forked from geoflows/dclaw
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetrun.py
520 lines (372 loc) · 15.5 KB
/
setrun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
"""
Module to set up run time parameters for Clawpack.
The values set in the function setrun are then written out to data files
that will be read in by the Fortran code.
"""
import os, sys
import numpy as np
try:
CLAW = os.environ['CLAW']
except:
raise Exception("*** Must first set CLAW environment variable")
from clawpack.amrclaw.data import FlagRegion
from clawpack.geoclaw import fgout_tools
#------------------------------
def setrun(claw_pkg='dclaw'):
#------------------------------
"""
Define the parameters used for running Clawpack.
INPUT:
claw_pkg expected to be "geoclaw" for this setrun.
OUTPUT:
rundata - object of class ClawRunData
"""
from clawpack.clawutil import data
assert claw_pkg.lower() == 'dclaw', "Expected claw_pkg = 'dclaw'"
num_dim = 2
rundata = data.ClawRunData(claw_pkg, num_dim)
#------------------------------------------------------------------
# Problem-specific parameters to be written to setprob.data:
#------------------------------------------------------------------
#probdata = rundata.new_UserData(name='probdata',fname='setprob.data')
#probdata.add_param('variable_eta_init', True) # now in qinit info
#------------------------------------------------------------------
# Standard Clawpack parameters to be written to claw.data:
# (or to amr2ez.data for AMR)
#------------------------------------------------------------------
clawdata = rundata.clawdata # initialized when rundata instantiated
# Set single grid parameters first.
# See below for AMR parameters.
# ---------------
# Spatial domain:
# ---------------
# Number of space dimensions:
clawdata.num_dim = num_dim
# Lower and upper edge of computational domain:
clawdata.lower[0] = -3e3
clawdata.upper[0] = 3e3
clawdata.lower[1] = -3e3
clawdata.upper[1] = 3e3
# Number of grid cells: Coarsest grid
clawdata.num_cells[0] = 240
clawdata.num_cells[1] = 240
# ---------------
# Size of system:
# ---------------
# Number of equations in the system:
clawdata.num_eqn = 7
# Number of auxiliary variables in the aux array (initialized in setaux)
clawdata.num_aux = 10
# Index of aux array corresponding to capacity function, if there is one:
clawdata.capa_index = 0
# -------------
# Initial time:
# -------------
clawdata.t0 = 0.0
# Restart from checkpoint file of a previous run?
# If restarting, t0 above should be from original run, and the
# restart_file 'fort.chkNNNNN' specified below should be in
# the OUTDIR indicated in Makefile.
clawdata.restart = False # True to restart from prior results
clawdata.restart_file = ''
# -------------
# Output times:
#--------------
# Specify at what times the results should be written to fort.q files.
# Note that the time integration stops after the final output time.
# The solution at initial time t0 is always written in addition.
clawdata.output_style = 1
if clawdata.output_style==1:
# Output nout frames at equally spaced times up to tfinal:
clawdata.num_output_times = 10 #240
clawdata.tfinal = 100. #240.
clawdata.output_t0 = True # output at initial (or restart) time?
elif clawdata.output_style == 2:
# Specify a list of output times.
clawdata.output_times = [0.5, 1.0]
elif clawdata.output_style == 3:
# Output every iout timesteps with a total of ntot time steps:
clawdata.output_step_interval = 1
clawdata.total_steps = 3
clawdata.output_t0 = True
clawdata.output_format = 'ascii'
clawdata.output_q_components = 'all' # need all
clawdata.output_aux_components = 'none' # eta=h+B is in q
clawdata.output_aux_onlyonce = True # output aux arrays each frame
# ---------------------------------------------------
# Verbosity of messages to screen during integration:
# ---------------------------------------------------
# The current t, dt, and cfl will be printed every time step
# at AMR levels <= verbosity. Set verbosity = 0 for no printing.
# (E.g. verbosity == 2 means print only on levels 1 and 2.)
clawdata.verbosity = 1
# --------------
# Time stepping:
# --------------
# if dt_variable==1: variable time steps used based on cfl_desired,
# if dt_variable==0: fixed time steps dt = dt_initial will always be used.
clawdata.dt_variable = True
# Initial time step for variable dt.
# If dt_variable==0 then dt=dt_initial for all steps:
clawdata.dt_initial = 0.0001
# Max time step to be allowed if variable dt used:
clawdata.dt_max = 1e+99
# Desired Courant number if variable dt used, and max to allow without
# retaking step with a smaller dt:
# D-Claw requires CFL<0.5
clawdata.cfl_desired = 0.75
clawdata.cfl_max = 0.85
# Maximum number of time steps to allow between output times:
clawdata.steps_max = 5000
# ------------------
# Method to be used:
# ------------------
# Order of accuracy: 1 => Godunov, 2 => Lax-Wendroff plus limiters
clawdata.order = 2
# Use dimensional splitting? (not yet available for AMR)
clawdata.dimensional_split = 'unsplit'
# For unsplit method, transverse_waves can be
# 0 or 'none' ==> donor cell (only normal solver used)
# 1 or 'increment' ==> corner transport of waves
# 2 or 'all' ==> corner transport of 2nd order corrections too
clawdata.transverse_waves = 2
# Number of waves in the Riemann solution:
clawdata.num_waves = 5
# List of limiters to use for each wave family:
# Required: len(limiter) == num_waves
# Some options:
# 0 or 'none' ==> no limiter (Lax-Wendroff)
# 1 or 'minmod' ==> minmod
# 2 or 'superbee' ==> superbee
# 3 or 'mc' ==> MC limiter
# 4 or 'vanleer' ==> van Leer
clawdata.limiter = [4, 4, 4, 4, 4] # TODO VERIFY THAT 4 in old and new are the same
clawdata.use_fwaves = True # True ==> use f-wave version of algorithms
# TODO This is not in old setrun.py
# Source terms splitting:
# src_split == 0 or 'none' ==> no source term (src routine never called)
# src_split == 1 or 'godunov' ==> Godunov (1st order) splitting used,
# src_split == 2 or 'strang' ==> Strang (2nd order) splitting used, not recommended.
clawdata.source_split = 'godunov'
# --------------------
# Boundary conditions:
# --------------------
# Number of ghost cells (usually 2)
clawdata.num_ghost = 2
# Choice of BCs at xlower and xupper:
# 0 => user specified (must modify bcN.f to use this option)
# 1 => extrapolation (non-reflecting outflow)
# 2 => periodic (must specify this at both boundaries)
# 3 => solid wall for systems where q(2) is normal velocity
clawdata.bc_lower[0] = 'extrap'
clawdata.bc_upper[0] = 'extrap'
clawdata.bc_lower[1] = 'extrap'
clawdata.bc_upper[1] = 'extrap'
# --------------
# Checkpointing:
# --------------
# Specify when checkpoint files should be created that can be
# used to restart a computation.
# negative checkpoint_style means alternate between aaaaa and bbbbb files
# so that at most 2 checkpoint files exist at any time, useful when
# doing frequent checkpoints of large problems.
clawdata.checkpt_style = 0
if clawdata.checkpt_style == 0:
# Do not checkpoint at all
pass
elif clawdata.checkpt_style == 1:
# Checkpoint only at tfinal.
pass
elif abs(clawdata.checkpt_style) == 2:
# Specify a list of checkpoint times.
clawdata.checkpt_times = 3600.*np.arange(1,16,1)
elif abs(clawdata.checkpt_style) == 3:
# Checkpoint every checkpt_interval timesteps (on Level 1)
# and at the final time.
clawdata.checkpt_interval = 5
# ---------------
# AMR parameters:
# ---------------
amrdata = rundata.amrdata
# max number of refinement levels:
amrdata.amr_levels_max = 2
# List of refinement ratios at each level (length at least mxnest-1)
# dx = dy = 2', 10", 2", 1/3":
amrdata.refinement_ratios_x = [2,2]
amrdata.refinement_ratios_y = [2,2]
amrdata.refinement_ratios_t = [2,2]
# Specify type of each aux variable in amrdata.auxtype.
# This must be a list of length maux, each element of which is one of:
# 'center', 'capacity', 'xleft', or 'yleft' (see documentation).
amrdata.aux_type = [
"center",
"center",
"yleft",
"center",
"center",
"center",
"center",
"center",
"center",
"center",
]
# Flag using refinement routine flag2refine rather than richardson error
amrdata.flag_richardson = False # use Richardson?
amrdata.flag2refine = True
# steps to take on each level L between regriddings of level L+1:
amrdata.regrid_interval = 3
# width of buffer zone around flagged points:
# (typically the same as regrid_interval so waves don't escape):
amrdata.regrid_buffer_width = 2
# clustering alg. cutoff for (# flagged pts) / (total # of cells refined)
# (closer to 1.0 => more small grids may be needed to cover flagged cells)
amrdata.clustering_cutoff = 0.700000
# print info about each regridding up to this level:
amrdata.verbosity_regrid = 1
# ---------------
# Regions:
# ---------------
#rundata.regiondata.regions = []
# to specify regions of refinement append lines of the form
# [minlevel,maxlevel,t1,t2,x1,x2,y1,y2]
# NO OLD STYLE REGIONS USED HERE
# ---------------
# NEW flagregions
# ---------------
flagregions = rundata.flagregiondata.flagregions # initialized to []
# now append as many flagregions as desired to this list:
# ---------------
# Gauges:
# ---------------
# for gauges append lines of the form [gaugeno, x, y, t1, t2]
rundata.gaugedata.gauges = []
# Set GeoClaw specific runtime parameters.
try:
geo_data = rundata.geo_data
except:
print("*** Error, this rundata has no geo_data attribute")
raise AttributeError("Missing geo_data attribute")
# == Physics ==
geo_data.gravity = 9.81
geo_data.coordinate_system = 1
geo_data.earth_radius = 6367.5e3
# == Forcing Options
geo_data.coriolis_forcing = False
# == Algorithm and Initial Conditions ==
geo_data.sea_level = 50.0
geo_data.dry_tolerance = 1.e-3
geo_data.friction_forcing = True # TODO change?
geo_data.manning_coefficient =.025
geo_data.friction_depth = 1e6
# Refinement settings
refinement_data = rundata.refinement_data
refinement_data.variable_dt_refinement_ratios = True
refinement_data.wave_tolerance = 0.01
# == settopo.data values ==
topofiles = rundata.topo_data.topofiles
# for topography, append lines of the form
# [topotype, fname]
topofiles.append([3, 'basal_topo.tt3'])
# == setdtopo.data values ==
dtopo_data = rundata.dtopo_data
# == setqinit.data values ==
qinitdclaw_data = rundata.qinitdclaw_data # initialized when rundata instantiated
etafile = 'surface_topo.tt3'
qinitdclaw_data.qinitfiles.append([3, 8, 1, 2, etafile])
mfile = 'mass_frac.tt3'
#mfile = 'mass_frac0.tt3' # with m0 = 0 below
qinitdclaw_data.qinitfiles.append([3, 4, 1, 2, mfile])
#hfile = 'landslide_depth.tt3'
#qinitdclaw_data.qinitfiles.append([3, 1, 1, 2, hfile])
# == setauxinit.data values ==
#auxinitdclaw_data = rundata.auxinitdclaw_data # initialized when rundata instantiated
# == fgmax.data values ==
#fgmax_files = rundata.fgmax_data.fgmax_files
# for fixed grids append to this list names of any fgmax input files
# == setdclaw.data values ==
dclaw_data = rundata.dclaw_data # initialized when rundata instantiated
dclaw_data.c1 = 1.0 # do we want to remove this?
dclaw_data.rho_f = 1000.0
dclaw_data.rho_s = 2700.0
dclaw_data.phi_bed = 32.0
dclaw_data.theta_input = 0.0
dclaw_data.mu = 0.005
dclaw_data.m0 = 0.63
#dclaw_data.m0 = 0. # pure water
dclaw_data.m_crit = 0.64
dclaw_data.kappita = 1.e-10
#dclaw_data.kappita_diff = 1
#dclaw_data.chi_init_val=0.5 # not currently used.
dclaw_data.alpha_c = 0.05
dclaw_data.alpha_seg = 0.0
#dclaw_data.phi_seg_coeff = 0.0
dclaw_data.delta = 0.001
dclaw_data.bed_normal = 0
dclaw_data.entrainment = 0
dclaw_data.entrainment_rate = 0.0
dclaw_data.sigma_0 = 1.0e3
#dclaw_data.mom_autostop = True
#dclaw_data.momlevel = 1
#dclaw_data.mom_perc = 0.0
# == pinitdclaw.data values ==
pinitdclaw_data = rundata.pinitdclaw_data # initialized when rundata instantiated
pinitdclaw_data.init_ptype = 0 # hydrostatic (-1 ==> zero everywhere)
pinitdclaw_data.init_pmax_ratio = 0.00e0
pinitdclaw_data.init_ptf = 0.0
pinitdclaw_data.init_ptf2 = 0.0
# == flowgrades.data values ==
flowgrades_data = rundata.flowgrades_data # initialized when rundata instantiated
flowgrades_data.flowgrades = []
# for using flowgrades for refinement append lines of the form
# [flowgradevalue, flowgradevariable, flowgradetype, flowgrademinlevel]
# where:
# flowgradevalue: floating point relevant flowgrade value for following measure:
# flowgradevariable: 1=depth, 2= momentum, 3 = sign(depth)*(depth+topo) (0 at sealevel or dry land).
# flowgradetype: 1 = norm(flowgradevariable), 2 = norm(grad(flowgradevariable))
# flowgrademinlevel: refine to at least this level if flowgradevalue is exceeded.
#flowgrades_data.keep_fine = True
#flowgrades_data.flowgrades.append([1.0e-6, 2, 1, 1])
#flowgrades_data.flowgrades.append([1.0e-6, 1, 1, 1])
# == fgout_grids.data values ==
# NEW IN v5.9.0
# Set rundata.fgout_data.fgout_grids to be a list of
# objects of class clawpack.geoclaw.fgout_tools.FGoutGrid:
fgout_grids = rundata.fgout_data.fgout_grids # empty list initially
fgout = fgout_tools.FGoutGrid()
fgout.fgno = 1
fgout.point_style = 2 # will specify a 2d grid of points
#fgout.output_format = 'binary32' # 4-byte, float32
fgout.output_format = 'ascii' # 4-byte, float32
fgout.nx = 300
fgout.ny = 300
fgout.x1 = 0. # specify edges (fgout pts will be cell centers)
fgout.x2 = 3e3
fgout.y1 = 0.
fgout.y2 = 3e3
fgout.tstart = 0.
fgout.tend = 100.
fgout.nout = 101
fgout.q_out_vars = [1,4,8]
fgout_grids.append(fgout) # written to fgout_grids.data
# ----- For developers -----
# Toggle debugging print statements:
amrdata.dprint = False # print domain flags
amrdata.eprint = False # print err est flags
amrdata.edebug = False # even more err est flags
amrdata.gprint = False # grid bisection/clustering
amrdata.nprint = False # proper nesting output
amrdata.pprint = False # proj. of tagged points
amrdata.rprint = False # print regridding summary
amrdata.sprint = False # space/memory output
amrdata.tprint = False # time step reporting each level
amrdata.uprint = False # update/upbnd reporting
amrdata.max1d = 300
# More AMR parameters can be set -- see the defaults in pyclaw/data.py
return rundata
# end of function setrun
# ----------------------
if __name__ == '__main__':
# Set up run-time parameters and write all data files.
import sys
rundata = setrun(*sys.argv[1:])
rundata.write()