forked from lazyprogrammer/machine_learning_examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
bayesian_bandit.py
74 lines (55 loc) · 1.78 KB
/
bayesian_bandit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# From the course: Bayesin Machine Learning in Python: A/B Testing
# https://deeplearningcourses.com/c/bayesian-machine-learning-in-python-ab-testing
# https://www.udemy.com/bayesian-machine-learning-in-python-ab-testing
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import beta
NUM_TRIALS = 2000
BANDIT_PROBABILITIES = [0.2, 0.5, 0.75]
class Bandit(object):
def __init__(self, p):
self.p = p
self.a = 1
self.b = 1
def pull(self):
return np.random.random() < self.p
def sample(self):
return np.random.beta(self.a, self.b)
def update(self, x):
self.a += x
self.b += 1 - x
def plot(bandits, trial):
x = np.linspace(0, 1, 200)
for b in bandits:
y = beta.pdf(x, b.a, b.b)
plt.plot(x, y, label="real p: %.4f" % b.p)
plt.title("Bandit distributions after %s trials" % trial)
plt.legend()
plt.show()
def experiment():
bandits = [Bandit(p) for p in BANDIT_PROBABILITIES]
sample_points = [5,10,20,50,100,200,500,1000,1500,1999]
for i in range(NUM_TRIALS):
# take a sample from each bandit
bestb = None
maxsample = -1
allsamples = [] # let's collect these just to print for debugging
for b in bandits:
sample = b.sample()
allsamples.append("%.4f" % sample)
if sample > maxsample:
maxsample = sample
bestb = b
if i in sample_points:
print("current samples: %s" % allsamples)
plot(bandits, i)
# pull the arm for the bandit with the largest sample
x = bestb.pull()
# update the distribution for the bandit whose arm we just pulled
bestb.update(x)
if __name__ == "__main__":
experiment()