-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathscc_calc.cpp
266 lines (220 loc) · 9.14 KB
/
scc_calc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/*
* Copyright (c) 2012, Robert Rueger <[email protected]>
*
* This file is part of MFHUB.
*
* MFHUB is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MFHUB is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MFHUB. If not, see <http://www.gnu.org/licenses/>.
*/
#include "scc_calc.hpp"
SCCResults run_scc( const GlobalSettings& settings, const int& id )
{
// ----- INITIALIZATION -----
SCCResults results;
// define short names for the most used settings:
int const& s = settings.s;
fptype const& t = settings.t;
fptype const& t_prime = settings.t_prime;
fptype const& U = settings.U;
fptype const& m_prec = settings.m_prec;
// create a new random number generator
gsl_rng* rng;
rng = gsl_rng_alloc( gsl_rng_mt19937 );
gsl_rng_set( rng, rand() );
// initialize mean field parameter <n_i,sigma>
Array<fptype, Dynamic, 1> n_up( s * s, 1 );
Array<fptype, Dynamic, 1> n_down( s * s, 1 );
if ( settings.init == 0 ) {
for ( int i = 0; i < s * s; ++i ) {
n_up( i ) = gsl_rng_uniform_pos( rng );
n_down( i ) = gsl_rng_uniform_pos( rng );
}
} else if ( settings.init == 1 ) {
for ( int i = 0; i < s * s; ++i ) {
n_up( i ) = ( ( i + i / s ) % 2 == 0 ? 1.0 : 0.0 );
n_down( i ) = ( ( i + i / s ) % 2 == 1 ? 1.0 : 0.0 );
}
} else if ( settings.init == 2 ) {
n_up = Array<fptype, Dynamic, 1>::Constant( s * s, 1, 0.5 );
n_down = Array<fptype, Dynamic, 1>::Constant( s * s, 1, 0.5 );
} else {
#pragma omp critical (output)
{ cerr << id << ": ERROR -> unknown initialization!" << endl; }
gsl_rng_free( rng );
return results;
}
// construct the tight-binding part of H_sigma
// (it doesn't change with the iterations, so
// we only need to calculate its matrix once)
Matrix<fptype, Dynamic, Dynamic> H_tb
= Matrix<fptype, Dynamic, Dynamic>::Zero( s * s, s * s );
for ( int i = 0; i < s * s; ++i ) {
// calculate the position of atom i in the lattice
const int x = idx2x( i, s );
const int y = idx2y( i, s );
// nearest neighbour hopping
H_tb( i, xy2idx( x - 1, y, s ) ) -= t;
H_tb( i, xy2idx( x + 1, y, s ) ) -= t;
H_tb( i, xy2idx( x, y - 1, s ) ) -= t;
H_tb( i, xy2idx( x, y + 1, s ) ) -= t;
// diagonal hopping
H_tb( i, xy2idx( x - 1, y + 1, s ) ) -= t_prime;
H_tb( i, xy2idx( x + 1, y - 1, s ) ) -= t_prime;
}
// save the old mean field parameters
Array<fptype, Dynamic, 1> n_up_old = n_up;
Array<fptype, Dynamic, 1> n_down_old = n_down;
#ifdef _VERBOSE
cout << endl << "Starting self consistency cycle ..." << endl;
cout << "Iteration 0: " << endl;
cout << n_up.transpose().head( 5 ) << endl;
cout << n_down.transpose().head( 5 ) << endl;
#endif
// ----- SELF CONSISTENCY CYCLE -----
// forward declare variables needed in the SCC
Matrix<fptype, Dynamic, Dynamic> H_up;
Matrix<fptype, Dynamic, Dynamic> H_down;
SelfAdjointEigenSolver< Matrix<fptype, Dynamic, Dynamic> > solver_H_up;
SelfAdjointEigenSolver< Matrix<fptype, Dynamic, Dynamic> > solver_H_down;
// iteration counter
int iter = 0;
do {
++iter;
// construct H_up and H_down from the mean field parameters <n_i,sigma>
H_up = H_tb;
H_up += ( U * n_down ).matrix().asDiagonal();
H_down = H_tb;
H_down += ( U * n_up ).matrix().asDiagonal();
// diagonalize H_up and H_down
solver_H_up.compute( H_up );
solver_H_down.compute( H_down );
if ( solver_H_up.info() == NoConvergence ||
solver_H_down.info() == NoConvergence ) {
#pragma omp critical (output)
{ cerr << id << ": ERROR -> diagonalization did not converge!" << endl; }
gsl_rng_free( rng );
return results;
}
// save old mean field parameters
n_up_old = n_up;
n_down_old = n_down;
if ( iter == 1 && settings.init == 2 ) {
// calculate the fermi energy
fptype E_fermi = 0.5 * ( solver_H_up.eigenvalues()( ( s * s / 2 ) - 1 ) +
solver_H_down.eigenvalues()( ( s * s / 2 ) - 1 ) );
// create arrays to store which states are occupied
vector<bool> occupied_up( s * s, false );
vector<bool> occupied_down( s * s, false );
// find occupied states according to the fermi distribution
while ( ( int ) count( occupied_up.begin(), occupied_up.end(), true )
!= s * s / 2 ) {
for ( int i = 0; i < s * s; ++i ) {
fptype fdi_up = fermifunc( solver_H_up.eigenvalues()( i ),
E_fermi, settings.kT );
occupied_up[i] = ( fdi_up == 1.0 || gsl_rng_uniform( rng ) < fdi_up );
}
}
while ( ( int ) count( occupied_down.begin(), occupied_down.end(), true )
!= s * s / 2 ) {
for ( int i = 0; i < s * s; ++i ) {
fptype fdi_down = fermifunc( solver_H_up.eigenvalues()( i ),
E_fermi, settings.kT );
occupied_down[i] = ( fdi_down == 1.0 ||
gsl_rng_uniform( rng ) < fdi_down );
}
}
#ifdef _VERBOSE
cout << "Initial occupied states according to FD-statistics:" << endl;
for ( int i = 0; i < s * s; ++i ) {
occupied_up[i] ? cout << '1' : cout << '0';
}
cout << endl;
for ( int i = 0; i < s * s; ++i ) {
occupied_down[i] ? cout << '1' : cout << '0';
}
cout << endl << endl;
#endif
// reset mean field parameters to zero
n_up = Array<fptype, Dynamic, 1>::Constant( s * s, 1, 0.0 );
n_down = Array<fptype, Dynamic, 1>::Constant( s * s, 1, 0.0 );
// add the contributions of the individual eigenstates
for ( int alpha = 0; alpha < s * s; ++alpha ) {
if ( occupied_up[alpha] ) {
n_up += solver_H_up.eigenvectors().col( alpha ).array().square();
}
if ( occupied_down[alpha] ) {
n_down += solver_H_down.eigenvectors().col( alpha ).array().square();
}
}
} else {
// update mean field parameters with mixing
fptype mix = 0.5 * gsl_rng_uniform_pos( rng );
n_up = ( 0.25 + mix ) * solver_H_up.eigenvectors()
.array().block( 0, 0, s * s, s * s / 2 ).square().rowwise().sum()
+ ( 0.75 - mix ) * n_up;
n_down = ( 0.25 + mix ) * solver_H_down.eigenvectors()
.array().block( 0, 0, s * s, s * s / 2 ).square().rowwise().sum()
+ ( 0.75 - mix ) * n_down;
}
#ifdef _VERBOSE
cout << "Iteration " << iter << ": "
<< ( n_up - n_up_old ).square().sum() << ' '
<< ( n_down - n_down_old ).square().sum() << ' '
<< ( solver_H_up.eigenvalues() + solver_H_down.eigenvalues() )
.head( s * s / 2 ).sum() << endl;
cout << n_up.transpose().head( 5 ) << endl;
cout << n_down.transpose().head( 5 ) << endl;
cout << endl;
cout.flush();
#endif
} while ( ( ( n_up - n_up_old ).array().abs().maxCoeff() > m_prec
|| ( n_down - n_down_old ).array().abs().maxCoeff() > m_prec )
&& iter < settings.max_iterations );
// delete random number generator
gsl_rng_free( rng );
#ifdef _VERBOSE
cout << "Converged after " << iter << " iterations!" << endl << endl;
#endif
// ----- RESULT OUTPUT -----
results.converged = ( n_up - n_up_old ).array().abs().maxCoeff() < m_prec
&& ( n_down - n_down_old ).array().abs().maxCoeff() < m_prec;
results.iterations_to_convergence = iter;
results.Delta_n_up = ( n_up - n_up_old ).array().abs().maxCoeff();
results.Delta_n_down = ( n_down - n_down_old ).array().abs().maxCoeff();
results.energy = ( solver_H_up.eigenvalues() + solver_H_down.eigenvalues() )
.head( s * s / 2 ).sum();
results.gap = min( solver_H_up.eigenvalues()( ( s * s / 2 ) + 1 )
- solver_H_up.eigenvalues()( s * s / 2 ),
solver_H_down.eigenvalues()( ( s * s / 2 ) + 1 )
- solver_H_down.eigenvalues()( s * s / 2 ) );
results.m_z = n_up.sum() - n_down.sum();
results.filling = ( n_up.sum() + n_down.sum() )
/ static_cast<fptype>( s * s * 2 );
results.n_up = n_up;
results.n_down = n_down;
results.epsilon_up = solver_H_up.eigenvalues();
results.epsilon_down = solver_H_down.eigenvalues();
results.Q_up = solver_H_up.eigenvectors();
results.Q_down = solver_H_down.eigenvectors();
results.exit_code = 0;
return results;
}
fptype fermifunc( fptype const& E, fptype const& E_fermi, fptype const& kT )
{
// the Fermi-Dirac distribution
if ( kT == 0.0 ) {
return E <= E_fermi ? 1.0 : 0.0;
} else {
return 1.0 / ( exp( ( E - E_fermi ) / kT ) + 1.0 );
}
}