hypothesis *)
destruct H1. (* In b0 (b::l) becomes two cases:
b0 = b \/ In b0 l *)
* rewrite <- H1; auto.
* apply H4 in H1.
apply le_trans with (m:=b); auto.
+ auto.
(* We need `le_trans` because `omega` can’t see through
`LE`. So unfold it explicitly. *)
Restart.
intros; induction H.
- auto.
- apply D2Cons; intros. destruct H. auto.
- apply D2Cons; intros.
+ inversion IHDec.
unfold LE in *.
destruct H1. (* In b0 (b::l) becomes two cases:
b0 = b \/ In b0 l *)
* omega.
* apply H4 in H1; omega.
+ auto.
(* Reducing the structure cleans up further. *)
Restart.
intros; induction H; auto;
apply D2Cons; intros; auto; [ destruct H | ].
inversion IHDec; unfold LE in *;
destruct H1; try apply H4 in H1; omega.
Qed.
(* Proving that Dec2 implies Dec is much easier.
This is because Dec2s are easier to take apart
-- fewer cases -- and Decs are easier to build
-- only local requirements. It’s nice to know
they are equivalent; now we can switch between
them whenever we want! *)
Lemma Dec2_Dec l:
Dec2 l -> Dec l.
Proof.
intros; induction H; auto.
destruct l; auto.
apply DCons; auto.
apply H; simpl; auto.
Qed.
(* Now, prove a lemma about appending decreasing lists. *)
(* Left for later *)
End Lecture5.