-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathgradio_app.py
95 lines (73 loc) · 3.11 KB
/
gradio_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from transformers import pipeline, SamModel, SamProcessor
import torch
import numpy as np
import gradio as gr
from PIL import Image
# check if cuda is available
device = "cuda" if torch.cuda.is_available() else "cpu"
# we initialize model and processor
checkpoint = "google/owlv2-base-patch16-ensemble"
detector = pipeline(model=checkpoint, task="zero-shot-object-detection", device=device)
sam_model = SamModel.from_pretrained("jadechoghari/robustsam-vit-base").to(device)
sam_processor = SamProcessor.from_pretrained("jadechoghari/robustsam-vit-base")
def apply_mask(image, mask, color):
"""Apply a mask to an image with a specific color."""
for c in range(3): # Iterate over RGB channels
image[:, :, c] = np.where(mask, color[c], image[:, :, c])
return image
def query(image, texts, threshold):
texts = texts.split(",")
predictions = detector(
image,
candidate_labels=texts,
threshold=threshold
)
image = np.array(image).copy()
colors = [
(255, 0, 0), # Red
(0, 255, 0), # Green
(0, 0, 255), # Blue
(255, 255, 0), # Yellow
(255, 165, 0), # Orange
(255, 0, 255) # Magenta
]
for i, pred in enumerate(predictions):
score = pred["score"]
if score > 0.5:
box = [round(pred["box"]["xmin"], 2), round(pred["box"]["ymin"], 2),
round(pred["box"]["xmax"], 2), round(pred["box"]["ymax"], 2)]
inputs = sam_processor(
image,
input_boxes=[[[box]]],
return_tensors="pt"
).to(device)
with torch.no_grad():
outputs = sam_model(**inputs)
mask = sam_processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)[0][0][0].numpy()
color = colors[i % len(colors)] # cycle through colors
image = apply_mask(image, mask > 0.5, color)
result_image = Image.fromarray(image)
return result_image
title = """
# RobustSAM
"""
description = """
**Welcome to RobustSAM by Snap Research.**
This Space uses **RobustSAM**, a robust version of the Segment Anything Model (SAM) with improved performance on low-quality images while maintaining zero-shot segmentation capabilities.
Thanks to its integration with **OWLv2**, RobustSAM becomes text-promptable, allowing for flexible and accurate segmentation, even with degraded image quality.
Try the example or input an image with comma-separated candidate labels to see the enhanced segmentation results.
For better results, please check the [GitHub repository](https://github.com/robustsam/RobustSAM).
"""
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Interface(
query,
inputs=[gr.Image(type="pil", label="Image Input"), gr.Textbox(label="Candidate Labels"), gr.Slider(0, 1, value=0.05, label="Confidence Threshold")],
outputs=gr.Image(type="pil", label="Segmented Image")
)
demo.launch()