-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
89 lines (69 loc) · 2.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
import pandas as pd
from tqdm import tqdm
import torch
from torch.utils.data import Dataset, DataLoader
from pytorchtools import EarlyStopping
from model import Unet
import dataloader
bs = 256
length = 1250
epochs = 300
train1 = torch.utils.data.DataLoader(BPdatasetv2(4, train = True), batch_size=bs)
val1 = torch.utils.data.DataLoader(BPdatasetv2(4, val = True), batch_size=bs)
model = Unet((256,1,1250)).cuda()
path = 'model/ssl.pt'
checkpoint = torch.load(path)
pretrained_dict = {k: v for k, v in checkpoint['model'].items() if re.search('^e|^i', k)}
model_dict = model.state_dict()
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)
criterion = torch.nn.SmoothL1Loss()
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,milestones=[100,200], gamma=0.1)
scaler = torch.cuda.amp.GradScaler()
early_stopping = EarlyStopping(patience=100, verbose=True)
best_loss = 1000
for epoch in range(epochs):
model.train()
print('epochs {}/{} '.format(epoch+1,epochs))
running_loss = 0.0
running_loss_v = 0.0
for idx,(inputs, output) in tqdm(enumerate(train2),total=len(train2)):
inputs = inputs.cuda()
output = output.cuda()
optimizer.zero_grad()
with torch.cuda.amp.autocast():
pred = model(inputs)
loss = 0
for out in pred:
loss += criterion(pred, out)
scaler.scale(loss).backward()
running_loss += loss
scaler.step(optimizer)
scaler.update()
scheduler.step()
#VALIDATION
model.eval()
with torch.no_grad():
for idx,(inputs_v,labels_v) in tqdm(enumerate(val2),total=len(val2)):
inputs_v = inputs_v.cuda()
labels_v = labels_v.cuda()
outputs_v= model(inputs_v).cuda()
loss_v = criterion(outputs_v,labels_v)
running_loss_v += loss_v
path = 'final.pt'
if (running_loss_v/len(val2)) < best_loss:
best_loss = running_loss_v/len(val2)
out = torch.save({
'epoch': epoch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_dev_loss': best_loss,
'exp_dir':'model'
}, f=path)
print('loss : {:.4f} val_loss : {:.4f}'.format((running_loss/len(train2)),(running_loss_v/len(val2))))
early_stopping(running_loss_v/len(val2), model)
if early_stopping.early_stop:
print("Early stopping")
break