-
Notifications
You must be signed in to change notification settings - Fork 1
/
Sequent.v
814 lines (708 loc) · 21.6 KB
/
Sequent.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
(****************************************************************************)
(* Signes Project *)
(* 2002-2003 *)
(* Houda ANOUN *)
(* Pierre Casteran *)
(* LaBRI/INRIA *)
(****************************************************************************)
(* Introduction to sequent calculs as proposed by Moortgat *)
Require Export ReplaceProp.
Set Implicit Arguments.
Unset Strict Implicit.
Section Sequent_calculus.
Variable Atoms : Set.
Section gentzen_def.
Variable E : gentzen_extension.
(* gentzen presentation using sequents: sequent is a pair (Gamma, A) where
Gamma is a term and A is a form *)
Inductive gentzenSequent (Atoms : Set) : Term Atoms -> Form Atoms -> Set :=
| Ax : forall A : Form Atoms, gentzenSequent (OneForm A) A
| RightSlash :
forall (Gamma : Term Atoms) (A B : Form Atoms),
gentzenSequent (Comma Gamma (OneForm B)) A ->
gentzenSequent Gamma (Slash A B)
| RightBackSlash :
forall (Gamma : Term Atoms) (A B : Form Atoms),
gentzenSequent (Comma (OneForm B) Gamma) A ->
gentzenSequent Gamma (Backslash B A)
| RightDot :
forall (Gamma Delta : Term Atoms) (A B : Form Atoms),
gentzenSequent Gamma A ->
gentzenSequent Delta B -> gentzenSequent (Comma Gamma Delta) (Dot A B)
| LeftSlash :
forall (Delta Gamma Gamma' : Term Atoms) (A B C : Form Atoms),
replace Gamma Gamma' (OneForm A) (Comma (OneForm (Slash A B)) Delta) ->
gentzenSequent Delta B ->
gentzenSequent Gamma C -> gentzenSequent Gamma' C
| LeftBackSlash :
forall (Delta Gamma Gamma' : Term Atoms) (A B C : Form Atoms),
replace Gamma Gamma' (OneForm A)
(Comma Delta (OneForm (Backslash B A))) ->
gentzenSequent Delta B ->
gentzenSequent Gamma C -> gentzenSequent Gamma' C
| LeftDot :
forall (Gamma Gamma' : Term Atoms) (A B C : Form Atoms),
replace Gamma Gamma' (Comma (OneForm A) (OneForm B))
(OneForm (Dot A B)) ->
gentzenSequent Gamma C -> gentzenSequent Gamma' C
| CutRule :
forall (Delta Gamma Gamma' : Term Atoms) (A C : Form Atoms),
replace Gamma Gamma' (OneForm A) Delta ->
gentzenSequent Delta A ->
gentzenSequent Gamma C -> gentzenSequent Gamma' C
| SequentExtension :
forall (Gamma Gamma' T1 T2 : Term Atoms) (C : Form Atoms),
E T1 T2 ->
replace Gamma Gamma' T1 T2 ->
gentzenSequent Gamma C -> gentzenSequent Gamma' C.
Hint Resolve Ax RightSlash RightBackSlash RightDot: sequent.
(* Generalisation of the the sequent A=>A where A is a form ,we can easily
deduce the sequent Gamma=>(deltaTranslation Gamma) for all terms Gamma ...*)
Definition axiomeGeneralisation :
forall Gamma : Term Atoms, gentzenSequent Gamma (deltaTranslation Gamma).
intro Gamma.
elim Gamma.
intro f.
apply Ax.
intros t H t0 H0.
simpl in |- *.
apply RightDot.
assumption.
assumption.
Defined.
Hint Resolve axiomeGeneralisation: sequent.
(* Some derived properties concerning gentzenSequent *)
Definition LeftDotSimpl :
forall A B C : Form Atoms,
gentzenSequent (Comma (OneForm A) (OneForm B)) C ->
gentzenSequent (OneForm (Dot A B)) C.
intros A B C H.
apply LeftDot with (Comma (OneForm A) (OneForm B)) A B.
constructor 1.
assumption.
Defined.
Definition LeftDotGeneralized :
forall (T1 T2 : Term Atoms) (C : Form Atoms),
replaceCommaDot T1 T2 -> gentzenSequent T1 C -> gentzenSequent T2 C.
simple induction 1.
auto.
intros.
eapply LeftDot.
eauto.
auto.
Defined.
Definition TermToForm :
forall (T : Term Atoms) (C : Form Atoms),
gentzenSequent T C -> gentzenSequent (OneForm (deltaTranslation T)) C.
intros.
apply LeftDotGeneralized with T.
apply replaceTranslation.
assumption.
Defined.
Definition LeftSlashSimpl:
forall (T : Term Atoms) (A B C : Form Atoms),
gentzenSequent T B ->
gentzenSequent (OneForm A) C ->
gentzenSequent (Comma (OneForm (Slash A B)) T) C.
intros T A B C H0 H1.
apply LeftSlash with T (OneForm A) A B.
constructor 1.
assumption.
assumption.
Defined.
Definition LeftBackSlashSimpl :
forall (T : Term Atoms) (A B C : Form Atoms),
gentzenSequent T B ->
gentzenSequent (OneForm A) C ->
gentzenSequent (Comma T (OneForm (Backslash B A))) C.
intros T A B C H H0.
apply LeftBackSlash with T (OneForm A) A B.
constructor 1.
assumption.
assumption.
Defined.
Definition CutRuleSimpl:
forall (T : Term Atoms) (A C : Form Atoms),
gentzenSequent T A ->
gentzenSequent (OneForm A) C ->
gentzenSequent T C.
intros T A C H H0.
apply CutRule with T (OneForm A) A.
constructor 1.
assumption.
assumption.
Defined.
Definition DotRightSlash' :
forall A B C : Form Atoms,
gentzenSequent (OneForm A) (Slash C B) ->
gentzenSequent (OneForm (Dot A B)) C.
intros A B C H.
apply LeftDotSimpl.
apply CutRuleSimpl with (Dot (Slash C B) B).
apply RightDot.
assumption.
apply Ax.
apply LeftDotSimpl.
apply LeftSlashSimpl; apply Ax.
Defined.
Definition DotRightBackslash' :
forall A B C : Form Atoms,
gentzenSequent (OneForm B) (Backslash A C) ->
gentzenSequent (OneForm (Dot A B)) C.
intros A B C H.
apply LeftDotSimpl.
apply CutRuleSimpl with (Dot A (Backslash A C)).
apply RightDot.
apply Ax.
assumption.
apply LeftDotSimpl.
apply LeftBackSlashSimpl; apply Ax.
Defined.
End gentzen_def.
(* some definitions concerning extensions*)
Definition LextensionSimpl :
forall (T1 T2 T3 : Term Atoms) (C : Form Atoms) (E : gentzen_extension),
genExtends L_Sequent E ->
gentzenSequent E (Comma T1 (Comma T2 T3)) C ->
gentzenSequent E (Comma (Comma T1 T2) T3) C.
intros T1 T2 T3 C E H H'.
unfold genExtends in H.
apply
SequentExtension
with
(Comma T1 (Comma T2 T3))
(Comma T1 (Comma T2 T3))
(Comma (Comma T1 T2) T3).
apply H.
apply L_Intro_lr.
apply replaceRoot.
assumption.
Defined.
Definition LextensionSimplDot :
forall (A B C D : Form Atoms) (E : gentzen_extension),
genExtends L_Sequent E ->
gentzenSequent E (OneForm (Dot A (Dot B C))) D ->
gentzenSequent E (OneForm (Dot (Dot A B) C)) D.
intros A B C D E H H0.
apply LeftDotSimpl.
apply LeftDot with (Comma (Comma (OneForm A) (OneForm B)) (OneForm C)) A B.
apply replaceLeft.
apply replaceRoot.
apply LextensionSimpl.
assumption.
apply
CutRuleSimpl
with
(deltaTranslation (Comma (OneForm A) (Comma (OneForm B) (OneForm C)))).
apply axiomeGeneralisation.
simpl in |- *.
assumption.
Defined.
Definition LextensionSimpl' :
forall (T1 T2 T3 : Term Atoms) (C : Form Atoms) (E : gentzen_extension),
genExtends L_Sequent E ->
gentzenSequent E (Comma (Comma T1 T2) T3) C ->
gentzenSequent E (Comma T1 (Comma T2 T3)) C.
intros T1 T2 T3 C E H H'.
apply
SequentExtension
with
(Comma (Comma T1 T2) T3)
(Comma (Comma T1 T2) T3)
(Comma T1 (Comma T2 T3)).
apply H.
apply L_Intro_rl.
apply replaceRoot.
assumption.
Defined.
Definition LextensionSimplDot' :
forall (A B C D : Form Atoms) (E : gentzen_extension),
genExtends L_Sequent E ->
gentzenSequent E (OneForm (Dot (Dot A B) C)) D ->
gentzenSequent E (OneForm (Dot A (Dot B C))) D.
intros A B C D E H H0.
apply LeftDotSimpl.
apply LeftDot with (Comma (OneForm A) (Comma (OneForm B) (OneForm C))) B C.
apply replaceRight.
apply replaceRoot.
apply LextensionSimpl'.
assumption.
apply
CutRuleSimpl
with
(deltaTranslation (Comma (Comma (OneForm A) (OneForm B)) (OneForm C))).
apply axiomeGeneralisation.
simpl in |- *.
assumption.
Defined.
Definition NLPextensionSimpl :
forall (T1 T2 : Term Atoms) (C : Form Atoms) (E : gentzen_extension),
genExtends NLP_Sequent E ->
gentzenSequent E (Comma T1 T2) C -> gentzenSequent E (Comma T2 T1) C.
intros T1 T2 C E H H0.
apply SequentExtension with (Comma T1 T2) (Comma T1 T2) (Comma T2 T1).
unfold genExtends in H.
apply H.
constructor 1.
apply replaceRoot.
assumption.
Defined.
Definition NLPextensionSimplDot :
forall (A B C : Form Atoms) (E : gentzen_extension),
genExtends NLP_Sequent E ->
gentzenSequent E (OneForm (Dot A B)) C ->
gentzenSequent E (OneForm (Dot B A)) C.
intros A B C E H H0.
apply LeftDotSimpl.
apply NLPextensionSimpl.
assumption.
apply
CutRuleSimpl with (deltaTranslation (Comma (OneForm A) (OneForm B))).
apply axiomeGeneralisation.
simpl in |- *.
assumption.
Defined.
Definition gentzenExtends :
forall (E E' : gentzen_extension) (T : Term Atoms) (F : Form Atoms),
genExtends E E' -> gentzenSequent E T F -> gentzenSequent E' T F.
intros E E' T F H H0.
elim H0; intros.
apply Ax.
constructor 2.
assumption.
constructor 3.
assumption.
constructor 4.
assumption.
assumption.
eapply LeftSlash; eauto.
eapply LeftBackSlash; eauto.
eapply LeftDot; eauto.
eapply CutRule; eauto.
unfold genExtends in H.
eapply SequentExtension; eauto.
Defined.
(* Some theorems and derived properties *)
(* These definitions can be applied for all gentzen extensions *)
Definition application :
forall (A B : Form Atoms) (E : gentzen_extension),
gentzenSequent E (OneForm (Dot (Slash A B) B)) A.
intros.
apply LeftDotSimpl.
apply LeftSlashSimpl; apply Ax.
Defined.
Definition RightSlashDot :
forall (A B C : Form Atoms) (E : gentzen_extension),
gentzenSequent E (OneForm (Dot A C)) B ->
gentzenSequent E (OneForm A) (Slash B C).
intros A B C E H.
apply RightSlash.
apply
CutRuleSimpl with (deltaTranslation (Comma (OneForm A) (OneForm C))).
apply axiomeGeneralisation.
simpl in |- *.
assumption.
Defined.
Definition application' :
forall (A B : Form Atoms) (E : gentzen_extension),
gentzenSequent E (OneForm (Dot B (Backslash B A))) A.
intros.
apply LeftDotSimpl.
apply LeftBackSlashSimpl; apply Ax.
Defined.
Definition RightBackslashDot :
forall (A B C : Form Atoms) (E : gentzen_extension),
gentzenSequent E (OneForm (Dot B A)) C ->
gentzenSequent E (OneForm A) (Backslash B C).
intros A B C E H.
apply RightBackSlash.
apply
CutRuleSimpl with (deltaTranslation (Comma (OneForm B) (OneForm A))).
apply axiomeGeneralisation.
simpl in |- *.
assumption.
Defined.
Definition coApplication :
forall (A B : Form Atoms) (E : gentzen_extension),
gentzenSequent E (OneForm A) (Slash (Dot A B) B).
intros.
apply RightSlash.
apply RightDot; apply Ax.
Defined.
Definition coApplication' :
forall (A B : Form Atoms) (E : gentzen_extension),
gentzenSequent E (OneForm A) (Backslash B (Dot B A)).
intros.
apply RightBackSlash.
apply RightDot; apply Ax.
Defined.
Definition monotonicity :
forall (A B C D : Form Atoms) (E : gentzen_extension),
gentzenSequent E (OneForm A) B ->
gentzenSequent E (OneForm C) D ->
gentzenSequent E (OneForm (Dot A C)) (Dot B D).
intros.
apply LeftDotSimpl.
apply RightDot; assumption.
Defined.
Definition isotonicity :
forall (A B C : Form Atoms) (E : gentzen_extension),
gentzenSequent E (OneForm A) B ->
gentzenSequent E (OneForm (Slash A C)) (Slash B C).
intros.
apply RightSlash.
apply CutRuleSimpl with A.
apply LeftSlashSimpl; apply Ax.
assumption.
Defined.
Definition isotonicity' :
forall (A B C : Form Atoms) (E : gentzen_extension),
gentzenSequent E (OneForm A) B ->
gentzenSequent E (OneForm (Backslash C A)) (Backslash C B).
intros.
apply RightBackSlash.
apply CutRuleSimpl with A.
apply LeftBackSlashSimpl; apply Ax.
assumption.
Defined.
Definition antitonicity :
forall (A B C : Form Atoms) (E : gentzen_extension),
gentzenSequent E (OneForm A) B ->
gentzenSequent E (OneForm (Slash C B)) (Slash C A).
intros A B C E H.
apply RightSlash.
apply CutRuleSimpl with (Dot (Slash C B) B).
apply RightDot.
apply Ax.
assumption.
apply application.
Defined.
Definition antitonicity' :
forall (A B C : Form Atoms) (E : gentzen_extension),
gentzenSequent E (OneForm A) B ->
gentzenSequent E (OneForm (Backslash B C)) (Backslash A C).
intros A B C E H.
apply RightBackSlash.
apply CutRuleSimpl with (Dot B (Backslash B C)).
apply RightDot.
assumption.
apply Ax.
apply application'.
Defined.
Definition lifting :
forall (A B C : Form Atoms) (E : gentzen_extension),
gentzenSequent E (OneForm A) (Slash B (Backslash A B)).
intros A B C E.
apply RightSlash.
apply CutRuleSimpl with (Dot A (Backslash A B)).
apply RightDot; apply Ax.
apply application'.
Defined.
Definition lifting' :
forall (A B C : Form Atoms) (E : gentzen_extension),
gentzenSequent E (OneForm A) (Backslash (Slash B A) B).
intros A B C E.
apply RightBackSlash.
apply CutRuleSimpl with (Dot (Slash B A) A).
apply RightDot; apply Ax.
apply application.
Defined.
(*These definitions can be applied iff associativity is supported
by our logical system *)
Definition mainGeach :
forall (A B C : Form Atoms) (E : gentzen_extension),
genExtends L_Sequent E ->
gentzenSequent E (OneForm (Slash A B)) (Slash (Slash A C) (Slash B C)).
intros A B C E H.
apply RightSlash.
apply RightSlash.
apply LextensionSimpl.
assumption.
apply CutRuleSimpl with (Dot (Slash A B) B).
apply RightDot.
apply Ax.
apply LeftSlashSimpl; apply Ax.
apply application.
Defined.
Definition mainGeach' :
forall (A B C : Form Atoms) (E : gentzen_extension),
genExtends L_Sequent E ->
gentzenSequent E (OneForm (Backslash B A))
(Backslash (Backslash C B) (Backslash C A)).
intros A B C E H.
apply RightBackSlash.
apply RightBackSlash.
apply LextensionSimpl'.
assumption.
apply CutRuleSimpl with (Dot B (Backslash B A)).
apply RightDot.
apply LeftBackSlashSimpl; apply Ax.
apply Ax.
apply application'.
Defined.
Definition secondaryGeach :
forall (A B C : Form Atoms) (E : gentzen_extension),
genExtends L_Sequent E ->
gentzenSequent E (OneForm (Slash B C)) (Backslash (Slash A B) (Slash A C)).
intros A B C E H.
apply RightBackSlash.
apply RightSlash.
apply LextensionSimpl.
assumption.
apply CutRuleSimpl with (Dot (Slash A B) B).
apply RightDot.
apply Ax.
apply LeftSlashSimpl; apply Ax.
apply application.
Defined.
Definition secondaryGeach' :
forall (A B C : Form Atoms) (E : gentzen_extension),
genExtends L_Sequent E ->
gentzenSequent E (OneForm (Backslash C B))
(Slash (Backslash C A) (Backslash B A)).
intros A B C E H.
apply RightSlash.
apply RightBackSlash.
apply LextensionSimpl'.
assumption.
apply CutRuleSimpl with (Dot B (Backslash B A)).
apply RightDot.
apply LeftBackSlashSimpl; apply Ax.
apply Ax.
apply application'.
Defined.
Definition composition :
forall (A B C : Form Atoms) (E : gentzen_extension),
genExtends L_Sequent E ->
gentzenSequent E (OneForm (Dot (Slash A B) (Slash B C))) (Slash A C).
intros A B C E H.
apply
CutRuleSimpl with (Dot (Slash (Slash A C) (Slash B C)) (Slash B C)).
apply monotonicity.
apply mainGeach.
assumption.
apply Ax.
apply application.
Defined.
Definition composition' :
forall (A B C : Form Atoms) (E : gentzen_extension),
genExtends L_Sequent E ->
gentzenSequent E (OneForm (Dot (Backslash C B) (Backslash B A)))
(Backslash C A).
intros A B C E H.
apply
CutRuleSimpl
with (Dot (Slash (Backslash C A) (Backslash B A)) (Backslash B A)).
apply monotonicity.
apply secondaryGeach'.
assumption.
apply Ax.
apply application.
Defined.
Definition restructuring :
forall (A B C : Form Atoms) (E : gentzen_extension),
genExtends L_Sequent E ->
gentzenSequent E (OneForm (Slash (Backslash A B) C))
(Backslash A (Slash B C)).
intros A B C E H.
apply RightBackSlash.
apply RightSlash.
apply LextensionSimpl.
assumption.
apply CutRuleSimpl with (Dot A (Backslash A B)).
apply RightDot.
apply Ax.
apply LeftSlashSimpl; apply Ax.
apply application'.
Defined.
Definition restructuring' :
forall (A B C : Form Atoms) (E : gentzen_extension),
genExtends L_Sequent E ->
gentzenSequent E (OneForm (Backslash A (Slash B C)))
(Slash (Backslash A B) C).
intros A B C E H.
apply RightSlash.
apply RightBackSlash.
apply LextensionSimpl'.
assumption.
apply CutRuleSimpl with (Dot (Slash B C) C).
apply RightDot.
apply LeftBackSlashSimpl; apply Ax.
apply Ax.
apply application.
Defined.
Definition currying :
forall (A B C : Form Atoms) (E : gentzen_extension),
genExtends L_Sequent E ->
gentzenSequent E (OneForm (Slash A (Dot B C))) (Slash (Slash A C) B).
intros.
apply RightSlashDot.
apply RightSlashDot.
apply LextensionSimplDot.
assumption.
apply application.
Defined.
Definition currying' :
forall (A B C : Form Atoms) (E : gentzen_extension),
genExtends L_Sequent E ->
gentzenSequent E (OneForm (Slash (Slash A C) B)) (Slash A (Dot B C)).
intros A B C E H.
apply RightSlashDot.
apply LextensionSimplDot'.
assumption.
apply CutRuleSimpl with (Dot (Slash A C) C).
apply monotonicity.
apply application.
apply Ax.
apply application.
Defined.
Definition decurrying :
forall (A B C : Form Atoms) (E : gentzen_extension),
genExtends L_Sequent E ->
gentzenSequent E (OneForm (Backslash (Dot A B) C))
(Backslash B (Backslash A C)).
intros.
apply RightBackslashDot.
apply RightBackslashDot.
apply LextensionSimplDot'.
assumption.
apply application'.
Defined.
Definition decurrying' :
forall (A B C : Form Atoms) (E : gentzen_extension),
genExtends L_Sequent E ->
gentzenSequent E (OneForm (Backslash B (Backslash A C)))
(Backslash (Dot A B) C).
intros A B C E H.
apply RightBackslashDot.
apply LextensionSimplDot.
assumption.
apply CutRuleSimpl with (Dot A (Backslash A C)).
apply monotonicity.
apply Ax.
apply application'.
apply application'.
Defined.
(* Theorem for systems that support commutativity :if its extension
extends NLP_Sequent *)
Definition permutation :
forall (A B C : Form Atoms) (E : gentzen_extension),
genExtends NLP_Sequent E ->
gentzenSequent E (OneForm A) (Backslash B C) ->
gentzenSequent E (OneForm B) (Backslash A C).
intros A B C E H H0.
apply RightBackslashDot.
apply NLPextensionSimplDot.
assumption.
apply CutRuleSimpl with (Dot B (Backslash B C)).
apply monotonicity.
apply Ax.
assumption.
apply application'.
Defined.
Definition exchange :
forall (A B : Form Atoms) (E : gentzen_extension),
genExtends NLP_Sequent E ->
gentzenSequent E (OneForm (Slash A B)) (Backslash B A).
intros.
apply RightBackslashDot.
apply NLPextensionSimplDot.
assumption.
apply application.
Defined.
Definition exchange' :
forall (A B : Form Atoms) (E : gentzen_extension),
genExtends NLP_Sequent E ->
gentzenSequent E (OneForm (Backslash B A)) (Slash A B).
intros.
apply RightSlashDot.
apply NLPextensionSimplDot.
assumption.
apply application'.
Defined.
Definition preposing :
forall (A B : Form Atoms) (E : gentzen_extension),
genExtends NLP_Sequent E ->
gentzenSequent E (OneForm A) (Slash B (Slash B A)).
intros.
apply RightSlashDot.
apply NLPextensionSimplDot.
assumption.
apply application.
Defined.
Definition postposing :
forall (A B : Form Atoms) (E : gentzen_extension),
genExtends NLP_Sequent E ->
gentzenSequent E (OneForm A) (Backslash (Backslash A B) B).
intros.
apply RightBackslashDot.
apply NLPextensionSimplDot.
assumption.
apply application'.
Defined.
(* For systems that support both commutativity and associativity ..*)
Definition mixedComposition :
forall (A B C : Form Atoms) (E : gentzen_extension),
genExtends LP_Sequent E ->
gentzenSequent E (OneForm (Dot (Slash A B) (Backslash C B)))
(Backslash C A).
intros A B C E H.
apply NLPextensionSimplDot.
apply LPextendsNLP.
assumption.
apply RightBackslashDot.
apply LextensionSimplDot'.
apply LPextendsL.
assumption.
apply CutRuleSimpl with (Dot B (Slash A B)).
apply monotonicity.
apply application'.
apply Ax.
apply NLPextensionSimplDot.
apply LPextendsNLP.
assumption.
apply application.
Defined.
Definition mixedComposition' :
forall (A B C : Form Atoms) (E : gentzen_extension),
genExtends LP_Sequent E ->
gentzenSequent E (OneForm (Dot (Slash B C) (Backslash B A))) (Slash A C).
intros A B C E H.
apply NLPextensionSimplDot.
apply LPextendsNLP.
assumption.
apply RightSlashDot.
apply LextensionSimplDot.
apply LPextendsL.
assumption.
apply CutRuleSimpl with (Dot (Backslash B A) B).
apply monotonicity.
apply Ax.
apply application.
apply NLPextensionSimplDot.
apply LPextendsNLP.
assumption.
apply application'.
Defined.
End Sequent_calculus.
Hint Resolve Ax RightSlash RightBackSlash RightDot axiomeGeneralisation
application RightSlashDot application' RightBackslashDot coApplication
coApplication' monotonicity isotonicity isotonicity' antitonicity
antitonicity' lifting lifting' mainGeach mainGeach' secondaryGeach
secondaryGeach' composition composition' restructuring restructuring'
currying currying' decurrying decurrying' permutation exchange exchange'
preposing postposing mixedComposition mixedComposition': sequent.