-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathvisualize.py
457 lines (389 loc) · 19.8 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import argparse
from logging import Logger
import os
import queue
from alive_progress import alive_bar
import cv2
from matplotlib import pyplot as plt
import yaml
import time
import kinpy as kp
import open3d as o3d
import numpy as np
from rh20t_api.configurations import load_conf, tcp_as_q, Configuration
from rh20t_api.convert import timestamp_to_datetime_str
from rh20t_api.online import aligned_tcp_glob_mat, zeroed_force_torque_base
from rh20t_api.scene import RH20TScene
from utils.keyboard_listener import KeyboardListener
from utils.logger import logger_begin
from utils.point_cloud import create_point_cloud_manager
from utils.stopwatch import Stopwatch
from utils.robot import RobotModel
import librosa
import librosa.display
from typing import Dict, Any
import traceback
def get_trans_mat(start_coord:np.ndarray, end_coord:np.ndarray):
"""
Obtain the transformation matrix and scale given starting and ending coords.
This is used for transforming line segments or arrow meshes to the desired
starting and ending coords.
Params:
----------
start_coord: starting coordinate shaped (3,)
end_coord: ending coordinate shaped (3,)
Returns:
----------
trans_mat: 4x4 transformation matrix
scale: the scale of the desired line segment/arrow
"""
_scale:float = np.linalg.norm(end_coord - start_coord)
[_x, _y, _z] = ((end_coord - start_coord) / _scale).tolist()
return np.array([
[1. / (1 + (_x / _z) * (_x / _z)), 0., _x, start_coord[0]],
[0., 1. / (1 + (_y / _z) * (_y / _z)), _y, start_coord[1]],
[-(_x * _z) / (_x * _x + _z * _z), -(_y * _z) / (_y * _y + _z * _z), _z, start_coord[2]],
[0., 0., 0., 1.]]), _scale
def force_torque_split(tcp_aligned:np.ndarray, force_torque_aligned_zeroed:np.ndarray, ratio_f:float=0.001, ratio_t:float=0.001):
_coord_start, _force, _torque = tcp_aligned[0:3], force_torque_aligned_zeroed[0:3], force_torque_aligned_zeroed[3:6]
return _coord_start, _coord_start + _force * ratio_f, _coord_start + _torque * ratio_t, np.linalg.norm(_force), np.linalg.norm(_torque)
def create_robot_model_manager(configuration:Configuration):
return RobotModel(configuration.robot_joint_sequence, configuration.robot_urdf, configuration.robot_mesh)
def create_traj_mesh(prev_coord:np.ndarray, now_coord:np.ndarray):
"""
Visualize a segment of trajectory.
Params:
----------
prev_coord: the previous coordinate
now_coord: the current coordinate
Returns:
----------
traj_mesh: the created trajectory mesh
"""
_trans, _scale = get_trans_mat(prev_coord, now_coord)
traj_mesh = o3d.geometry.TriangleMesh.create_cylinder(radius=0.25, height=1.0, resolution=20,
split=4, create_uv_map=False).scale(_scale, [0,0,0]).transform(_trans).paint_uniform_color([0., 1., 0.])
traj_mesh.compute_vertex_normals()
return traj_mesh
def renderer_update(visualizer):
visualizer.poll_events()
visualizer.update_renderer()
class AudioManager:
def __init__(self, scene:RH20TScene, vis_cfg:Dict[str, Any]) -> None:
"""
Audio data manager; audio data will be visualized in waveform.
Params:
----------
scene: the current scene instance
"""
self._scene = scene
self._vis_cfg = vis_cfg
self._audio_path = scene.get_audio_path()
self._audio_data, self._sample_rate = librosa.load(self._audio_path)
self._audio_window_size = self._audio_data.shape[0] // ((scene.end_timestamp + 1 - scene.start_timestamp) // vis_cfg['time_interval'])
def save(self, t:float, save_folder:str):
"""
Save the waveform audio data at time t
Params:
----------
t: the time of audio data to save
save_folder: the folder to save the waveform
"""
_s = (t - self._scene.start_timestamp) // self._vis_cfg['time_interval']
plt.clf()
librosa.display.waveshow(self._audio_data[int((_s - 0.5) * self._audio_window_size):
int((_s + 0.5) * self._audio_window_size)], sr=self._sample_rate)
plt.ylim(-0.015, 0.015)
plt.xlabel("")
plt.savefig(os.path.join(save_folder, "wave.png"))
plt.xticks([])
plt.yticks([])
plt.savefig(os.path.join(save_folder, "wave_no_axis.png"))
class SingleViewCameraManger:
def __init__(self, vis_cfg:Dict[str, Any], scene:RH20TScene, chosen_cam_id:int, logger:Logger) -> None:
"""
Managing single view rgb image, choose one camera index and visualize its RGB image.
Params:
----------
vis_cfg: the visualization configuration
scene: current scene instance
chosen_cam_id: the chosen camera index, can be 0, 1, ...
logger: the logger for the manager
"""
self._vis_cfg = vis_cfg
self._scene = scene
self._chosen_cam_id = chosen_cam_id
self._logger = logger
self._create_chosen_camera()
def _create_chosen_camera(self):
"""
Given the chosen index of camera, create the corresponding camera for viewing the scene.
"""
self._extrinsics = self._scene.extrinsics_base_aligned
self._intrinsics = self._scene.intrinsics
cams_serial = list(self._scene.extrinsics_base_aligned.keys())
self._chosen_serial = cams_serial[self._chosen_cam_id]
self._logger.info(f"All camera serials: {cams_serial}\nChosen camera: {self._chosen_serial}")
self._camera = o3d.camera.PinholeCameraParameters()
self._camera.extrinsic = self._extrinsics[cams_serial[self._chosen_cam_id]]
chosen_intrinsic = self._intrinsics[cams_serial[self._chosen_cam_id]]
self._camera.intrinsic = o3d.camera.PinholeCameraIntrinsic(
#TODO: check for L515 case, which may not be in this resolution
width=self._vis_cfg['resolution'][0],
height=self._vis_cfg['resolution'][1],
fx=chosen_intrinsic[0][0],
fy=chosen_intrinsic[1][1],
cx=chosen_intrinsic[0][2],
cy=chosen_intrinsic[1][2]
)
def init_window(self, width=320, height=180):
"""
Initialize visualization window
Params:
----------
width: the viewport width
height: the viewport height
"""
self._window_name = f"{self._chosen_serial} Capture"
cv2.namedWindow(self._window_name, 0)
cv2.resizeWindow(self._window_name, width, height)
def create_camera_models(self):
"""
Create camera meshes for visualization.
Returns:
----------
models: a list of the create camera meshes
"""
models = []
for k in self._extrinsics:
if k in self._scene.in_hand_serials: continue
cam_mesh = o3d.geometry.LineSet.create_camera_visualization(
view_width_px=1280,
view_height_px=720,
intrinsic=self._intrinsics[k][:3, :3],
extrinsic=self._extrinsics[k],
scale=0.04
).paint_uniform_color([1., 0., 0.])
models.append(cam_mesh)
return models
def update_img(self, img_path:str):
"""
Update the displayed image.
Params:
----------
img_path: the image path to read in
"""
self._img = cv2.imread(img_path)
cv2.imshow(self._window_name, self._img)
cv2.waitKey(1)
def save(self, save_folder:str): cv2.imwrite(os.path.join(save_folder, "cam.png"), self._img)
@property
def camera(self): return self._camera
@property
def serial(self): return self._chosen_serial
class FTArrowManager:
def __init__(self) -> None:
"""
Managing the visualization of arrow meshes representing force and torque
"""
cylinder_radius=2.0
cone_radius=1.5
cylinder_height=5.0
cone_height=4.0
resolution=20
cylinder_split=4
cone_split=1
self._mesh_arrow_f = o3d.geometry.TriangleMesh.create_arrow(
cylinder_radius=cylinder_radius, cone_radius=cone_radius, cylinder_height=cylinder_height,
cone_height=cone_height, resolution=resolution, cylinder_split=cylinder_split,
cone_split=cone_split).paint_uniform_color([1., 0., 0.])
self._mesh_arrow_t = o3d.geometry.TriangleMesh.create_arrow(
cylinder_radius=cylinder_radius, cone_radius=cone_radius, cylinder_height=cylinder_height,
cone_height=cone_height, resolution=resolution, cylinder_split=cylinder_split,
cone_split=cone_split).paint_uniform_color([0., 0., 1.])
self._prev_mesh_arrow_f_trans, self._prev_mesh_arrow_t_trans = None, None
self._prev_f_scale, self._prev_t_scale = 1., 1.
def update(self, ft_start:np.ndarray, f_end:np.ndarray, t_end:np.ndarray):
"""
Update the arrows according to the starting and ending points coordinates.
Params:
----------
ft_start: the starting point, i.e., the gripper location
f_end: the ending point for the force vector
t_end: the ending point for the torque vector
"""
if self._prev_mesh_arrow_f_trans is not None: self._mesh_arrow_f.transform(np.linalg.inv(self._prev_mesh_arrow_f_trans))
self._prev_mesh_arrow_f_trans, _scale = get_trans_mat(ft_start, f_end)
self._mesh_arrow_f.scale(_scale / self._prev_f_scale, [0,0,0])
self._prev_f_scale = _scale
self._mesh_arrow_f.transform(self._prev_mesh_arrow_f_trans)
self._mesh_arrow_f.compute_vertex_normals()
if self._prev_mesh_arrow_t_trans is not None: self._mesh_arrow_t.transform(np.linalg.inv(self._prev_mesh_arrow_t_trans))
self._prev_mesh_arrow_t_trans, _scale = get_trans_mat(ft_start, t_end)
self._mesh_arrow_t.scale(_scale / self._prev_t_scale, [0,0,0])
self._prev_t_scale = _scale
self._mesh_arrow_t.transform(self._prev_mesh_arrow_t_trans)
self._mesh_arrow_t.compute_vertex_normals()
@property
def geometries(self): return [self._mesh_arrow_f, self._mesh_arrow_t]
def save_results(
t:float, scene_path:str, visualizer, screenshot_path:str, audio_manager:AudioManager,
single_view_cam:SingleViewCameraManger, logger:Logger
):
"""
Save the results of the current frame.
Params:
----------
t: current timr
scene_path: the path to the scene folder
visualizer: current visualizer instance
screenshot_path: the path to save screenshot
audio_manager: audio data writer
single_view_cam: cam data writer
logger: the logger for the saving process
"""
logger.info("pressed S, saving")
_save_folder = os.path.join(screenshot_path, str(int(time.time() * 100)))
os.makedirs(_save_folder, exist_ok=True)
audio_manager.save(t, _save_folder)
_save_path_model = os.path.join(_save_folder, scene_path.split('/')[-1] + ".png")
visualizer.capture_screen_image(_save_path_model, do_render=True)
single_view_cam.save(_save_folder)
logger.info(f"saved screenshot in {_save_folder}")
def visualize(scene_path:str, pcd_folder:str, vis_cfg:dict, logger:Logger):
max_traj_size = vis_cfg['max_traj_size']
screenshot_path = vis_cfg['screenshot_path']
_width, _height = vis_cfg['viewport_width'], vis_cfg['viewport_height']
chosen_cam_idx = vis_cfg['chosen_cam_idx']
enable_ft = vis_cfg["enable_ft"]
enable_pcd = vis_cfg["enable_pcd"]
enable_model = vis_cfg["enable_model"]
enable_traj = vis_cfg["enable_traj"]
robot_configs = load_conf(vis_cfg["robot_configs"])
dataloader = RH20TScene(scene_path, robot_configs)
logger.info(f"Calibration quality of this scene: {dataloader.metadata['calib_quality']}")
pointcloud = create_point_cloud_manager(logger, vis_cfg)
visualizer = o3d.visualization.Visualizer()
visualizer.create_window(width=_width, height=_height)
if enable_model: robot_model = create_robot_model_manager(dataloader.configuration)
start_timestamp, end_timestamp = dataloader.start_timestamp, dataloader.end_timestamp
pcd, ft_start = None, None
_n_frames, _vis_time = 0, 0.
_t = start_timestamp
first_time = True
traj_queue = queue.Queue(maxsize=0)
logger.info('======Press ESC to exit, or Alt to pause=====')
stopwatch = Stopwatch()
keyboard_listener = KeyboardListener()
keyboard_listener.start()
ft_arrow = FTArrowManager()
audio = AudioManager(dataloader, vis_cfg)
single_view_cam = SingleViewCameraManger(vis_cfg, dataloader, chosen_cam_idx, logger)
camera_models = single_view_cam.create_camera_models()
for cam_mesh in camera_models: visualizer.add_geometry(cam_mesh, reset_bounding_box=False)
ctr = visualizer.get_view_control()
ctr.convert_from_pinhole_camera_parameters(single_view_cam.camera, allow_arbitrary=True)
single_view_cam.init_window()
try:
with alive_bar(end_timestamp + 1 - start_timestamp, manual=True, title='3D scene') as bar:
while _t < end_timestamp + 1:
img_path = dataloader.get_image_path_pairs(_t, image_types=["color"])[single_view_cam.serial][0]
single_view_cam.update_img(img_path)
if keyboard_listener.esc:
logger.info('Pressed esc, exitting...')
break
if keyboard_listener.pause:
# saving is only enabled when paused
if keyboard_listener.save:
save_results(_t, scene_path, visualizer, screenshot_path, audio, single_view_cam, logger)
keyboard_listener.save = False
# checking previous and next frames is only enabled when paused
if keyboard_listener.left == 0:
renderer_update(visualizer)
continue
_t -= (keyboard_listener.left + 1) * vis_cfg['time_interval']
keyboard_listener.left = 0
if start_timestamp > _t: _t = start_timestamp
if end_timestamp < _t: _t = end_timestamp
stopwatch.reset()
if enable_model:
# visualize robot arm model
robot_model.update(dataloader.get_joint_angles_aligned(_t), first_time)
for m in robot_model.geometries_to_add: visualizer.add_geometry(m, reset_bounding_box=False)
for m in robot_model.geometries_to_update: visualizer.update_geometry(m)
renderer_update(visualizer)
# tcp
tcp_aligned = dataloader.get_tcp_aligned(_t)
if ft_start is not None: prev_coord = ft_start.copy()
force_torque_preprocessed = dataloader.get_ft_aligned(_t)
ft_start, f_end, t_end, _, _ = force_torque_split(tcp_aligned, force_torque_preprocessed)
if enable_ft:
# visualize force and torque with arrows
ft_arrow.update(ft_start, f_end, t_end)
for mesh_arrow in ft_arrow.geometries:
if first_time: visualizer.add_geometry(mesh_arrow, reset_bounding_box=False)
else: visualizer.update_geometry(mesh_arrow)
renderer_update(visualizer)
# trajectory
if enable_traj and not first_time:
traj_mesh = create_traj_mesh(prev_coord, ft_start)
visualizer.add_geometry(traj_mesh, reset_bounding_box=False)
traj_queue.put(traj_mesh)
if max_traj_size > 0:
while not keyboard_listener.pause and traj_queue.qsize() > max_traj_size:
_line = traj_queue.get()
visualizer.remove_geometry(_line, reset_bounding_box=False)
renderer_update(visualizer)
# point cloud
if pcd: visualizer.remove_geometry(pcd, reset_bounding_box=False)
if first_time or enable_pcd:
pcd = o3d.io.read_point_cloud(pointcloud.point_cloud_path(pcd_folder, _t))
bounding_box = o3d.geometry.AxisAlignedBoundingBox(min_bound=[-0.15, -0.5, -0.1], max_bound=[0.9, 0.5, 0.9])
pcd = pcd.crop(bounding_box)
visualizer.add_geometry(pcd, reset_bounding_box=first_time)
renderer_update(visualizer)
if first_time: first_time = False
else:
_vis_time += stopwatch.split
_n_frames += 1
_t += vis_cfg['time_interval']
bar((_t - start_timestamp) / (end_timestamp + 1 - start_timestamp))
if not keyboard_listener.esc: from IPython.terminal import embed; ipshell=embed.InteractiveShellEmbed(config=embed.load_default_config())(local_ns=locals())
except Exception as e:
logger.error(e)
traceback.print_exc()
finally:
keyboard_listener.terminate()
logger.info(f"Average time: {_vis_time / _n_frames:.3f} s")
logger.info(f"Average FPS: {_n_frames / _vis_time:.3f}")
def pcd_preprocess(scene_path:str, pcd_folder:str, vis_cfg:dict, logger:Logger):
robot_configs = load_conf(vis_cfg["robot_configs"])
dataloader = RH20TScene(scene_path, robot_configs)
pointcloud = create_point_cloud_manager(logger, vis_cfg)
stopwatch = Stopwatch()
pointcloud.point_cloud_multi_frames(
image_pairs=dataloader.get_image_path_pairs_period(vis_cfg["time_interval"]),
in_hand_serials=dataloader.in_hand_serials,
intrinsics=dataloader.intrinsics,
extrinsics=dataloader.extrinsics_base_aligned,
write_folder=pcd_folder
)
logger.info(f"preprocessing finished in {stopwatch.split} seconds.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--scene_folder', help='Path to the data directory to visualize', type=str, required=True)
parser.add_argument('--cache_folder', default="", help='Path to cache the generated point cloud', type=str, required=True)
parser.add_argument('--preprocess', action='store_true', help='Preprocess and cache the point clouds')
ARGS = parser.parse_args()
if ARGS.scene_folder[-1] == "/": ARGS.scene_folder = ARGS.scene_folder[:-1]
if ARGS.cache_folder[-1] == "/": ARGS.cache_folder = ARGS.cache_folder[:-1]
vis_logger = logger_begin(name="Vis Logger", color=True, level="DEBUG")
try:
with open(os.path.join('configs', 'default.yaml'), 'r') as settings_file: vis_cfg_dict = yaml.load(settings_file, Loader = yaml.FullLoader)
except:
vis_logger.error("No configuration file `./configs/default.yaml` existing!")
exit(1)
if ARGS.preprocess:
pcd_preprocess(ARGS.scene_folder, ARGS.cache_folder, vis_cfg_dict, vis_logger)
else:
visualize(ARGS.scene_folder, ARGS.cache_folder, vis_cfg_dict, vis_logger)