-
Notifications
You must be signed in to change notification settings - Fork 11
/
ImpliedTransaction.cpp
executable file
·320 lines (288 loc) · 11.5 KB
/
ImpliedTransaction.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
#include "bls.hpp"
#include "MeshNode.hpp"
#include "ImpliedTransaction.hpp"
#include <random>
static std::default_random_engine rng(std::random_device{}());
static std::uniform_int_distribution<uint8_t> dist(0, 255); //(min, max)
namespace lot49
{
//
// create implied transactions
//
void ClearVector(std::vector<uint8_t>& outPubkey)
{
std::fill(outPubkey.begin(), outPubkey.end(), 0);
}
void SetPublicKey(std::vector<uint8_t>& outPubkey, const bls::PublicKey& inSource)
{
inSource.Serialize(&outPubkey[0]);
}
ImpliedTransaction ImpliedTransaction::Issue(const bls::PublicKey& inReceiver, const uint16_t inFundingAmount)
{
// cout << "Make Issue Tx" << endl;
// issue 1:1 stored value UTXO from no previous UTXO, equivalent to mining reward (ie. no input tx)
ImpliedTransaction tx;
tx.mType = eIssue;
std::vector<uint8_t> seed(bls::PrivateKey::PRIVATE_KEY_SIZE);
std::generate_n(seed.begin(), bls::PrivateKey::PRIVATE_KEY_SIZE, [&] { return dist(rng); });
bls::PrivateKey sk = bls::PrivateKey::FromSeed(seed.data(), seed.size());
SetPublicKey(tx.mInputOwner1, sk.GetPublicKey());
SetPublicKey(tx.mOutputOwner1, inReceiver);
tx.mOutputAmount1 = inFundingAmount;
SetPublicKey(tx.mTransactionSigner, inReceiver);
return tx;
}
ImpliedTransaction ImpliedTransaction::Transfer(const ImpliedTransaction& inInput, const bls::PublicKey& inSender, const bls::PublicKey& inReceiver, const uint16_t inFundingAmount)
{
//cout << "Make Transfer Tx" << endl;
// transfer value to 1:1 UTXO from previous 1:1 UTXO
ImpliedTransaction tx;
tx.mInputTxHash = inInput.GetHash();
tx.mType = eTransfer;
SetPublicKey(tx.mInputOwner1, inSender);
ClearVector(tx.mInputOwner2);
SetPublicKey(tx.mOutputOwner1, inReceiver);
ClearVector(tx.mOutputOwner2);
tx.mOutputAmount1 = inFundingAmount;
tx.mOutputAmount2 = 0;
tx.mTimeDelay = 0;
tx.mChannelState = 0;
ClearVector(tx.mMessageSigner);
ClearVector(tx.mMessageHash);
SetPublicKey(tx.mTransactionSigner, inSender);
return tx;
}
ImpliedTransaction ImpliedTransaction::Setup(const ImpliedTransaction& inInput, const bls::PublicKey& inSender, const bls::PublicKey& inReceiver, const uint16_t inFundingAmount)
{
//cout << "Make Setup Tx" << endl;
// fund 2:2 UTXO from previous 1:1 UTXO
ImpliedTransaction tx(inInput);
tx.mInputTxHash = inInput.GetHash();
tx.mType = eSetup;
SetPublicKey(tx.mInputOwner1, inSender);
ClearVector(tx.mInputOwner2);
SetPublicKey(tx.mOutputOwner1, inSender);
SetPublicKey(tx.mOutputOwner2, inReceiver);
tx.mOutputAmount1 = inFundingAmount;
tx.mOutputAmount2 = 0;
tx.mTimeDelay = 0;
tx.mChannelState = 0;
ClearVector(tx.mMessageSigner);
ClearVector(tx.mMessageHash);
SetPublicKey(tx.mTransactionSigner, inSender);
return tx;
}
ImpliedTransaction ImpliedTransaction::Refund(const ImpliedTransaction& inInput, const bls::PublicKey& inSender, const bls::PublicKey& inReceiver, const bls::PublicKey& inSigner, const uint16_t inRefundAmount)
{
//cout << "Make Refund Tx" << endl;
// refund to 1:1 UTXO from previous 2:2 UTXO after delay
ImpliedTransaction tx;
tx.mInputTxHash = inInput.GetHash();
tx.mType = eRefund;
SetPublicKey(tx.mInputOwner1, inSender);
SetPublicKey(tx.mInputOwner2, inReceiver);
SetPublicKey(tx.mOutputOwner1, inSender);
ClearVector(tx.mOutputOwner2);
tx.mOutputAmount1 = inRefundAmount;
tx.mOutputAmount2 = 0;
tx.mTimeDelay = 7;
tx.mChannelState = 0;
ClearVector(tx.mMessageSigner);
ClearVector(tx.mMessageHash);
SetPublicKey(tx.mTransactionSigner, inSigner);
return tx;
}
ImpliedTransaction ImpliedTransaction::UpdateAndSettle(const ImpliedTransaction& inInput, const bls::PublicKey& inSender, const bls::PublicKey& inReceiver, const bls::PublicKey& inSigner,
const uint16_t inSenderAmount, const uint16_t inReceiverAmount, const bls::PublicKey& inDestination, const std::vector<uint8_t>& inMessageHash)
{
//cout << "Make UpdateAndSettle Tx" << endl;
// update to new 2:2 UTXO or settle to two 1:1 UTXOs after delay from previous 2:2 UTXO
ImpliedTransaction tx;
tx.mInputTxHash = inInput.GetHash();
tx.mType = eUpdateAndSettle;
SetPublicKey(tx.mInputOwner1, inSender);
SetPublicKey(tx.mInputOwner2, inReceiver);
SetPublicKey(tx.mOutputOwner1, inSender);
SetPublicKey(tx.mOutputOwner2, inReceiver);
tx.mOutputAmount1 = inSenderAmount;
tx.mOutputAmount2 = inReceiverAmount;
tx.mTimeDelay = 7;
tx.mChannelState = inInput.mChannelState + 1;
SetPublicKey(tx.mMessageSigner, inDestination);
ClearVector(tx.mMessageHash);
SetPublicKey(tx.mTransactionSigner, inSigner);
return tx;
}
ImpliedTransaction ImpliedTransaction::Close(const ImpliedTransaction& inInput, const bls::PublicKey& inSender, const bls::PublicKey& inReceiver, const bls::PublicKey& inSigner,
const uint16_t inSenderAmount, const uint16_t inReceiverAmount)
{
//cout << "Make Close Tx" << endl;
// refund Refund 2:2 UTXO
ImpliedTransaction tx;
tx.mInputTxHash = inInput.GetHash();
tx.mType = eClose;
SetPublicKey(tx.mInputOwner1, inSender);
SetPublicKey(tx.mInputOwner2, inReceiver);
SetPublicKey(tx.mOutputOwner1, inSender);
SetPublicKey(tx.mOutputOwner2, inReceiver);
tx.mOutputAmount1 = inSenderAmount;
tx.mOutputAmount2 = inReceiverAmount;
tx.mTimeDelay = 0;
tx.mChannelState = inInput.mChannelState + 1;
ClearVector(tx.mMessageSigner);
ClearVector(tx.mMessageHash);
SetPublicKey(tx.mTransactionSigner, inSigner);
return tx;
}
// default ctor
ImpliedTransaction::ImpliedTransaction()
{
mInputTxHash.resize(bls::BLS::MESSAGE_HASH_LEN, 0);
mType = eSetup;
mInputOwner1.resize(bls::PublicKey::PUBLIC_KEY_SIZE, 0);
mInputOwner2.resize(bls::PublicKey::PUBLIC_KEY_SIZE, 0);
mOutputOwner1.resize(bls::PublicKey::PUBLIC_KEY_SIZE, 0);
mOutputOwner2.resize(bls::PublicKey::PUBLIC_KEY_SIZE, 0);
mOutputAmount1 = 0;
mOutputAmount2 = 0;
mTimeDelay = 0;
mChannelState = 0;
mMessageSigner.resize(bls::PublicKey::PUBLIC_KEY_SIZE, 0);
mMessageHash.resize(bls::BLS::MESSAGE_HASH_LEN, 0);
// not part of serialization or transaction hash
mTransactionSigner.resize(bls::PublicKey::PUBLIC_KEY_SIZE, 0);
}
bool ImpliedTransaction::operator==(const ImpliedTransaction& rval) const
{
return GetId() == rval.GetId();
}
bool ImpliedTransaction::operator<(const ImpliedTransaction& rval) const
{
return GetId() < rval.GetId();
}
// get short transaction ID
uint32_t ImpliedTransaction::GetId() const
{
std::vector<uint8_t> txhash = GetHash();
uint32_t txid = bls::Util::FourBytesToInt(&txhash[0]);
return txid;
}
// compute hash of this transaction
std::vector<uint8_t> ImpliedTransaction::GetHash() const
{
const std::vector<uint8_t> msg = Serialize();
std::vector<uint8_t> message_hash(bls::BLS::MESSAGE_HASH_LEN);
bls::Util::Hash256(&message_hash[0], reinterpret_cast<const uint8_t*>(msg.data()), msg.size());
return message_hash;
}
// get short transaction ID of input transaction
uint32_t ImpliedTransaction::GetInputId() const
{
std::vector<uint8_t> txhash = GetInputHash();
uint32_t txid = bls::Util::FourBytesToInt(&txhash[0]);
return txid;
}
// get hash of input transaction
std::vector<uint8_t> ImpliedTransaction::GetInputHash() const
{
return mInputTxHash;
}
// compute serialization of the transaction
std::vector<uint8_t> ImpliedTransaction::Serialize() const
{
//std::vector<uint8_t> msg(bls::PublicKey::PUBLIC_KEY_SIZE*6 + bls::BLS::MESSAGE_HASH_LEN*2 + 7);
std::vector<uint8_t> msg(bls::PublicKey::PUBLIC_KEY_SIZE*5 + bls::BLS::MESSAGE_HASH_LEN + 7);
auto msg_ptr = msg.begin();
//msg_ptr = std::copy(mInputTxHash.begin(), mInputTxHash.end(), msg_ptr);
*msg_ptr++ = static_cast<uint8_t>(mType);
msg_ptr = std::copy(mInputOwner1.begin(), mInputOwner1.end(), msg_ptr);
msg_ptr = std::copy(mInputOwner2.begin(), mInputOwner2.end(), msg_ptr);
msg_ptr = std::copy(mOutputOwner1.begin(), mOutputOwner1.end(), msg_ptr);
msg_ptr = std::copy(mOutputOwner2.begin(), mOutputOwner2.end(), msg_ptr);
*msg_ptr = mOutputAmount1; msg_ptr+= sizeof(mOutputAmount1);
*msg_ptr = mOutputAmount2; msg_ptr+= sizeof(mOutputAmount2);
*msg_ptr++ = mTimeDelay;
*msg_ptr++ = mChannelState;
msg_ptr = std::copy(mMessageSigner.begin(), mMessageSigner.end(), msg_ptr);
msg_ptr = std::copy(mMessageHash.begin(), mMessageHash.end(), msg_ptr);
//std::copy(mTransactionSigner.begin(), mTransactionSigner.end(), msg_ptr);
return msg;
}
// public key of the transaction signer
const bls::PublicKey ImpliedTransaction::GetSigner() const
{
return bls::PublicKey::FromBytes(mTransactionSigner.data());
}
// aggregate public key of signer with public key of other signer
bool ImpliedTransaction::AddSigner(const bls::PublicKey& inSigner)
{
// record aggregate public key for two transaction signers; aggregate public keys in order (eg. first, second)
const bls::PublicKey signer = GetSigner();
bls::PublicKey input_owner0 = GetInputOwner(0);
bls::PublicKey input_owner1 = GetInputOwner(1);
bls::PublicKey current_signer = GetSigner();
bool isValidSigner = current_signer == input_owner0 && inSigner == input_owner1;
isValidSigner |= inSigner == input_owner0 && current_signer == input_owner1;
// replace single public key of transaction signer with aggregate public key of both required transaction signers
if (isValidSigner) {
std::vector<bls::PublicKey> signers = {input_owner0, input_owner1};
bls::PublicKey::Aggregate(signers).Serialize(mTransactionSigner.data());
}
assert(isValidSigner);
return isValidSigner;
}
// return true if transaction output must be signed by public keys of two owners
bool ImpliedTransaction::IsMultisig() const
{
if (GetType() == eIssue || GetType() == eTransfer || GetType() == eRefund) {
return false;
}
return true;
}
// get public key of output owner 0 or 1
bls::PublicKey ImpliedTransaction::GetOutputOwner(const int index) const
{
assert(index == 0 || index == 1);
if (index == 0) {
return bls::PublicKey::FromBytes(mOutputOwner1.data());
}
return bls::PublicKey::FromBytes(mOutputOwner2.data());
}
// get total output amount for a given signing owner
uint16_t ImpliedTransaction::GetOutputAmount() const
{
// to spend the entire value, the new output must be signed by both owners
return GetOutputAmount(0) + GetOutputAmount(1);
}
// get output value for owner 0 or 1
uint16_t ImpliedTransaction::GetOutputAmount(const int index) const
{
assert(index == 0 || index == 1);
if (index == 0) {
return mOutputAmount1;
}
return mOutputAmount2;
}
// get public key of input owner 0 or 1
bls::PublicKey ImpliedTransaction::GetInputOwner(const int index) const
{
assert(index == 0 || index == 1);
if (index == 0) {
return bls::PublicKey::FromBytes(mInputOwner1.data());
}
return bls::PublicKey::FromBytes(mInputOwner2.data());
}
// get aggregated public key from transaction output owners
bls::PublicKey ImpliedTransaction::GetAggregateOutputOwner() const
{
if (IsMultisig()) {
std::vector<bls::PublicKey> owners;
bls::PublicKey pk1 = bls::PublicKey::FromBytes(mOutputOwner1.data());
owners.push_back(pk1);
bls::PublicKey pk2 = bls::PublicKey::FromBytes(mOutputOwner2.data());
owners.push_back(pk2);
return bls::PublicKey::Aggregate(owners);
}
return bls::PublicKey::FromBytes(mOutputOwner1.data());
}
}; // namespace lot49