-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutil.py
42 lines (35 loc) · 1.22 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from skimage.color import rgb2lab, lab2rgb
import numpy as np
import torch
def adjust_learning_rate(opts, iteration_count, args):
"""Imitating the original implementation"""
lr = args.lr / (1.0 + args.lr_decay * iteration_count)
for opt in opts:
for param_group in opt.param_groups:
param_group['lr'] = lr
def my_rgb2lab(rgb_image):
rgb_image = np.transpose(rgb_image, (1,2,0))
lab_image = rgb2lab(rgb_image)
l_image = np.transpose(lab_image[:,:,:1], (2,0,1))
ab_image = np.transpose(lab_image[:,:,1:], (2,0,1))
return l_image, ab_image
def my_lab2rgb(lab_image):
lab_image = np.transpose(lab_image, (1,2,0))
rgb_image = lab2rgb(lab_image)
rgb_image = np.transpose(rgb_image, (2,0,1))
return rgb_image
def res_lab2rgb(l, ab, T_only = False, C_only = False):
l = l.cpu().numpy()
ab = ab.cpu().numpy()
a = ab[0:1]
b = ab[1:2]
if not C_only:
l = l * (100.0 + 0.0) - 0.0
if not T_only:
a = ab[0:1] * (98.0 + 86.0) - 86.0
b = ab[1:2] * (94.0 + 107.0) - 107.0
lab = np.concatenate((l, a, b), axis=0)
lab = np.transpose(lab, (1, 2, 0))
rgb = lab2rgb(lab)
rgb = (np.array(rgb) * 255).astype(np.uint8)
return rgb