-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathindex.html
349 lines (347 loc) · 21.9 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Modal Logic Playground</title>
<link rel="stylesheet" href="//fonts.googleapis.com/css?family=Open+Sans:300,400,700">
<link rel="stylesheet" href="lib/bootstrap.min.css">
<link rel="stylesheet" href="css/app.css">
</head>
<body>
<div id="page-container">
<a href="https://github.com/rkirsling/modallogic"><img class="github-link" src="img/blacktocat-32.png" title="Fork me on GitHub"></a>
<h1>Modal Logic Playground</h1>
<section id="app">
<div id="mode-select" class="btn-group">
<button class="btn btn-primary active" onclick="setAppMode(MODE.EDIT)">
<i class="icon-pencil icon-white"></i> Edit Model
</button>
<button class="btn btn-primary" onclick="setAppMode(MODE.EVAL)">
<i class="icon-eye-open icon-white"></i> Evaluate Formula
</button>
</div>
<div id="model-link">
<button class="btn btn-inverse" onclick="showLinkDialog()">Link to Current Model</button>
</div>
<div id="app-body">
<div class="panel tab-content">
<div id="edit-pane" class="tab-pane active">
<div class="var-count">
Number of propositional variables:
<div class="btn-group">
<button class="btn" onclick="setVarCount(1)">1</button>
<button class="btn active" onclick="setVarCount(2)">2</button>
<button class="btn" onclick="setVarCount(3)">3</button>
<button class="btn" onclick="setVarCount(4)">4</button>
<button class="btn" onclick="setVarCount(5)">5</button>
</div>
</div>
<div class="alert alert-info">
<div class="selected-node-id">No state selected</div>
<table class="propvars inactive">
<tbody>
<tr class=""><td class="var-name">p:</td><td class="var-value"><div class="btn-group">
<button class="btn btn-small btn-success" onclick="setVarForSelectedNode(0,true)">True</button>
<button class="btn btn-small btn-danger" onclick="setVarForSelectedNode(0,false)">False</button>
</div></td></tr>
<tr class=""><td class="var-name">q:</td><td class="var-value"><div class="btn-group">
<button class="btn btn-small btn-success" onclick="setVarForSelectedNode(1,true)">True</button>
<button class="btn btn-small btn-danger" onclick="setVarForSelectedNode(1,false)">False</button>
</div></td></tr>
<tr class="inactive"><td class="var-name">r:</td><td class="var-value"><div class="btn-group">
<button class="btn btn-small btn-success" onclick="setVarForSelectedNode(2,true)">True</button>
<button class="btn btn-small btn-danger" onclick="setVarForSelectedNode(2,false)">False</button>
</div></td></tr>
<tr class="inactive"><td class="var-name">s:</td><td class="var-value"><div class="btn-group">
<button class="btn btn-small btn-success" onclick="setVarForSelectedNode(3,true)">True</button>
<button class="btn btn-small btn-danger" onclick="setVarForSelectedNode(3,false)">False</button>
</div></td></tr>
<tr class="inactive"><td class="var-name">t:</td><td class="var-value"><div class="btn-group">
<button class="btn btn-small btn-success" onclick="setVarForSelectedNode(4,true)">True</button>
<button class="btn btn-small btn-danger" onclick="setVarForSelectedNode(4,false)">False</button>
</div></td></tr>
</tbody>
</table>
</div>
<div class="instructions">
<ul class="unstyled">
<li>Click in the open space to <strong>add a state</strong></li>
<li>Drag between states to <strong>add a transition</strong></li>
<li>Ctrl-drag a state to <strong>move</strong> graph layout</li>
<li>Click a state or a transition to <strong>select</strong> it</li>
<li>
When a state is selected:
<ul>
<li><strong>R</strong> toggles reflexivity</li>
<li><strong>Delete</strong> removes the state</li>
</ul>
</li>
<li>
When a transition is selected:
<ul>
<li><strong>L</strong>(eft), <strong>R</strong>(ight), <strong>B</strong>(oth) change direction</li>
<li><strong>Delete</strong> removes the transition</li>
</ul>
</li>
</ul>
</div>
</div>
<div id="eval-pane" class="tab-pane">
<div class="eval-input">
Enter a formula:
<input type="text" placeholder="e.g., (p -> []p)">
<button class="btn btn-block" onclick="evaluateFormula()">Evaluate</button>
</div>
<div class="eval-output inactive">
</div>
<div class="instructions">
<ul class="unstyled">
<li>
When entering a formula:
<ul>
<li>use <code>~A</code> for $\lnot{}A$</li>
<li>use <code>[]A</code> for $\Box{}A$</li>
<li>use <code><>A</code> for $\Diamond{}A$</li>
<li>use <code>(A & B)</code> for $(A\land{}B)$</li>
<li>use <code>(A | B)</code> for $(A\lor{}B)$</li>
<li>use <code>(A -> B)</code> for $(A\rightarrow{}B)$</li>
<li>use <code>(A <-> B)</code> for $(A\leftrightarrow{}B)$</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
<div class="graph"></div>
<div class="current-formula inactive"></div>
</div>
</section>
<section id="whatis">
<h2>So what's modal logic, anyway?</h2>
<p>
<strong>Modal logic</strong> is a type of symbolic logic for capturing inferences about <strong>necessity</strong> and <strong>possibility</strong>.
As with other logical systems, the theory lies at the intersection of mathematics and philosophy, while important applications are found within computer science and linguistics.
</p>
<p>
This app is a graphical semantic calculator for a specific kind of modal logic, <strong>modal propositional logic</strong>, which extends propositional logic but lacks quantifiers (<abbr title="'for all', universal quantifier">∀</abbr> and <abbr title="'there exists', existential quantifier">∃</abbr>).
Let's take a whirlwind tour.
</p>
<h3>From propositional logic...</h3>
<p>
To start out, let's briefly recall the language and semantics of propositional logic, i.e., connectives and truth tables.<sup><abbr title="To keep things simple, we won't worry about syntactic matters like axiomatization and deduction here.">[1]</abbr></sup>
<br>The usual connectives are the following:
</p>
<table class="table table-striped connective-table">
<thead>
<tr><th>Symbol</th><th>Read as</th><th>Operation</th><th>Natural language example<sup><abbr title="The examples here are purely for illustration. In a natural language such as English, 'if' often does not correspond to logical implication; likewise for the other connectives.">[2]</abbr></sup></th></tr>
</thead>
<tbody>
<tr><td>$\lnot$</td><td>'not'</td><td>negation</td><td>It is <strong>not</strong> raining.</td></tr>
<tr><td>$\land$</td><td>'and'</td><td>conjunction</td><td>It is snowing <strong>and</strong> it is cold.</td></tr>
<tr><td>$\lor$</td><td>'or'</td><td>disjunction</td><td>It is raining <strong>or</strong> it is cold.</td></tr>
<tr><td>$\rightarrow$</td><td>'if...(then)'</td><td>implication</td><td><strong>If</strong> it is snowing, (<strong>then</strong>) it is cold.</td></tr>
<tr><td>$\leftrightarrow$</td><td>'iff'</td><td>equivalence</td><td>3 × 2 = 6 <strong>if and only if</strong> 3 + 3 = 6.</td></tr>
</tbody>
</table>
<p>
A typical (long-form) truth table would look something like this (using 0 for false and 1 for true):
</p>
<table class="table table-striped truth-table">
<thead>
<tr><th>$p$</th><th>$q$</th><th>$(q\rightarrow{}p)$</th><th>$(p\rightarrow{}(q\rightarrow{}p))$</th></tr>
</thead>
<tbody>
<tr><td>0</td><td>0</td><td>1</td><td>1</td></tr>
<tr><td>0</td><td>1</td><td>0</td><td>1</td></tr>
<tr><td>1</td><td>0</td><td>1</td><td>1</td></tr>
<tr><td>1</td><td>1</td><td>1</td><td>1</td></tr>
</tbody>
</table>
<p>
So once we've fixed a truth value for each of the propositional variables, the truth value of any formula using those variables is deterministic.
</p>
<h3>...to modal propositional logic</h3>
<p>
Now, in modal logic, we add two new unary connectives to our familiar language:
</p>
<table class="table table-striped connective-table">
<thead>
<tr><th>Symbol</th><th>Read as</th><th>Operation</th><th>Natural language example<sup><abbr title="The examples here are purely for illustration. In a natural language such as English, 'if' often does not correspond to logical implication; likewise for the other connectives.">[2]</abbr></sup></th></tr>
</thead>
<tbody>
<tr><td>$\Box$</td><td>'box'</td><td>necessity</td><td>It <strong>must</strong> be cold outside.</td></tr>
<tr><td>$\Diamond$</td><td>'diamond'</td><td>possibility</td><td>It <strong>may</strong> be snowing.</td></tr>
</tbody>
</table>
<p>
Semantically, these modal connectives are interpreted with respect to <strong>possible worlds</strong>.
We can conceive of possible worlds in various ways, depending on what we're interested in modelling.
On the one hand, possible worlds might be hypothetical 'alternate universes': there is the 'actual world', the way things really are at the present moment, as well as an infinity of other 'worlds' which differ in ways both subtle (such as a world where my pen is simply on the opposite side of my desk) and dramatic (such as a world in which dinosaurs still roam Earth in 2013 CE).
Alternatively, possible worlds might be the various states of a computer, a computer program, or another system which evolves over time.
</p>
<p>
Regardless, if we have a proposition $p$ and current world $w$:
</p>
<div class="well">
<ul>
<li>$\Box{}p$ holds ($p$ is <strong>necessary</strong>) just when $p$ is true in all worlds accessible from $w$</li>
<li>$\Diamond{}p$ holds ($p$ is <strong>possible</strong>) just when $p$ is true in at least one world accessible from $w$</li>
</ul>
</div>
<p>
What does it mean for a world to be 'accessible'? The clearest example is surely that of a computer: an 'accessible' state is simply a successor state, one that is immediately reachable from the current state.
As such, the set of all possible worlds isn't just an unstructured mess, but is ordered by an <strong>accessibility relation</strong> that says which worlds we can get to from which others.
</p>
<div class="example">
<p>
Let's illustrate this further with an example from linguistics.
When one speaks of what may or must be so, we can view this as talking about what is true in some or all possible worlds.
Yet we're seldom concerned with every single possible world at once: when conversing about the current weather, things like pens and dinosaurs are typically far from one's mind.
Rather, we're only concerned with a relevant subset of these possibilities—just those worlds which are accessible from the actual world via some implicit relation.
</p>
<p>
The English sentences below show three kinds of accessibility relations at work:
</p>
<table class="table table-striped relation-table">
<thead>
<tr><th>Example sentence</th><th>Modality type</th><th>Accessible worlds</th></tr>
</thead>
<tbody>
<tr><td>It <strong>must</strong> have rained overnight.</td><td>epistemic</td><td>worlds consistent with one's knowledge</td></tr>
<tr><td>You <strong>must</strong> arrive before noon.</td><td>deontic</td><td>worlds consistent with one's obligations</td></tr>
<tr><td>A triangle <strong>must</strong> have three vertices.</td><td>alethic</td><td>worlds consistent with logic (= all worlds)</td></tr>
</tbody>
</table>
<p>
These sentences might be represented as $\Box{}p$, $\Box{}q$, and $\Box{}r$, but the box operator has a noticeably different interpretation in each case.
</p>
<p>
In the first case, we can imagine someone who, upon leaving their house in the morning, notices that the sidewalk is wet.
Based on this observation, they conclude that it has rained overnight.
Here, the worlds under consideration are just those which are consistent with the speaker's knowledge, in particular, their observation of the sidewalk.
Thus the box means something like, 'Given what is known, it must be the case that...'.
This 'knowledge-based' interpretation of the modal operators is known as <strong>epistemic</strong> modality.
</p>
<p>
The second sentence might be uttered by airport staff to inform a passenger of the time that their flight boards.
In this case, the relevant worlds are those consistent with the passenger's obligations, namely, to get to their airplane punctually.
The box here means, 'Given what is obligated, it must be the case that...'.
This 'obligation-based' interpretation of the modal operators is known as <strong>deontic</strong> modality.
</p>
<p>
Finally, suppose that we remove all restrictions and let the modal operators range over every single possible world at once.
But we've talked about the infinity of possible worlds—what could they possibly all have in common?
One thing only: logical consistency.
Under this so-called <strong>alethic</strong> modality, the box now means, 'It is logically necessary that...'.
This interpretation may not be commonplace in daily conversation, but is useful for discussing mathematics, as in the third sentence: by definition, a triangle has three vertices, otherwise it wouldn't be a triangle!
</p>
</div>
<p>
Conveniently, we can view possible world semantics as an extension of truth tables.
In propositional logic, we only had to fix a truth value for each propositional variable once, but in modal logic, each propositional variable can take a different truth value at each possible world.
Even when two worlds have the same truth assignment, formulas with $\Box$ or $\Diamond$ might have a different truth value in each world, since the worlds accessible from each may not be the same.
Thus we might say that each possible world "has its own truth table".
A complete assignment of truth values to each variable at each world is known as a <strong>valuation</strong>.
</p>
<p>
Altogether, a set of possible worlds, an accessibility relation, and a valuation form a semantic model for modal logic, known as a <strong>Kripke model</strong>.
A Kripke model can be visualized as a directed graph, where nodes represent worlds, the set of edges represents the accessibility relation, and the valuation is indicated by annotating each node with its truth assignment.
</p>
<div class="example">
<p>
As a culminating example, let's take a look at the following graph, which happens to be the initial model for the app:
</p>
<div class="well svg-well">
<svg class="static" width="350" height="50">
<defs>
<marker id="end-arrow" viewBox="0 -5 10 10" refX="6" markerWidth="3" markerHeight="3" orient="auto">
<path d="M0,-5L10,0L0,5" fill="#000"></path>
</marker>
</defs>
<g>
<path class="link" marker-end="url(#end-arrow)" d="M37,30L158,30"></path>
<path class="link" marker-end="url(#end-arrow)" d="M187,30L308,30"></path>
</g>
<g>
<g transform="translate(25,30)">
<circle class="node" r="12" style="fill: #1f77b4; stroke: #15537d;"></circle>
<text x="0" y="4" class="id">0</text>
<text x="-21" y="-20">¬p, ¬q</text>
</g>
<g transform="translate(175,30)">
<circle class="node reflexive" r="12" style="fill: #ff7f0e; stroke: #b25809;"></circle>
<text x="0" y="4" class="id">1</text>
<text x="-14" y="-20">p, ¬q</text>
</g>
<g transform="translate(325,30)">
<circle class="node" r="12" style="fill: #2ca02c; stroke: #1e701e;"></circle>
<text x="0" y="4" class="id">2</text>
<text x="-17" y="-20">¬p, q</text>
</g>
</g>
</svg>
</div>
<p>
Using the computer program metaphor, imagine a scenario where $p$ stands for 'the program is running' and $q$ stands for 'the program has terminated'.
Then state 0 of our model represents the state where the program is about to launch (neither running nor terminated), state 1 is the running (and non-terminated) state, and state 2 is the terminated (and no longer running) state.
As for the accessibility relation: from the ready-to-launch state, the only option is to transition to the running state; at the running state, the program can either continue to run (the reflexive edge is indicated by a bold circle) or terminate; and the terminated state is the end of the line, so to speak.
</p>
<p>
We can then evaluate formulas based on this model. For instance, $\Diamond(p\land\lnot{}q)$ says 'there is a transition to a running-and-not-terminated state (i.e., to state 1)', or more naturally, that the program is able to run (or keep running).
This formula is true at states 0 and 1 but false at state 2, which can be expressed in the following notation (the 'double turnstile' $\models$ can be read as 'satisfies' or 'makes...true'):
</p>
<div class="well wffs">
<div>$w_0\models\Diamond(p\land\lnot{}q)$</div>
<div>$w_1\models\Diamond(p\land\lnot{}q)$</div>
<div>$w_2\not\models\Diamond(p\land\lnot{}q)$</div>
</div>
<p>
To see this in action, try using the app to evaluate <code><>(p & ~q)</code> at each state!
</p>
</div>
<h2>Hungry for more?</h2>
<p>
This whirlwind tour has only scratched the surface of modal logic—if you're curious to learn more, here are a few useful resources:
</p>
<ul class="unstyled">
<li>
<a href="http://www.logicinaction.org/" target="_blank">Logic in Action</a>
<p class="indent">A freely-available, broad-scope introduction to symbolic logic. Chapters 5-7 deal with modal logic and some of its applications.</p>
</li>
<li>
<a href="http://www.cs.cmu.edu/~tom7/talks/modal-logic6.swf" target="_blank">What is modal logic and what is it good for?</a>
<p class="indent">A lively Flash presentation aimed at computer scientists.</p>
</li>
<li>
<a href="http://en.wikipedia.org/wiki/Modal_logic" target="_blank">Modal Logic @ Wikipedia</a>
<p></p>
</li>
<li>
<a href="http://plato.stanford.edu/entries/logic-modal/" target="_blank">Modal Logic @ Stanford Encyclopedia of Philosophy</a>
<p></p>
</li>
</ul>
</section>
<footer>
Modal Logic Playground is a creation of <a href="https://github.com/rkirsling">Ross Kirsling</a>, released under the <a href="http://opensource.org/licenses/mit-license.php">MIT License</a>.
</footer>
</div>
<div class="modal-backdrop fade inactive" onclick="hideLinkDialog()"></div>
<div id="link-dialog" class="modal fade inactive">
<div class="modal-header">
<button type="button" class="close" onclick="hideLinkDialog()">×</button>
<h3>Link to Model</h3>
</div>
<div class="modal-body">
<p>Copy the following URL to save your model for later or to share it with others:</p>
<input type="text" value="" readonly onclick="this.select()">
</div>
</div>
</body>
<script type="text/x-mathjax-config">MathJax.Hub.Config({ tex2jax: { inlineMath: [['$','$']] } });</script>
<script src="//cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2/MathJax.js?config=TeX-AMS_CHTML"></script>
<script src="lib/d3.min.js"></script>
<script src="lib/formula-parser.min.js"></script>
<script src="js/MPL.js"></script>
<script src="js/app.js"></script>
</html>