forked from krasserm/perceiver-io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
62 lines (51 loc) · 1.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import examples.training # noqa: F401
import pytorch_lightning as pl
from perceiver.data.vision import MNISTDataModule
from perceiver.model.core import ClassificationDecoderConfig
from perceiver.model.vision.image_classifier import ImageClassifierConfig, ImageEncoderConfig, LitImageClassifier
from perceiver.scripts.lrs import ConstantWithWarmupLR
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.strategies import DDPStrategy
from torch.optim import AdamW
def configure_optimizers(self):
optimizer = AdamW(self.parameters(), lr=1e-3)
scheduler = ConstantWithWarmupLR(optimizer, warmup_steps=500)
return {
"optimizer": optimizer,
"lr_scheduler": {"scheduler": scheduler, "interval": "step", "frequency": 1},
}
setattr(LitImageClassifier, "configure_optimizers", configure_optimizers),
data = MNISTDataModule(batch_size=128)
config = ImageClassifierConfig(
encoder=ImageEncoderConfig(
image_shape=data.image_shape,
num_frequency_bands=32,
num_cross_attention_layers=2,
num_cross_attention_heads=1,
num_self_attention_blocks=3,
num_self_attention_layers_per_block=3,
first_cross_attention_layer_shared=False,
first_self_attention_block_shared=False,
dropout=0.1,
init_scale=0.1,
),
decoder=ClassificationDecoderConfig(
num_output_query_channels=128,
num_cross_attention_heads=1,
num_classes=data.num_classes,
dropout=0.1,
init_scale=0.1,
),
num_latents=32,
num_latent_channels=128,
)
if __name__ == "__main__":
lit_model = LitImageClassifier.create(config)
trainer = pl.Trainer(
accelerator="gpu",
devices=2,
max_epochs=30,
strategy=DDPStrategy(find_unused_parameters=False),
logger=TensorBoardLogger(save_dir="logs", name="img_clf"),
)
trainer.fit(lit_model, datamodule=data)