This repository has been archived by the owner on May 18, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
wk1.tex
401 lines (304 loc) · 14.7 KB
/
wk1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
%
% This is a borrowed LaTeX template file for lecture notes for CS267,
% Applications of Parallel Computing, UCBerkeley EECS Department.
% Now being used for CMU's 10725 Fall 2012 Optimization course
% taught by Geoff Gordon and Ryan Tibshirani. When preparing
% LaTeX notes for this class, please use this template.
%
% To familiarize yourself with this template, the body contains
% some examples of its use. Look them over. Then you can
% run LaTeX on this file. After you have LaTeXed this file then
% you can look over the result either by printing it out with
% dvips or using xdvi. "pdflatex template.tex" should also work.
%
\documentclass[twoside]{article}
\setlength{\oddsidemargin}{0.25 in}
\setlength{\evensidemargin}{-0.25 in}
\setlength{\topmargin}{-0.6 in}
\setlength{\textwidth}{6.5 in}
\setlength{\textheight}{8.5 in}
\setlength{\headsep}{0.75 in}
\setlength{\parindent}{0 in}
\setlength{\parskip}{0.1 in}
%
% ADD PACKAGES here:
%
\usepackage{amsmath,amsfonts,graphicx,soul}
%
% The following commands set up the lecnum (lecture number)
% counter and make various numbering schemes work relative
% to the lecture number.
%
\newcounter{lecnum}
\renewcommand{\thepage}{\thelecnum-\arabic{page}}
\renewcommand{\thesection}{\thelecnum.\arabic{section}}
\renewcommand{\theequation}{\thelecnum.\arabic{equation}}
\renewcommand{\thefigure}{\thelecnum.\arabic{figure}}
\renewcommand{\thetable}{\thelecnum.\arabic{table}}
\newcommand*\conj[1]{\bar{#1}}
\newcommand*\mean[1]{\bar{#1}}
\newcommand{\indep}{\rotatebox[origin=c]{90}{$\models$}}
%
% The following macro is used to generate the header.
%
\newcommand{\lecture}[4]{
\pagestyle{myheadings}
\thispagestyle{plain}
\newpage
\setcounter{lecnum}{#1}
\setcounter{page}{1}
\noindent
\begin{center}
\framebox{
\vbox{\vspace{2mm}
\hbox to 6.28in { {\bf STAT7017 Big Data Statistics
\hfill Semester 2 2018} }
\vspace{4mm}
\hbox to 6.28in { {\Large \hfill Lecture #1: #2 \hfill} }
\vspace{2mm}
\hbox to 6.28in { {\it Lecturer: #3 \hfill Scribes: #4} }
\vspace{2mm}}
}
\end{center}
\markboth{Lecture #1: #2}{Lecture #1: #2}
{\bf Note}: {\it LaTeX template courtesy of UC Berkeley EECS dept.}
{\bf Disclaimer}: {\it These notes have not been subjected to the
usual scrutiny reserved for formal publications. They may be distributed
outside this class only with the permission of the Instructor.}
\vspace*{4mm}
}
%
% Convention for citations is authors' initials followed by the year.
% For example, to cite a paper by Leighton and Maggs you would type
% \cite{LM89}, and to cite a paper by Strassen you would type \cite{S69}.
% (To avoid bibliography problems, for now we redefine the \cite command.)
% Also commands that create a suitable format for the reference list.
\renewcommand{\cite}[1]{[#1]}
\def\beginrefs{\begin{list}%
{[\arabic{equation}]}{\usecounter{equation}
\setlength{\leftmargin}{2.0truecm}\setlength{\labelsep}{0.4truecm}%
\setlength{\labelwidth}{1.6truecm}}}
\def\endrefs{\end{list}}
\def\bibentry#1{\item[\hbox{[#1]}]}
%Use this command for a figure; it puts a figure in wherever you want it.
%usage: \fig{NUMBER}{SPACE-IN-INCHES}{CAPTION}
\newcommand{\fig}[3]{
\vspace{#2}
\begin{center}
Figure \thelecnum.#1:~#3
\end{center}
}
% Use these for theorems, lemmas, proofs, etc.
\newtheorem{theorem}{Theorem}[lecnum]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{definition}[theorem]{Definition}
\newenvironment{proof}{{\bf Proof:}}{\hfill\rule{2mm}{2mm}}
% **** IF YOU WANT TO DEFINE ADDITIONAL MACROS FOR YOURSELF, PUT THEM HERE:
\newcommand\E{\mathbb{E}}
\begin{document}
%FILL IN THE RIGHT INFO.
%\lecture{**LECTURE-NUMBER**}{**DATE**}{**LECTURER**}{**SCRIBE**}
\lecture{1}{23 July}{Dr Dale Roberts}{Rui Qiu}
%\footnotetext{These notes are partially based on those of Nigel Mansell.}
% **** YOUR NOTES GO HERE:
% Some general latex examples and examples making use of the
% macros follow.
%**** IN GENERAL, BE BRIEF. LONG SCRIBE NOTES, NO MATTER HOW WELL WRITTEN,
%**** ARE NEVER READ BY ANYBODY.
\begin{itemize}
\item Course Outline (available on Wattle)
\begin{itemize}
\item About me.
\item Assessments. (15+15+15+55)
\item Course schedule.
\end{itemize}
\item Structure
\begin{itemize}
\item 2 hours lectures.
\item 1 hour workshop / computer lab. (start next week).
\end{itemize}
\item Material
\begin{itemize}
\item Lecture notes (Handwritten), scanned and placed on Wattle.
\item PDFs of research papers.
\item Extracts from books.
\item R codes.
\end{itemize}
\end{itemize}
\hrule
\textbf{Q: What is BIG DATA?}
\underline{Wikipedia:} ``data sets that are so large or complex that traditional \underline{data processing} applications are inadequate".
Gartner (2012): 3Vs
\begin{itemize}
\item High \underline{Volume}: ``data not sampled"
\item High \underline{Velocity}: ``real-time"
\item High \underline{Variety}: ``draws from text, images, \dots, video".
\end{itemize}
I personally \underline{HATE} these definitions, because:
\begin{itemize}
\item Data processing/computing is focus. $\rightarrow$ What happens in 10 years when this isn't a problem anymore? (Moore's law)
\item Doesn't properly capture the true (and timeless) difference to ``small data".
\end{itemize}
\textbf{Q: Are \underline{large sample sizes} really the problem?}
In terms of ``volume"
\begin{center}
\begin{tabular}{ c c }
$1000$ & kilobyte \\
$1000^2$ & megabyte \\
$1000^3$ & gigabyte \\
$1000^4$ & terabyte \\
$1000^5$ & petabyte \\
$1000^6$ & exabyte \\
\dots & \dots
\end{tabular}
\end{center}
Starting from \emph{gigabyte}, big data?
\underline{Large sample theory} is basis for classic statistics:
$X_i\sim$ F iid, for $i=1,\dots$,
\begin{equation}
\begin{split}
\mathbb{E}X_i&=\mu \\
\mean{X}_n&:=\frac1n\sum^n_{i=1}X_i
\end{split}
\end{equation}
\underline{Law of large numbers} $\mean{X}_n\longrightarrow\mathbb{E}X$ as $n\longrightarrow \infty$. (sample mean converges to population mean)
\underline{Central limit theorem} $\sqrt{n}(\mean{X}_n-\mathbb{E}X)\longrightarrow N(0, \cdot)$
Big data should only reaffirm very classic theory!
\textbf{Q: Is real-time data a problem?}
Yes, but most data sets are not ``real-time".
There is interesting theory here for \underline{streaming data}, ONLINE LEARNING, etc. (I will not cover this topic this semester.)
\textbf{Q: Is data variety a problem?}
Not really. The topic of \underline{multivariate analysis} has existed since early 1900s.
\underline{Multivariate analysis}. Given a sample $\mathbf{x_1,x_2,\dots,x_n}$ of random observations of dimension $p$, each $\mathbf{x_i}=[x_i^{(1)}\ x_i^{(2)}\ \cdots \ x_i^{(p)}]$ (or transposed version).
Methods such as PCA have been available since early 1900s.
Observed Gaussian: Student's T-test, Fisher's test, ANOVA, all of which are \emph{non-asymptotic} methods.
Non-Gaussian: (non-asymptotic) results are hard to obtain $\longrightarrow$ limiting theorems based on model statistics.
Typically desired under assumptions: $p$ fixed, $n\rightarrow \infty$ ``large sample theory".
Classic MVA has a $p<10$.
New challenge: BIG DATA!
\begin{center} \begin{tabular}{|l|c|c|r|}
\hline
& $p$ & $n$ & $p/n$ \\
\hline
Portfolio & $\sim 50$ & $500$ & $0.1$ \\
\hline
Climate survey & $320$ & $600$ & $0.21$ \\
\hline
Speech analysis & $a\times 10^2$ & $b\times 10^2$ & $\sim 1$ \\
\hline
Face database & $1440$ & $320$ & $4.5$ \\
\hline
Micro-array & $1000$ & $100$ & $10$ \\
\hline
\end{tabular}
\end{center}
I shall define BIG DATA as \textbf{``data whereby the classic statistical paradigm \underline{no longer applies}}."\\
\underline{Classic paradigm}:
\begin{itemize}
\item dimension $p$ is small compared to the sample size $n$.
\item asymptotic theory assumes $n$ increases (very quickly to $\infty$) while dimension $p$ remains fixed.
\item At time $t$, we have all the data necessary for our analysis, i.e. the \underline{batch} case.
\end{itemize}
No longer applies means:
\begin{itemize}
\item gives incorrect results.
\item bad approximation.
\item incorrect hypothesis rejection.
\item etc.
\end{itemize}
\hrule
\underline{\textbf{Unique features of big data:}}
(Quick overview as I haven't presented notation yet). [Fan, Han, Liu; 2014] and references therein.
\begin{itemize}
\item \textbf{Heterogeneity:} With small data, data points from subpopulations are considered `outliers'. With large data sets, subpopulations might be large. $\implies$ Mixtures of Gaussians?
\item \textbf{Noise accumulation:} Errors accumulate when a decision or prediction rule depends on a large number of parameters. This effect becomes worse as the dimension increases, and may dominate the true signal. (See Fig 1)
\item \textbf{Spurious correlation:} High dimensionality can cause spurious correlations. That is, many uncorrelated random variables may have high sample correlation. (See Fig 2)
\item \textbf{Incidental endogeneity:} In regression setting, $$Y=\sum^p_{i=1}X_i+\epsilon$$
`endogeneity' means some features (predictors) correlate with the residual noise $\epsilon$.
That the residual noise $\epsilon$ is uncorrelated with all features is crucial. Called ``Exogenous assumption" that $\mathbb{E}[\epsilon X_i]=0$ for $i=1,\dots, p$.
Easily violated in high-dimensions.
\end{itemize}
\underline{Aim of the course}
Go from classic $\longrightarrow$ cutting-edge
\begin{itemize}
\item High dimensional ($p\approx n$ large or $p\gg n$)
\item \st{Streaming (sequentially revealed)}
\end{itemize}
We need to understand the classic case to see why new approaches are better.
This is an active area of research: lots of open questions and new applications to find.\\
\hrule
\underline{Fundamental idea:} Study \textbf{Random Matrices}
$$X=
\begin{bmatrix}
x_{11} & x_{12} & \cdots & x_{1p}\\
x_{21} & x_{22} & \cdots & x_{2p}\\
\vdots &\vdots & \ddots & \vdots \\
x_{p1} & x_{p2} &\cdots & x_{pp}
\end{bmatrix}, x_{ij}:\Omega\rightarrow\mathbb{R} (\text{or } \mathbb{C})
$$
\textbf{Q: What is a Random Matrix? [Diaconis 05]}
``Everyone know" that a random variable is just a measurable function from our sample space $\Omega$.
$$X:\Omega\rightarrow \mathcal{S}, \mathcal{S}=\mathbb{R},\mathbb{R}^2,\dots$$
Take $\mathcal{S}=\mathbb{R}^{n\times n}$, i.e. $n\times n$ matrices with real entries.
``That's not what it means to people working in probability".
Think about \underline{picking} a matrix (with certain properties) at random with a certain probability.
E.g. Pick a random covariance matrix.
\boxed{\text{Matrix Properties}} + \boxed{\text{Randomness}} = \boxed{\text{Interesting Maths!}}\\
\textbf{RMT} Quantum mechanics 40's - 50's
\begin{itemize}
\item Energy levels of a system are described by eigenvalues of a hermitian operator on a Hilbert space.
\item Computationally you can't work on infinite-dimension objects...
\begin{itemize}
\item $\rightarrow$ discretization and truncation: keep only parts that are important to the problem under consideration.
\item $\rightarrow$ A finite but large random linear operator.
\end{itemize}
\item Semicircular law for Gaussian (or Wigner) matrix [Wigner 1955, 1958] $\rightarrow$ [Arnold 1967, 1971] [Grenander 1963]
\item Gaussian Wishart matrices (sample covariance matrices). [Marchenko/Pastur 1967] [Pastur 1972; 1973]. $\rightarrow$ Marchenko-Pastur law.
\item Asymptotic theory of large sample covariance matrices. [Bai et al 1986] [Grenander, Silverstein 1977] [Johansson 1982] (?) ...\\
Multivariate Fisher matrices ($QR^{-1}$), $Q\indep R$ sample covariance matrices.
\item Recently, $2^{\text{nd}}$-order theory: CLT for linear spectral statistics, limit distribution spectral spacings, extreme eigenvalues.
\end{itemize}
\underline{Sample covariance matrices.}
$\mathbb{X}_1,\mathbb{X}_2,\dots,\mathbb{X}_n$ sample of random observations with dimension $p$.
Population covariance matrix: $\sum=Cov(\mathbb{X}_i)$
Sample covariance matrix: $\mathcal{S}_n=\frac1{n-1}\sum^n_{i=1}(\mathbb{X}_i-\mean{\mathbb{X}})(\mathbb{X}_i-\mean{\mathbb{X}})^*$
Sample mean: $\mean{\mathbb{X}}=\frac1n\sum\mathbb{X}_i$
Most results in MVA rely on $\mathcal{S}_n$: PCA, canonical correlation analysis, multivariate regression, one-sample or two-sample hypothesis testing, factor analysis.
$\implies$ Understanding asymptotic properties of $\mathcal{S}_n$ extremely important in data analysis when $p$ becomes large with respect to sample size $n$.
Generalized Variance and multiple correlation coefficient.
$\implies$ overall measure of dispersion of the data, $\sigma_i^2$ measures $\mathbb{X}_i$, all variables together: generalized variance, ``measure of scatter".
$p$ becomes large $\implies$ ``BIG DATA"
RMT will become our tool to understand what is happening.\\
\hrule
\underline{\textbf{Review of some Matrix Algebra}}
A \underline{complex number} is a number of the form $a+ib$ where $i$ satisfies $i^2=-1$.
$$Re[a+ib]=a,\ Im[a+ib]=b$$
The \underline{complex conjugate} of $z=a+ib\in\mathbb{C}$ is $\overline{z}:=a-ib$
If $A$ is a $m\times n$ matrix with complex entries, then the $n\times m$ matrix $A^*$ is called the \underline{conjugate transpose} and is defined as
$$[A^*]_{ij}:=\overline{A_{ji}}\text{ or } A^*:=\left(\overline{A}\right)'=\overline{(A')}$$
The matrix $A=(a_{ij})$ is \underline{Hermitian} if it is square with $a_j\in\mathbb{C}$ such that $A=A^*$. The matrix $A$ is \underline{symmetric} if $A=A'$ and \underline{orthogonal} if $A'A=AA'=I$ where $I$ is the identity matrix, equivalently $A'=A^{-1}$. A complex square matrix is called \underline{unitary} if $A^*A=AA^*=I$.
The \underline{product} $AB$ of $m\times n$ matrix $A=(a_{ij})$ and $n\times k$ matrix $B=(b_{ij})$ is the $m\times k$ $C=(c_{ij})$ where
$$c_{ij}=\sum^n_{l=1}a_{il}b_{lj},\ \forall i =1,2,\dots, m, j=1,2,\dots, k.$$
The \underline{transpose} of a matrix $A$ is $A'$ such that $[A']_{ij}=[A]_{ji}$.
The \underline{trace} of a $k\times k$ matrix $A=(a_{ij})$ is $tr(A)=\sum^k_{l=1}a_{ll}$.
The \underline{determinant} of $A$, denoted $|A|$ or $\det(A)$, is the scalar $|A|=a_{11}$ if $k=1$ or $|A|=\sum^k_{j=1}a_{1j}|A_{1j}|(-1)^{1+j}$ if $k>1$ where $A_{1j}$ is the $(k-1)\times (k-1)$ matrix obtained by deleting the first row and $j$-th column of $A$.
For $k\times k$ matrices $A$ and $B$, constant $c\in\mathbb{R}$, we have:
\begin{itemize}
\item $(A+B)'=A'+B'$
\item $(AB)'=B'A'$
\item $\det(A')=\det(A)$
\item $(A')^{-1}=(A^{-1})'$
\item $tr(cA)=c\cdot tr(A)$
\item $tr(A\pm B)=tr(A)\pm tr(B)$
\item $tr(AB)=tr(BA)$
\item $tr(B^{-1}AB)=tr(B)$
\item $(AB)^{-1}=B^{-1}A^{-1}$
\item $tr(AA')=\sum^k_{i=1}\sum^k_{j=1}a_{ij}^2$
\item $\det(AB)=\det(A)\det(B)$
\item $\det(cA)=c^k\det(A)$
\end{itemize}
% **** THIS ENDS THE EXAMPLES. DON'T DELETE THE FOLLOWING LINE:
\end{document}