-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar_example_ddp.py
145 lines (115 loc) · 4.68 KB
/
cifar_example_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
from torch.utils.data.sampler import RandomSampler, SequentialSampler
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torchmetrics
import torch.optim as optim
import argparse
import os
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def init_distributed(args):
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
else:
print('Not using distributed mode')
args.gpu = 0
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
os.environ['MASTER_ADDR']= '127.0.0.1'
os.environ['MASTER_PORT']= '29500'
dist.init_process_group(backend='nccl', world_size=args.world_size)
dist.barrier()
def main(args):
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
batch_size = 4
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
init_distributed(args)
sampler_train = DistributedSampler(trainset, shuffle=True)
trainloader = torch.utils.data.DataLoader(trainset, batch_size, sampler=sampler_train)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
sampler_test = DistributedSampler(testset, shuffle=False)
testloader = torch.utils.data.DataLoader(testset, batch_size, sampler=sampler_test)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
net = Net().to(args.gpu)
net = torch.nn.parallel.DistributedDataParallel(net, device_ids=[args.gpu])
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for epoch in range(2): # loop over the dataset multiple times
sampler_train.set_epoch(epoch)
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
inputs = inputs.to(args.gpu)
labels = labels.to(args.gpu)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
dataiter = iter(testloader)
images, labels = dataiter.next()
accuracy = torchmetrics.Accuracy(dist_sync_on_step=True)
# since we're not training, we don't need to calculate the gradients for our outputs
with torch.no_grad():
for data in testloader:
images, labels = data
# calculate outputs by running images through the network
outputs = net(images)
# the class with the highest energy is what we choose as prediction
_, predicted = torch.max(outputs.data, 1)
accuracy.update(predicted, labels)
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * accuracy.compute()))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Required positional argument
parser.add_argument("--world_size", help="Total number of nodes")
args = parser.parse_args()
main(args)