-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
668 lines (569 loc) · 23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
from __future__ import print_function
try:
import cPickle as pickle
except:
import pickle
from functools import reduce
import os
import time
import numpy as np
import tensorflow as tf
from six.moves import xrange
import loader
from wavegan import WaveGANGenerator, WaveGANDiscriminator
"""
Trains a ProducerGAN
"""
def train(fps, args):
with tf.name_scope('loader'):
x = loader.decode_extract_and_batch(
fps,
batch_size=args.train_batch_size,
slice_len=args.data_slice_len,
decode_fs=args.data_sample_rate,
decode_num_channels=args.data_num_channels,
decode_fast_wav=args.data_fast_wav,
decode_parallel_calls=4,
slice_randomize_offset=False if args.data_first_slice else True,
slice_first_only=args.data_first_slice,
slice_overlap_ratio=0. if args.data_first_slice else args.data_overlap_ratio,
slice_pad_end=True if args.data_first_slice else args.data_pad_end,
repeat=True,
shuffle=True,
shuffle_buffer_size=4096,
prefetch_size=args.train_batch_size * 4,
prefetch_gpu_num=args.data_prefetch_gpu_num)[:, :, 0]
# Make z vector
z = tf.random_uniform([args.train_batch_size, args.wavegan_latent_dim], -1., 1., dtype=tf.float32)
# Make generator
with tf.variable_scope('G'):
G_z = WaveGANGenerator(z, train=True, **args.wavegan_g_kwargs)
if args.wavegan_genr_pp:
with tf.variable_scope('pp_filt'):
G_z = tf.layers.conv1d(G_z, 1, args.wavegan_genr_pp_len, use_bias=False, padding='same')
G_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='G')
# Print G summary
print('-' * 80)
print('Generator vars')
nparams = 0
for v in G_vars:
v_shape = v.get_shape().as_list()
v_n = reduce(lambda x, y: x * y, v_shape)
nparams += v_n
print('{} ({}): {}'.format(v.get_shape().as_list(), v_n, v.name))
print('Total params: {} ({:.2f} MB)'.format(nparams, (float(nparams) * 4) / (1024 * 1024)))
# Summarize
tf.summary.audio('x', x, args.data_sample_rate)
tf.summary.audio('G_z', G_z, args.data_sample_rate)
G_z_rms = tf.sqrt(tf.reduce_mean(tf.square(G_z[:, :, 0]), axis=1))
x_rms = tf.sqrt(tf.reduce_mean(tf.square(x[:, :, 0]), axis=1))
tf.summary.histogram('x_rms_batch', x_rms)
tf.summary.histogram('G_z_rms_batch', G_z_rms)
tf.summary.scalar('x_rms', tf.reduce_mean(x_rms))
tf.summary.scalar('G_z_rms', tf.reduce_mean(G_z_rms))
# Make real discriminator
with tf.name_scope('D_x'), tf.variable_scope('D'):
D_x = WaveGANDiscriminator(x, **args.wavegan_d_kwargs)
D_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='D')
# Print D summary
print('-' * 80)
print('Discriminator vars')
nparams = 0
for v in D_vars:
v_shape = v.get_shape().as_list()
v_n = reduce(lambda x, y: x * y, v_shape)
nparams += v_n
print('{} ({}): {}'.format(v.get_shape().as_list(), v_n, v.name))
print('Total params: {} ({:.2f} MB)'.format(nparams, (float(nparams) * 4) / (1024 * 1024)))
print('-' * 80)
# Make fake discriminator
with tf.name_scope('D_G_z'), tf.variable_scope('D', reuse=True):
D_G_z = WaveGANDiscriminator(G_z, **args.wavegan_d_kwargs)
# Create loss
D_clip_weights = None
if args.wavegan_loss == 'dcgan':
fake = tf.zeros([args.train_batch_size], dtype=tf.float32)
real = tf.ones([args.train_batch_size], dtype=tf.float32)
G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=D_G_z,
labels=real
))
D_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=D_G_z,
labels=fake
))
D_loss += tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=D_x,
labels=real
))
D_loss /= 2.
elif args.wavegan_loss == 'lsgan':
G_loss = tf.reduce_mean((D_G_z - 1.) ** 2)
D_loss = tf.reduce_mean((D_x - 1.) ** 2)
D_loss += tf.reduce_mean(D_G_z ** 2)
D_loss /= 2.
elif args.wavegan_loss == 'wgan':
G_loss = -tf.reduce_mean(D_G_z)
D_loss = tf.reduce_mean(D_G_z) - tf.reduce_mean(D_x)
with tf.name_scope('D_clip_weights'):
clip_ops = []
for var in D_vars:
clip_bounds = [-.01, .01]
clip_ops.append(
tf.assign(
var,
tf.clip_by_value(var, clip_bounds[0], clip_bounds[1])
)
)
D_clip_weights = tf.group(*clip_ops)
elif args.wavegan_loss == 'wgan-gp':
G_loss = -tf.reduce_mean(D_G_z)
D_loss = tf.reduce_mean(D_G_z) - tf.reduce_mean(D_x)
alpha = tf.random_uniform(shape=[args.train_batch_size, 1, 1], minval=0., maxval=1.)
differences = G_z - x
interpolates = x + (alpha * differences)
with tf.name_scope('D_interp'), tf.variable_scope('D', reuse=True):
D_interp = WaveGANDiscriminator(interpolates, **args.wavegan_d_kwargs)
LAMBDA = 10
gradients = tf.gradients(D_interp, [interpolates])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1, 2]))
gradient_penalty = tf.reduce_mean((slopes - 1.) ** 2.)
D_loss += LAMBDA * gradient_penalty
else:
raise NotImplementedError()
tf.summary.scalar('G_loss', G_loss)
tf.summary.scalar('D_loss', D_loss)
# Create (recommended) optimizer
if args.wavegan_loss == 'dcgan':
G_opt = tf.train.AdamOptimizer(
learning_rate=2e-4,
beta1=0.5)
D_opt = tf.train.AdamOptimizer(
learning_rate=2e-4,
beta1=0.5)
elif args.wavegan_loss == 'lsgan':
G_opt = tf.train.RMSPropOptimizer(
learning_rate=1e-4)
D_opt = tf.train.RMSPropOptimizer(
learning_rate=1e-4)
elif args.wavegan_loss == 'wgan':
G_opt = tf.train.RMSPropOptimizer(
learning_rate=5e-5)
D_opt = tf.train.RMSPropOptimizer(
learning_rate=5e-5)
elif args.wavegan_loss == 'wgan-gp':
G_opt = tf.train.AdamOptimizer(
learning_rate=1e-4,
beta1=0.5,
beta2=0.9)
D_opt = tf.train.AdamOptimizer(
learning_rate=1e-4,
beta1=0.5,
beta2=0.9)
else:
raise NotImplementedError()
# Create training ops
G_train_op = G_opt.minimize(G_loss, var_list=G_vars, global_step=tf.train.get_or_create_global_step())
D_train_op = D_opt.minimize(D_loss, var_list=D_vars)
# Run training
with tf.train.MonitoredTrainingSession(
checkpoint_dir=args.train_dir,
save_checkpoint_secs=args.train_save_secs,
save_summaries_secs=args.train_summary_secs) as sess:
print('-' * 80)
print('Training has started. Please use \'tensorboard --logdir={}\' to monitor.'.format(args.train_dir))
counter = 0
while True:
# Train discriminator
for i in xrange(args.wavegan_disc_nupdates):
sess.run(D_train_op)
print("Ran D_train_op")
# Enforce Lipschitz constraint for WGAN
if D_clip_weights is not None:
sess.run(D_clip_weights)
print("Ran D_clip_weights")
# Train generator
sess.run(G_train_op)
print("Ran G_train_op")
counter += 1
print("Iteration: " + str(counter))
print("DONE TRAINING")
"""
Creates and saves a MetaGraphDef for simple inference
Tensors:
'samp_z_n' int32 []: Sample this many latent vectors
'samp_z' float32 [samp_z_n, latent_dim]: Resultant latent vectors
'z:0' float32 [None, latent_dim]: Input latent vectors
'flat_pad:0' int32 []: Number of padding samples to use when flattening batch to a single audio file
'G_z:0' float32 [None, slice_len, 1]: Generated outputs
'G_z_int16:0' int16 [None, slice_len, 1]: Same as above but quantizied to 16-bit PCM samples
'G_z_flat:0' float32 [None, 1]: Outputs flattened into single audio file
'G_z_flat_int16:0' int16 [None, 1]: Same as above but quantized to 16-bit PCM samples
Example usage:
import tensorflow as tf
tf.reset_default_graph()
saver = tf.train_old.import_meta_graph('infer.meta')
graph = tf.get_default_graph()
sess = tf.InteractiveSession()
saver.restore(sess, 'model.ckpt-10000')
z_n = graph.get_tensor_by_name('samp_z_n:0')
_z = sess.run(graph.get_tensor_by_name('samp_z:0'), {z_n: 10})
z = graph.get_tensor_by_name('G_z:0')
_G_z = sess.run(graph.get_tensor_by_name('G_z:0'), {z: _z})
"""
def infer(args):
infer_dir = os.path.join(args.train_dir, 'infer')
if not os.path.isdir(infer_dir):
os.makedirs(infer_dir)
# Subgraph that generates latent vectors
samp_z_n = tf.placeholder(tf.int32, [], name='samp_z_n')
samp_z = tf.random_uniform([samp_z_n, args.wavegan_latent_dim], -1.0, 1.0, dtype=tf.float32, name='samp_z')
# Input zo
z = tf.placeholder(tf.float32, [None, args.wavegan_latent_dim], name='z')
flat_pad = tf.placeholder(tf.int32, [], name='flat_pad')
# Execute generator
with tf.variable_scope('G'):
G_z = WaveGANGenerator(z, train=False, **args.wavegan_g_kwargs)
if args.wavegan_genr_pp:
with tf.variable_scope('pp_filt'):
G_z = tf.layers.conv1d(G_z, 1, args.wavegan_genr_pp_len, use_bias=False, padding='same')
G_z = tf.identity(G_z, name='G_z')
# Flatten batch
nch = int(G_z.get_shape()[-1])
G_z_padded = tf.pad(G_z, [[0, 0], [0, flat_pad], [0, 0]])
G_z_flat = tf.reshape(G_z_padded, [-1, nch], name='G_z_flat')
# Encode to int16
def float_to_int16(x, name=None):
x_int16 = x * 32767.
x_int16 = tf.clip_by_value(x_int16, -32767., 32767.)
x_int16 = tf.cast(x_int16, tf.int16, name=name)
return x_int16
G_z_int16 = float_to_int16(G_z, name='G_z_int16')
G_z_flat_int16 = float_to_int16(G_z_flat, name='G_z_flat_int16')
# Create saver
G_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='G')
global_step = tf.train.get_or_create_global_step()
saver = tf.train.Saver(G_vars + [global_step])
# Export graph
tf.train.write_graph(tf.get_default_graph(), infer_dir, 'infer.pbtxt')
# Export MetaGraph
infer_metagraph_fp = os.path.join(infer_dir, 'infer.meta')
tf.train.export_meta_graph(
filename=infer_metagraph_fp,
clear_devices=True,
saver_def=saver.as_saver_def())
# Reset graph (in case training afterwards)
tf.reset_default_graph()
"""
Generates a preview audio file every time a checkpoint is saved
"""
def preview(args):
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from scipy.io.wavfile import write as wavwrite
from scipy.signal import freqz
preview_dir = os.path.join(args.train_dir, 'preview')
if not os.path.isdir(preview_dir):
os.makedirs(preview_dir)
# Load graph
infer_metagraph_fp = os.path.join(args.train_dir, 'infer', 'infer.meta')
graph = tf.get_default_graph()
saver = tf.train.import_meta_graph(infer_metagraph_fp)
# Generate or restore z_i and z_o
z_fp = os.path.join(preview_dir, 'z.pkl')
if os.path.exists(z_fp):
with open(z_fp, 'rb') as f:
_zs = pickle.load(f)
else:
# Sample z
samp_feeds = {}
samp_feeds[graph.get_tensor_by_name('samp_z_n:0')] = args.preview_n
samp_fetches = {}
samp_fetches['zs'] = graph.get_tensor_by_name('samp_z:0')
with tf.Session() as sess:
_samp_fetches = sess.run(samp_fetches, samp_feeds)
_zs = _samp_fetches['zs']
# Save z
with open(z_fp, 'wb') as f:
pickle.dump(_zs, f)
# Set up graph for generating preview images
feeds = {}
feeds[graph.get_tensor_by_name('z:0')] = _zs
feeds[graph.get_tensor_by_name('flat_pad:0')] = int(args.data_sample_rate / 2)
fetches = {}
fetches['step'] = tf.train.get_or_create_global_step()
fetches['G_z'] = graph.get_tensor_by_name('G_z:0')
fetches['G_z_flat_int16'] = graph.get_tensor_by_name('G_z_flat_int16:0')
if args.wavegan_genr_pp:
fetches['pp_filter'] = graph.get_tensor_by_name('G/pp_filt/conv1d/kernel:0')[:, 0, 0]
# Summarize
G_z = graph.get_tensor_by_name('G_z_flat:0')
summaries = [
tf.summary.audio('preview', tf.expand_dims(G_z, axis=0), args.data_sample_rate, max_outputs=1)
]
fetches['summaries'] = tf.summary.merge(summaries)
summary_writer = tf.summary.FileWriter(preview_dir)
# PP Summarize
if args.wavegan_genr_pp:
pp_fp = tf.placeholder(tf.string, [])
pp_bin = tf.read_file(pp_fp)
pp_png = tf.image.decode_png(pp_bin)
pp_summary = tf.summary.image('pp_filt', tf.expand_dims(pp_png, axis=0))
# Loop, waiting for checkpoints
ckpt_fp = None
while True:
latest_ckpt_fp = tf.train.latest_checkpoint(args.train_dir)
if latest_ckpt_fp != ckpt_fp:
print('Preview: {}'.format(latest_ckpt_fp))
with tf.Session() as sess:
saver.restore(sess, latest_ckpt_fp)
_fetches = sess.run(fetches, feeds)
_step = _fetches['step']
preview_fp = os.path.join(preview_dir, '{}.wav'.format(str(_step).zfill(8)))
wavwrite(preview_fp, args.data_sample_rate, _fetches['G_z_flat_int16'])
summary_writer.add_summary(_fetches['summaries'], _step)
if args.wavegan_genr_pp:
w, h = freqz(_fetches['pp_filter'])
fig = plt.figure()
plt.title('Digital filter frequncy response')
ax1 = fig.add_subplot(111)
plt.plot(w, 20 * np.log10(abs(h)), 'b')
plt.ylabel('Amplitude [dB]', color='b')
plt.xlabel('Frequency [rad/sample]')
ax2 = ax1.twinx()
angles = np.unwrap(np.angle(h))
plt.plot(w, angles, 'g')
plt.ylabel('Angle (radians)', color='g')
plt.grid()
plt.axis('tight')
_pp_fp = os.path.join(preview_dir, '{}_ppfilt.png'.format(str(_step).zfill(8)))
plt.savefig(_pp_fp)
with tf.Session() as sess:
_summary = sess.run(pp_summary, {pp_fp: _pp_fp})
summary_writer.add_summary(_summary, _step)
print('Done')
ckpt_fp = latest_ckpt_fp
time.sleep(1)
"""
Computes inception score every time a checkpoint is saved
"""
def incept(args):
incept_dir = os.path.join(args.train_dir, 'incept')
if not os.path.isdir(incept_dir):
os.makedirs(incept_dir)
# Load GAN graph
gan_graph = tf.Graph()
with gan_graph.as_default():
infer_metagraph_fp = os.path.join(args.train_dir, 'infer', 'infer.meta')
gan_saver = tf.train.import_meta_graph(infer_metagraph_fp)
score_saver = tf.train.Saver(max_to_keep=1)
gan_z = gan_graph.get_tensor_by_name('z:0')
gan_G_z = gan_graph.get_tensor_by_name('G_z:0')[:, :, 0]
gan_step = gan_graph.get_tensor_by_name('global_step:0')
# Load or generate latents
z_fp = os.path.join(incept_dir, 'z.pkl')
if os.path.exists(z_fp):
with open(z_fp, 'rb') as f:
_zs = pickle.load(f)
else:
gan_samp_z_n = gan_graph.get_tensor_by_name('samp_z_n:0')
gan_samp_z = gan_graph.get_tensor_by_name('samp_z:0')
with tf.Session(graph=gan_graph) as sess:
_zs = sess.run(gan_samp_z, {gan_samp_z_n: args.incept_n})
with open(z_fp, 'wb') as f:
pickle.dump(_zs, f)
# Load classifier graph
incept_graph = tf.Graph()
with incept_graph.as_default():
incept_saver = tf.train.import_meta_graph(args.incept_metagraph_fp)
incept_x = incept_graph.get_tensor_by_name('x:0')
incept_preds = incept_graph.get_tensor_by_name('scores:0')
incept_sess = tf.Session(graph=incept_graph)
incept_saver.restore(incept_sess, args.incept_ckpt_fp)
# Create summaries
summary_graph = tf.Graph()
with summary_graph.as_default():
incept_mean = tf.placeholder(tf.float32, [])
incept_std = tf.placeholder(tf.float32, [])
summaries = [
tf.summary.scalar('incept_mean', incept_mean),
tf.summary.scalar('incept_std', incept_std)
]
summaries = tf.summary.merge(summaries)
summary_writer = tf.summary.FileWriter(incept_dir)
# Loop, waiting for checkpoints
ckpt_fp = None
_best_score = 0.
while True:
latest_ckpt_fp = tf.train.latest_checkpoint(args.train_dir)
if latest_ckpt_fp != ckpt_fp:
print('Incept: {}'.format(latest_ckpt_fp))
sess = tf.Session(graph=gan_graph)
gan_saver.restore(sess, latest_ckpt_fp)
_step = sess.run(gan_step)
_G_zs = []
for i in xrange(0, args.incept_n, 100):
_G_zs.append(sess.run(gan_G_z, {gan_z: _zs[i:i+100]}))
_G_zs = np.concatenate(_G_zs, axis=0)
_preds = []
for i in xrange(0, args.incept_n, 100):
_preds.append(incept_sess.run(incept_preds, {incept_x: _G_zs[i:i+100]}))
_preds = np.concatenate(_preds, axis=0)
# Split into k groups
_incept_scores = []
split_size = args.incept_n // args.incept_k
for i in xrange(args.incept_k):
_split = _preds[i * split_size:(i + 1) * split_size]
_kl = _split * (np.log(_split) - np.log(np.expand_dims(np.mean(_split, 0), 0)))
_kl = np.mean(np.sum(_kl, 1))
_incept_scores.append(np.exp(_kl))
_incept_mean, _incept_std = np.mean(_incept_scores), np.std(_incept_scores)
# Summarize
with tf.Session(graph=summary_graph) as summary_sess:
_summaries = summary_sess.run(summaries, {incept_mean: _incept_mean, incept_std: _incept_std})
summary_writer.add_summary(_summaries, _step)
# Save
if _incept_mean > _best_score:
score_saver.save(sess, os.path.join(incept_dir, 'best_score'), _step)
_best_score = _incept_mean
sess.close()
print('Done')
ckpt_fp = latest_ckpt_fp
time.sleep(1)
incept_sess.close()
if __name__ == '__main__':
import argparse
import glob
import sys
parser = argparse.ArgumentParser()
parser.add_argument('mode', type=str, choices=['train_old', 'preview', 'incept', 'infer'])
parser.add_argument('train_dir', type=str,
help='Training directory')
data_args = parser.add_argument_group('Data')
data_args.add_argument('--data_dir', type=str,
help='Data directory containing *only* audio files to load')
data_args.add_argument('--data_sample_rate', type=int,
help='Number of audio samples per second')
data_args.add_argument('--data_slice_len', type=int, choices=[16384, 32768, 65536],
help='Number of audio samples per slice (maximum generation length)')
data_args.add_argument('--data_num_channels', type=int,
help='Number of audio channels to generate (for >2, must match that of data)')
data_args.add_argument('--data_overlap_ratio', type=float,
help='Overlap ratio [0, 1) between slices')
data_args.add_argument('--data_first_slice', action='store_true', dest='data_first_slice',
help='If set, only use the first slice each audio example')
data_args.add_argument('--data_pad_end', action='store_true', dest='data_pad_end',
help='If set, use zero-padded partial slices from the end of each audio file')
data_args.add_argument('--data_normalize', action='store_true', dest='data_normalize',
help='If set, normalize the training examples')
data_args.add_argument('--data_fast_wav', action='store_true', dest='data_fast_wav',
help='If your data is comprised of standard WAV files (16-bit signed PCM or 32-bit float), use this flag to decode audio using scipy (faster) instead of librosa')
data_args.add_argument('--data_prefetch_gpu_num', type=int,
help='If nonnegative, prefetch examples to this GPU (Tensorflow device num)')
wavegan_args = parser.add_argument_group('ProducerGAN')
wavegan_args.add_argument('--wavegan_latent_dim', type=int,
help='Number of dimensions of the latent space')
wavegan_args.add_argument('--wavegan_kernel_len', type=int,
help='Length of 1D filter kernels')
wavegan_args.add_argument('--wavegan_dim', type=int,
help='Dimensionality multiplier for model of G and D')
wavegan_args.add_argument('--wavegan_batchnorm', action='store_true', dest='wavegan_batchnorm',
help='Enable batchnorm')
wavegan_args.add_argument('--wavegan_disc_nupdates', type=int,
help='Number of discriminator updates per generator update')
wavegan_args.add_argument('--wavegan_loss', type=str, choices=['dcgan', 'lsgan', 'wgan', 'wgan-gp'],
help='Which GAN loss to use')
wavegan_args.add_argument('--wavegan_genr_upsample', type=str, choices=['zeros', 'nn'],
help='Generator upsample strategy')
wavegan_args.add_argument('--wavegan_genr_pp', action='store_true', dest='wavegan_genr_pp',
help='If set, use post-processing filter')
wavegan_args.add_argument('--wavegan_genr_pp_len', type=int,
help='Length of post-processing filter for DCGAN')
wavegan_args.add_argument('--wavegan_disc_phaseshuffle', type=int,
help='Radius of phase shuffle operation')
train_args = parser.add_argument_group('Train')
train_args.add_argument('--train_batch_size', type=int,
help='Batch size')
train_args.add_argument('--train_save_secs', type=int,
help='How often to save model')
train_args.add_argument('--train_summary_secs', type=int,
help='How often to report summaries')
preview_args = parser.add_argument_group('Preview')
preview_args.add_argument('--preview_n', type=int,
help='Number of samples to preview')
incept_args = parser.add_argument_group('Incept')
incept_args.add_argument('--incept_metagraph_fp', type=str,
help='Inference model for inception score')
incept_args.add_argument('--incept_ckpt_fp', type=str,
help='Checkpoint for inference model')
incept_args.add_argument('--incept_n', type=int,
help='Number of generated examples to test')
incept_args.add_argument('--incept_k', type=int,
help='Number of groups to test')
parser.set_defaults(
data_dir=None,
data_sample_rate=16000,
data_slice_len=16384,
data_num_channels=1,
data_overlap_ratio=0.,
data_first_slice=False,
data_pad_end=False,
data_normalize=False,
data_fast_wav=False,
data_prefetch_gpu_num=0,
wavegan_latent_dim=100,
wavegan_kernel_len=25,
wavegan_dim=64,
wavegan_batchnorm=False,
wavegan_disc_nupdates=5,
wavegan_loss='wgan-gp',
wavegan_genr_upsample='zeros',
wavegan_genr_pp=False,
wavegan_genr_pp_len=512,
wavegan_disc_phaseshuffle=2,
train_batch_size=64,
train_save_secs=300,
train_summary_secs=120,
preview_n=32,
incept_metagraph_fp='./eval/inception/infer.meta',
incept_ckpt_fp='./eval/inception/best_acc-103005',
incept_n=5000,
incept_k=10)
args = parser.parse_args()
# Make train_old dir
if not os.path.isdir(args.train_dir):
os.makedirs(args.train_dir)
# Save args
with open(os.path.join(args.train_dir, 'args.txt'), 'w') as f:
f.write('\n'.join([str(k) + ',' + str(v) for k, v in sorted(vars(args).items(), key=lambda x: x[0])]))
# Make model kwarg dicts
setattr(args, 'wavegan_g_kwargs', {
'slice_len': args.data_slice_len,
'nch': args.data_num_channels,
'kernel_len': args.wavegan_kernel_len,
'dim': args.wavegan_dim,
'use_batchnorm': args.wavegan_batchnorm,
'upsample': args.wavegan_genr_upsample
})
setattr(args, 'wavegan_d_kwargs', {
'kernel_len': args.wavegan_kernel_len,
'dim': args.wavegan_dim,
'use_batchnorm': args.wavegan_batchnorm,
'phaseshuffle_rad': args.wavegan_disc_phaseshuffle
})
if args.mode == 'train_old':
fps = glob.glob(os.path.join(args.data_dir, '*'))
if len(fps) == 0:
raise Exception('Did not find any audio files in specified directory')
print('Found {} audio files in specified directory'.format(len(fps)))
infer(args)
train(fps, args)
elif args.mode == 'preview':
preview(args)
elif args.mode == 'incept':
incept(args)
elif args.mode == 'infer':
infer(args)
else:
raise NotImplementedError()