-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
65 lines (45 loc) · 2.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import json
import os
import shutil
import torch
import torch.optim as optim
from networks.EarthNetComplex import EarthNetComplex
from data.data_manager import DataManager
from trainer import Trainer
from utils.data_logs import save_logs_about
import utils.losses as loss_functions
def main():
config = json.load(open('./config.json'))
config['device'] = 'cuda' if torch.cuda.is_available() else 'cpu'
try:
os.mkdir(os.path.join(config['exp_path'], config['exp_name']))
except FileExistsError:
print("Director already exists! It will be overwritten!")
model = EarthNetComplex().to(config['device'])
model.apply(EarthNetComplex.init_weights)
# Save info about experiment
save_logs_about(os.path.join(config['exp_path'], config['exp_name']), json.dumps(config, indent=2))
shutil.copy(model.get_path(), os.path.join(config['exp_path'], config['exp_name']))
criterion = getattr(loss_functions, config['loss_function'])
optimizer = optim.Adam(model.parameters(), lr=config['lr'], weight_decay=config['weight_decay'])
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, config['lr_sch_step'], gamma=config['lr_sch_gamma'], last_epoch=-1)
data_manager = DataManager(config)
train_loader, validation_loader, test_loader = data_manager.get_train_eval_test_dataloaders()
trainer = Trainer(model, train_loader, validation_loader, criterion, optimizer, lr_scheduler, config)
trainer.train()
trainer.test_net(test_loader)
def test_net():
# Function made only to test a pretrained network.
config = json.load(open('./config.json'))
config['device'] = 'cuda' if torch.cuda.is_available() else 'cpu'
model = EarthNetComplex().to(config['device'])
checkpoint = torch.load(os.path.join(config['exp_path'], config['exp_name'], 'latest_checkpoint.pkl'),
map_location=config['device'])
model.load_state_dict(checkpoint['model_weights'])
criterion = getattr(loss_functions, config['loss_function'])
data_manager = DataManager(config)
_, _, test_loader = data_manager.get_train_eval_test_dataloaders()
trainer = Trainer(model, None, None, criterion, None, None, config)
trainer.test_net(test_loader)
if __name__ == "__main__":
main()