-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathconfig.py
46 lines (40 loc) · 1.52 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
""" Main hyperperameters."""
import tensorflow as tf
from collections import namedtuple
# Data Parameters
tf.flags.DEFINE_integer("vocab_size", 54538, "The size of the vocabulary")
# Embedding Parameters
tf.flags.DEFINE_integer("embedding_dim", 100, "Dimensionality of the embeddings [100]")
tf.flags.DEFINE_integer("max_context_len", 160, "Truncate contexts to this length [160]")
tf.flags.DEFINE_integer("max_utterance_len", 160, "Truncate utterance to this length [160]")
# Training Parameters
tf.flags.DEFINE_float("learning_rate", 2e-4, "Learning rate [2e-4 MN, 1e-3 DSSM-LSTM]")
tf.flags.DEFINE_integer("batch_size", 128, "Batch size during training [128]")
tf.flags.DEFINE_integer("eval_batch_size", 163, "Batch size during evaluation [163]")
tf.flags.DEFINE_string("optimizer", "Adam", "Optimizer Name [Adam]")
tf.flags.DEFINE_float("max_grad_norm", 50, "clip gradients to this norm [50 MN-DSSM, 10-LSTM]")
FLAGS = tf.flags.FLAGS
Config = namedtuple(
"Config",
[
"batch_size",
"embedding_dim",
"eval_batch_size",
"learning_rate",
"max_context_len",
"max_utterance_len",
"optimizer",
"vocab_size",
"max_grad_norm"
])
def create_config():
return Config(
batch_size=FLAGS.batch_size,
eval_batch_size=FLAGS.eval_batch_size,
vocab_size=FLAGS.vocab_size,
optimizer=FLAGS.optimizer,
learning_rate=FLAGS.learning_rate,
embedding_dim=FLAGS.embedding_dim,
max_context_len=FLAGS.max_context_len,
max_utterance_len=FLAGS.max_utterance_len,
max_grad_norm=FLAGS.max_grad_norm)