forked from twotwotwo/sorts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
radixsort_test.go
762 lines (670 loc) · 18.7 KB
/
radixsort_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
// Copyright 2009 The Go Authors.
// Copyright 2014-5 Randall Farmer.
// Copyright 2023 Rishabh Moudgil.
// All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sorts
import (
"bytes"
"encoding/binary"
"fmt"
"math/rand"
"sort"
"strconv"
"testing"
"github.com/stretchr/testify/assert"
)
// check the IsSorted checks with a type that will never look sorted
type unsortableInts struct{ IntSlice }
func (u unsortableInts) Less(i, j int) bool { return j&1 == 1 }
type unsortableUints struct{ UintSlice }
func (u unsortableUints) Less(i, j int) bool { return j&1 == 1 }
type unsortableStrings struct{ StringSlice }
func (u unsortableStrings) Less(i, j int) bool { return j&1 == 1 }
type unsortableBytes struct{ BytesSlice }
func (u unsortableBytes) Less(i, j int) bool { return j&1 == 1 }
// more unsortable types, but now it's detectably because Key disagrees with Less
type miskeyedInts struct{ IntSlice }
func (u miskeyedInts) Less(i, j int) bool { return u.IntSlice[j] < u.IntSlice[i] }
type miskeyedUints struct{ UintSlice }
func (u miskeyedUints) Less(i, j int) bool { return u.UintSlice[j] < u.UintSlice[i] }
type miskeyedStrings struct{ StringSlice }
func (u miskeyedStrings) Less(i, j int) bool { return u.StringSlice[j] < u.StringSlice[i] }
type miskeyedBytes struct{ BytesSlice }
func (u miskeyedBytes) Less(i, j int) bool {
return bytes.Compare(u.BytesSlice[j], u.BytesSlice[i]) == -1
}
func mustPanic(t *testing.T, name string, f func()) {
defer func() { _ = recover() }()
f()
t.Errorf("expected a panic on unsortable datatype %s", name)
}
func TestSortCheck(t *testing.T) {
// only the new code, not qSort, panics if it's wrong
defer SetQSortCutoff(SetQSortCutoff(1))
if !Checking() {
return
}
mustPanic(t, "unsortableInts", func() {
ByInt64(unsortableInts{IntSlice{1, 1, 1}})
})
mustPanic(t, "unsortableUints", func() {
ByUint64(unsortableUints{UintSlice{1, 1, 1}})
})
mustPanic(t, "unsortableStrings", func() {
ByString(unsortableStrings{StringSlice{"", "", ""}})
})
mustPanic(t, "unsortableBytes", func() {
ByBytes(unsortableBytes{BytesSlice{[]byte{}, []byte{}, []byte{}}})
})
mustPanic(t, "miskeyedInts", func() {
forceRadix(func() {
ByInt64(miskeyedInts{IntSlice{1, 2, 3}})
})
})
mustPanic(t, "miskeyedUints", func() {
forceRadix(func() {
ByUint64(miskeyedUints{UintSlice{1, 2, 3}})
})
})
mustPanic(t, "miskeyedStrings", func() {
forceRadix(func() {
ByString(miskeyedStrings{StringSlice{"a", "b", "c"}})
})
})
mustPanic(t, "miskeyedBytes", func() {
forceRadix(func() {
ByBytes(miskeyedBytes{BytesSlice{[]byte{'a'}, []byte{'b'}, []byte{'c'}}})
})
})
}
func TestFlip(t *testing.T) {
data1, expected1 := [...]int{1, 2, 3, 4, 5}, [...]int{5, 4, 3, 2, 1}
Flip(IntSlice(data1[:]))
if data1 != expected1 {
t.Errorf("Flip didn't flip!")
}
data2, expected2 := [...]int{1, 2}, [...]int{2, 1}
Flip(IntSlice(data2[:]))
if data2 != expected2 {
t.Errorf("Flip didn't flip!")
}
Flip(IntSlice(nil)) // just shouldn't panic
}
func TestEmpty(t *testing.T) {
Quicksort(IntSlice(nil))
IntSlice(nil).Sort()
UintSlice(nil).Sort()
StringSlice(nil).Sort()
BytesSlice(nil).Sort()
IntSlice(nil).Search(0)
StringSlice(nil).Search("")
BytesSlice(nil).Search([]byte(nil))
}
func TestTiny(t *testing.T) {
Quicksort(IntSlice([]int{1}))
IntSlice([]int{1}).Sort()
UintSlice([]uint{1}).Sort()
StringSlice([]string{""}).Sort()
BytesSlice([][]byte{nil}).Sort()
Quicksort(IntSlice([]int{1, 1}))
IntSlice([]int{1, 1}).Sort()
UintSlice([]uint{1, 1}).Sort()
StringSlice([]string{"", ""}).Sort()
BytesSlice([][]byte{nil, nil}).Sort()
}
func TestSortLarge_Random(t *testing.T) {
n := 1000000
if testing.Short() {
n /= 100
}
data := make([]int, n)
for i := 0; i < len(data); i++ {
data[i] = rand.Intn(100)
}
if IntsAreSorted(data) {
t.Fatalf("terrible rand.rand")
}
Ints(data)
if !IntsAreSorted(data) {
t.Errorf("sort didn't sort - 1M ints")
}
}
// RoundedKeyInt64s wraps sortutil.Int64Slice to return the same key for
// some distinct values, to test using Less for a tiebreaker when using
// int64 keys.
type RoundedKeyInt64s struct{ Int64Slice }
func (r RoundedKeyInt64s) Key(i int) int64 { return r.Int64Slice[i] / 10 }
// RoundedKeyUint64s wraps sortutil.Uint64Slice to return the same key for
// some distinct values, to test using Less for a tiebreaker when using
// uint64 keys.
type RoundedKeyUint64s struct{ Uint64Slice }
func (r RoundedKeyUint64s) Key(i int) uint64 { return r.Uint64Slice[i] / 10 }
// TruncatedKeyStrings wraps sortutil.StringSlice to truncate the value
// returned by Key, to test using Less for a tiebreaker when using string
// keys.
type TruncatedKeyStrings struct{ StringSlice }
func (r TruncatedKeyStrings) Key(i int) string { return r.StringSlice[i][:1] }
// TruncatedKeyBytes wraps sortutil.BytesSlice to truncate the value
// returned by Key, to test using Less for a tiebreaker when using []bytes
// keys.
type TruncatedKeyBytes struct{ BytesSlice }
func (r TruncatedKeyBytes) Key(i int) []byte { return r.BytesSlice[i][:1] }
func TestTiebreakEqualKeys(t *testing.T) {
n := 1000
// give radixsort as many chances to fail as possible
defer SetQSortCutoff(SetQSortCutoff(1))
data := make([]int64, n)
for i := 0; i < len(data); i++ {
data[i] = rand.Int63n(100)
}
if Int64sAreSorted(data) {
t.Errorf("no random test data")
}
ByInt64(RoundedKeyInt64s{Int64Slice(data)})
if !Int64sAreSorted(data) {
t.Errorf("sort didn't sort - 1K rounded ints")
}
uintData := make([]uint64, n)
for i := 0; i < len(uintData); i++ {
uintData[i] = uint64(rand.Int63n(100))
}
if Uint64sAreSorted(uintData) {
t.Errorf("no random test data")
}
ByUint64(RoundedKeyUint64s{Uint64Slice(uintData)})
if !Uint64sAreSorted(uintData) {
t.Errorf("sort didn't sort - 1K rounded uints")
}
stringData := make([]string, n)
for i := 0; i < len(stringData); i++ {
stringData[i] = strconv.Itoa(rand.Intn(100))
}
if StringsAreSorted(stringData) {
t.Errorf("no random test data")
}
ByString(TruncatedKeyStrings{StringSlice(stringData)})
if !StringsAreSorted(stringData) {
t.Errorf("sort didn't sort - 1K truncated strings")
}
bytesData := make([][]byte, n)
for i := 0; i < len(bytesData); i++ {
bytesData[i] = []byte(strconv.Itoa(rand.Intn(100)))
}
if BytesAreSorted(bytesData) {
t.Errorf("no random test data")
}
ByBytes(TruncatedKeyBytes{BytesSlice(bytesData)})
if !BytesAreSorted(bytesData) {
t.Errorf("sort didn't sort - 1K truncated []bytes")
}
}
func BenchmarkSortString1K(b *testing.B) {
b.StopTimer()
for i := 0; i < b.N; i++ {
data := make([]string, 1<<10)
for i := 0; i < len(data); i++ {
data[i] = strconv.Itoa(i ^ 0x2cc)
}
b.StartTimer()
Strings(data)
b.StopTimer()
}
}
func BenchmarkSortInt1K(b *testing.B) {
b.StopTimer()
for i := 0; i < b.N; i++ {
data := make([]int, 1<<10)
for i := 0; i < len(data); i++ {
data[i] = i ^ 0x2cc
}
b.StartTimer()
Ints(data)
b.StopTimer()
}
}
func BenchmarkSortInt64K(b *testing.B) {
b.StopTimer()
for i := 0; i < b.N; i++ {
data := make([]int, 1<<16)
for i := 0; i < len(data); i++ {
data[i] = i ^ 0xcccc
}
b.StartTimer()
Ints(data)
b.StopTimer()
}
}
const (
_Sawtooth = iota
_Rand
_Stagger
_Plateau
_Shuffle
_NDist
)
const (
_Copy = iota
_Reverse
_ReverseFirstHalf
_ReverseSecondHalf
_Sorted
_Dither
_NMode
)
type testingData struct {
desc string
t *testing.T
data []int
maxswap int // number of swaps allowed
ncmp, nswap int
}
func (d *testingData) Len() int { return len(d.data) }
func (d *testingData) Key(i int) int64 { return int64(d.data[i]) }
func (d *testingData) Less(i, j int) bool {
d.ncmp++
return d.data[i] < d.data[j]
}
func (d *testingData) Swap(i, j int) {
if d.nswap >= d.maxswap {
d.t.Errorf("%s: used %d swaps sorting slice of %d", d.desc, d.nswap, len(d.data))
d.t.FailNow()
}
d.nswap++
d.data[i], d.data[j] = d.data[j], d.data[i]
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func lg(n int) int {
i := 0
for 1<<uint(i) < n {
i++
}
return i
}
func testBentleyMcIlroy(t *testing.T, sort func(sort.Interface), maxswap func(int) int) {
sizes := []int{100, 1023, 1024, 1025}
if testing.Short() {
sizes = []int{100, 127, 128, 129}
}
dists := []string{"sawtooth", "rand", "stagger", "plateau", "shuffle"}
modes := []string{"copy", "reverse", "reverse1", "reverse2", "sort", "dither"}
var tmp1, tmp2 [1025]int
for _, n := range sizes {
for m := 1; m < 2*n; m *= 2 {
for dist := 0; dist < _NDist; dist++ {
j := 0
k := 1
data := tmp1[0:n]
for i := 0; i < n; i++ {
switch dist {
case _Sawtooth:
data[i] = i % m
case _Rand:
data[i] = rand.Intn(m)
case _Stagger:
data[i] = (i*m + i) % n
case _Plateau:
data[i] = min(i, m)
case _Shuffle:
if rand.Intn(m) != 0 {
j += 2
data[i] = j
} else {
k += 2
data[i] = k
}
}
}
mdata := tmp2[0:n]
for mode := 0; mode < _NMode; mode++ {
switch mode {
case _Copy:
for i := 0; i < n; i++ {
mdata[i] = data[i]
}
case _Reverse:
for i := 0; i < n; i++ {
mdata[i] = data[n-i-1]
}
case _ReverseFirstHalf:
for i := 0; i < n/2; i++ {
mdata[i] = data[n/2-i-1]
}
for i := n / 2; i < n; i++ {
mdata[i] = data[i]
}
case _ReverseSecondHalf:
for i := 0; i < n/2; i++ {
mdata[i] = data[i]
}
for i := n / 2; i < n; i++ {
mdata[i] = data[n-(i-n/2)-1]
}
case _Sorted:
for i := 0; i < n; i++ {
mdata[i] = data[i]
}
// Ints is known to be correct
// because mode Sort runs after mode _Copy.
Ints(mdata)
case _Dither:
for i := 0; i < n; i++ {
mdata[i] = data[i] + i%5
}
}
desc := fmt.Sprintf("n=%d m=%d dist=%s mode=%s", n, m, dists[dist], modes[mode])
d := &testingData{desc: desc, t: t, data: mdata[0:n], maxswap: maxswap(n)}
sort(d)
// Uncomment if you are trying to improve the number of compares/swaps.
//t.Logf("%s: ncmp=%d, nswp=%d", desc, d.ncmp, d.nswap)
// If we were testing C qsort, we'd have to make a copy
// of the slice and sort it ourselves and then compare
// x against it, to ensure that qsort was only permuting
// the data, not (for example) overwriting it with zeros.
//
// In go, we don't have to be so paranoid: since the only
// mutating method Sort can call is TestingData.swap,
// it suffices here just to check that the final slice is sorted.
if !IntsAreSorted(mdata) {
t.Errorf("%s: ints not sorted", desc)
t.Errorf("\t%v", mdata)
t.FailNow()
}
}
}
}
}
}
func byInt64Wrapper(d sort.Interface) {
ByInt64(d.(Int64Interface))
}
func TestSortBM(t *testing.T) {
testBentleyMcIlroy(t, byInt64Wrapper, func(n int) int { return n * lg(n) * 12 / 10 })
}
func TestManySortBM(t *testing.T) {
testBentleyMcIlroy(t, manySortWrapper, func(n int) int { return n * lg(n) * 12 / 10 })
}
func TestHeapsortBM(t *testing.T) {
testBentleyMcIlroy(t, Heapsort, func(n int) int { return n * lg(n) * 12 / 10 })
}
// TestBackshift checks that radix sorting still works on data that trips up
// guessIntShift because it varies in a high bit, but only in a value that
// guessIntShift sampling misses
func TestBackshift(t *testing.T) {
funnyData := [1e3]int{1: -1}
funny := IntSlice(funnyData[:])
if GuessIntShift(funny, len(funny)) > 0 {
panic("guessIntShift got smarter")
}
forceRadix(func() { multiSort(funnyData[:]) })
if !sort.IsSorted(funny) {
t.Errorf("backshift data didn't sort")
}
}
// TestFwdShift uses data that lets the radix sort shift past some bits in
// the middle; it might catch if it broke the sort.
func TestFwdShift(t *testing.T) {
// an upper bit varies, lower byte varies, but bytes in between don't
funnyData := []int{0x40000000, 23, 59, 38, 38, 6, 12, 9, 3, 4, 1, 49, 9, 63}
funny := IntSlice(funnyData)
forceRadix(func() { multiSort(funnyData) })
if !sort.IsSorted(funny) {
t.Errorf("forward-shift data didn't sort")
}
}
// TestBrokenPrefix uses string and byte data where *most* input shares a
// common prefix except for one value that breaks the pattern at each byte
// position. It's a bad case for the "everything was in one bucket"
// optimization, but we're merely looking for it not to barf (where barfing
// would be sort time exploding or data not sorting).
func TestBrokenPrefix(t *testing.T) {
src := [128]byte{}
src[64] = 1
data := [10000][]byte{}
for i := range data {
data[i] = src[:]
}
// last 64 entries have a 1 in a pseudorandom position, breaking the
// pattern
for i := 10000 - 64; i < 10000; i++ {
data[i] = src[64-((i*11)%64):]
}
forceRadix(BytesSlice(data[:]).Sort)
if !BytesAreSorted(data[:]) {
t.Errorf("broken-prefix data didn't sort")
}
srcStr := string(src[:])
dataStr := [10000]string{}
for i := range dataStr {
dataStr[i] = srcStr
}
for i := 10000 - 64; i < 10000; i++ {
data[i] = src[64-((i*11)%64):]
}
forceRadix(StringSlice(dataStr[:]).Sort)
if !StringsAreSorted(dataStr[:]) {
t.Errorf("broken-prefix data didn't sort")
}
}
// TestShifts uses integer data consisting of a 1 bit in a random position.
// It's like TestBrokenPrefix for integer data.
func TestShifts(t *testing.T) {
data := make([]uint64, 10000)
for i := range data {
data[i] = 1 << uint((i*19)%64)
}
forceRadix(Uint64Slice(data).Sort)
if !Uint64sAreSorted(data) {
t.Errorf("shifts data didn't sort")
}
}
// TestMaxProcs makes sure forcing a serial sort doesn't break everything.
func TestMaxProcs(t *testing.T) {
defer func(old int) { MaxProcs = old }(MaxProcs)
MaxProcs = 1
// this is TestLarge_Random
n := 1000000
if testing.Short() {
n /= 100
}
data := make([]int, n)
for i := 0; i < len(data); i++ {
data[i] = rand.Intn(100)
}
manySort(data)
if !IntsAreSorted(data) {
t.Errorf("serial sort failed")
}
}
// TestSortByLength uses data that only varies in how many \0 bytes values
// contain.
func TestSortByLength(t *testing.T) {
src := [128]byte{}
data := [10000][]byte{}
for i := range data {
data[i] = src[:(i*19)%128]
}
forceRadix(BytesSlice(data[:]).Sort)
if !BytesAreSorted(data[:]) {
t.Errorf("sort-by-length data didn't sort")
}
srcStr := string(src[:])
dataStr := [10000]string{}
for i := range dataStr {
dataStr[i] = srcStr[:(i*19)%128]
}
forceRadix(StringSlice(dataStr[:]).Sort)
if !StringsAreSorted(dataStr[:]) {
t.Errorf("sort-by-length data didn't sort")
}
}
var countOpsSizes = []int{1e2, 3e2, 1e3, 3e3, 1e4, 3e4, 1e5, 3e5, 1e6}
func countOps(t *testing.T, algo func(sort.Interface), name string) {
sizes := countOpsSizes
if testing.Short() {
sizes = sizes[:5]
}
if !testing.Verbose() {
t.Skip("Counting skipped as non-verbose mode.")
}
for _, n := range sizes {
td := testingData{
desc: name,
t: t,
data: make([]int, n),
maxswap: 1<<31 - 1,
}
for i := 0; i < n; i++ {
td.data[i] = rand.Intn(n / 5)
}
algo(&td)
t.Logf("%s %8d elements: %11d Swap, %10d Less", name, n, td.nswap, td.ncmp)
}
}
func TestCountSortOps(t *testing.T) { countOps(t, byInt64Wrapper, "Sort ") }
func bench(b *testing.B, size int, algo func(sort.Interface), name string) {
b.StopTimer()
data := make(IntSlice, size)
x := ^uint32(0)
for i := 0; i < b.N; i++ {
for n := size - 3; n <= size+3; n++ {
for i := 0; i < len(data); i++ {
x += x
x ^= 1
if int32(x) < 0 {
x ^= 0x88888eef
}
data[i] = int(x % uint32(n/5))
}
b.StartTimer()
algo(data)
b.StopTimer()
if !sort.IsSorted(data) {
b.Errorf("%s did not sort %d ints", name, n)
}
}
}
}
// This is based on the "antiquicksort" implementation by M. Douglas McIlroy.
// See http://www.cs.dartmouth.edu/~doug/mdmspe.pdf for more info.
type adversaryTestingData struct {
data []int
keys map[int]int
candidate int
}
func (d *adversaryTestingData) Len() int { return len(d.data) }
func (d *adversaryTestingData) Less(i, j int) bool {
if _, present := d.keys[i]; !present {
if _, present := d.keys[j]; !present {
if i == d.candidate {
d.keys[i] = len(d.keys)
} else {
d.keys[j] = len(d.keys)
}
}
}
if _, present := d.keys[i]; !present {
d.candidate = i
return false
}
if _, present := d.keys[j]; !present {
d.candidate = j
return true
}
return d.keys[i] >= d.keys[j]
}
func (d *adversaryTestingData) Swap(i, j int) {
d.data[i], d.data[j] = d.data[j], d.data[i]
}
func TestAdversary(t *testing.T) {
const size = 100
data := make([]int, size)
for i := 0; i < size; i++ {
data[i] = i
}
d := &adversaryTestingData{data, make(map[int]int), 0}
Quicksort(d) // This should degenerate to heapsort.
defer SetMinOffload(SetMinOffload(1))
d = &adversaryTestingData{data, make(map[int]int), 0}
Quicksort(d)
}
func BenchmarkSort1e2(b *testing.B) { bench(b, 1e2, byInt64Wrapper, "Sort") }
func BenchmarkSort1e4(b *testing.B) { bench(b, 1e4, byInt64Wrapper, "Sort") }
func BenchmarkSort1e6(b *testing.B) { bench(b, 1e6, byInt64Wrapper, "Sort") }
func TestByUint128(t *testing.T) {
rand := rand.New(rand.NewSource(42))
size := 130
uint128s := make(Uint128Slice, size)
for i := range uint128s {
uint128s[i] = Uint128{Hi: rand.Uint64(), Lo: rand.Uint64()}
}
uint128s.Sort()
for i := 1; i < len(uint128s); i++ {
assert.True(t, !uint128s.Less(i, i-1))
}
}
func FuzzByUint128(f *testing.F) {
f.Add([]byte("0000000000000000000000070000000000000000000000000"))
f.Fuzz(func(t *testing.T, b []byte) {
remainder := 0
bLen := len(b)
if bLen%16 != 0 {
remainder = ((bLen / 16) * 16) + 16 - bLen
}
if remainder != 0 {
r := make([]byte, remainder)
rand.Read(r)
b = append(b, r...)
}
uint128s := make(Uint128Slice, len(b)/16)
for i := range uint128s {
hi, lo := binary.LittleEndian.Uint64(b[i*16:]), binary.LittleEndian.Uint64(b[i*16+8:])
uint128s[i] = Uint128{Hi: hi, Lo: lo}
}
uint128s.Sort()
for i := 1; i < len(uint128s); i++ {
assert.True(t, !uint128s.Less(i, i-1))
}
})
}
func BenchmarkUint128(b *testing.B) {
size := 1_000_000
rand := rand.New(rand.NewSource(42))
uint128s := make(Uint128Slice, size)
for i := range uint128s {
uint128s[i] = Uint128{Hi: rand.Uint64(), Lo: rand.Uint64()}
}
b.Run("sort.Sort", func(b *testing.B) {
for i := 0; i < b.N; i++ {
b.StopTimer()
c := make(Uint128Slice, len(uint128s))
copy(c, uint128s)
b.StartTimer()
sort.Sort(c)
}
})
b.Run("Quicksort", func(b *testing.B) {
for i := 0; i < b.N; i++ {
b.StopTimer()
c := make(Uint128Slice, len(uint128s))
copy(c, uint128s)
b.StartTimer()
Quicksort(c)
}
})
b.Run("Radix", func(b *testing.B) {
for i := 0; i < b.N; i++ {
b.StopTimer()
c := make(Uint128Slice, len(uint128s))
copy(c, uint128s)
b.StartTimer()
c.Sort()
}
})
}