-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathT1_pd04.py
50 lines (39 loc) · 1.87 KB
/
T1_pd04.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from lib.model.conv_branch import ConvBranch
from lib.model.pool_branch import PoolBranch
from .generate_convs import ConvSettings
from math import ceil
settings = ConvSettings(0, 0, 3, 1, 1,
1).generate_settings_type_eq(None, (1, 4), (1, 4))
extra_pools = int(ceil(len(settings) / 4))
n_branches = 6 + len(settings) + 2 * extra_pools
def set_func(layer, in_planes, out_planes):
layer.branch_0 = ConvBranch(in_planes, out_planes, kernel_size=3, padding=1)
layer.branch_1 = ConvBranch(in_planes,
out_planes,
kernel_size=3,
padding=1,
separable=True)
layer.branch_2 = ConvBranch(in_planes, out_planes, kernel_size=5, padding=2)
layer.branch_3 = ConvBranch(in_planes,
out_planes,
kernel_size=5,
padding=2,
separable=True)
layer.branch_4 = PoolBranch(in_planes, out_planes, 'avg')
layer.branch_5 = PoolBranch(in_planes, out_planes, 'max')
for (i, setting) in enumerate(settings):
setattr(
layer, "branch_{}".format(6 + i),
ConvBranch(in_planes, out_planes, setting.kernel_size,
setting.padding, setting.dilation, setting.stride))
for i in range(6 + len(settings), 6 + len(settings) + extra_pools):
max_pool_i = i + extra_pools
setattr(layer, "branch_{}".format(i),
PoolBranch(in_planes, out_planes, 'avg'))
setattr(layer, "branch_{}".format(max_pool_i),
PoolBranch(in_planes, out_planes, 'max'))
return n_branches
def pick_func(layer, layer_type, x):
if not (0 <= layer_type < n_branches):
exit(1)
return getattr(layer, "branch_{}".format(layer_type.cpu().item()))(x)