-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathND_exch.v
229 lines (220 loc) · 4.38 KB
/
ND_exch.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
(** Proof Reflection in Coq ; ND_exch.v ; 050128 ; Dimitri Hendriks; Coq 8.0pl1 *)
Require Export ND_subst_lems.
Require Export exch.
Set Implicit Arguments.
Section ND_exchange_rule.
Variable l1 l2 : list nat.
Let T := trm l1.
Let F := frm l1 l2.
Let X := list F.
Let P := prf l1 l2.
Lemma ND_exch_hyp :
forall (G G' : X) (i : nat) (A B C : F),
ND (G' ++ B :: A :: G) (hyp _ _ i) C ->
ND (G' ++ A :: B :: G) (hyp _ _ (exch (length G') i)) C.
Proof.
simple induction G'.
simpl in |- *.
simple destruct i.
simpl in |- *.
intros.
unfold F in |- *. (* ??? *)
apply ND_hypS.
rewrite (hypO_inv H).
apply ND_hypO.
intros i' A B C.
case i'.
simpl in |- *.
intro.
rewrite (hypO_inv (hypS_inv H)).
unfold F in |- *.
apply ND_hypO.
intros i'' H.
simpl in |- *.
unfold F in |- *.
apply ND_hypS.
apply ND_hypS.
exact (hypS_inv (hypS_inv H)).
intros D g' IH i A B C.
simpl in |- *.
case i.
simpl in |- *.
intro.
rewrite (hypO_inv H).
unfold F in |- *.
apply ND_hypO.
intros i' H.
unfold F in |- *.
simpl in |- *.
apply ND_hypS.
apply IH.
exact (hypS_inv H).
Qed.
Lemma ND_exch :
forall (d : P) (G G' : X) (A B C : F),
ND (G' ++ B :: A :: G) d C ->
ND (G' ++ A :: B :: G) (exch_hyp (length G') d) C.
Proof. (*many script lines, due to avoidance of Inversion tactic *)
unfold exch_hyp in |- *.
simple induction d; simpl in |- *; intros.
(*top_intro*)
rewrite (top_inv H).
apply ND_top_intro.
(*hyp*)
apply ND_exch_hyp with (1:=H).
(*bot_elim*)
elim (bot_inv H0).
intros.
rewrite H1.
apply ND_bot_elim.
apply H.
exact H2.
(*imp_intro*)
elim (imp_intro_inv H0).
intros.
elim H1.
intros.
rewrite H2.
apply ND_imp_intro.
simpl in |- *.
exact (H G (f :: G') A B x H3).
(*imp_elim*)
elim (imp_elim_inv H1).
intros.
elim H2.
intros.
cut (ND (G' ++ A :: B :: G) (map_prf_hyp exch (length G') p) (imp x C)).
intro c1.
cut (ND (G' ++ A :: B :: G) (map_prf_hyp exch (length G') p0) x).
intro c2.
exact (ND_imp_elim c1 c2).
apply H0.
exact H4.
apply H.
exact H3.
(*cnj_intro*)
elim (cnj_intro_inv H1).
intros.
elim H2.
intros.
elim H3.
intros.
elim H5.
intros.
rewrite H4.
apply ND_cnj_intro.
apply H.
exact H6.
apply H0.
exact H7.
(*cnj_elim1*)
elim (cnj_elim1_inv H0).
intros.
cut (ND (G' ++ A :: B :: G) (map_prf_hyp exch (length G') p) (cnj C x)).
intro c.
exact (ND_cnj_elim1 c).
apply H.
exact H1.
(*cnj_elim2*)
elim (cnj_elim2_inv H0).
intros.
cut (ND (G' ++ A :: B :: G) (map_prf_hyp exch (length G') p) (cnj x C)).
intro c.
exact (ND_cnj_elim2 c).
apply H.
exact H1.
(*dsj_intro1*)
elim (dsj_intro1_inv H0).
intros.
elim H1.
intros.
rewrite H2.
apply ND_dsj_intro1.
apply H.
exact H3.
(*dsj_intro2*)
elim (dsj_intro2_inv H0).
intros.
elim H1.
intros.
rewrite H2.
apply ND_dsj_intro2.
apply H.
exact H3.
(*dsj_elim*)
elim (dsj_elim_inv H2); intros r1 H3.
elim H3; clear H3; intros r2 H3; elim H3; clear H3; intros H3 H4; elim H4;
clear H4; intros H4 H5.
assert (c1 := H G G' A B (dsj r1 r2) H3).
assert (c2 := H0 G (r1 :: G') A B C H4).
assert (c3 := H1 G (r2 :: G') A B C H5).
exact (ND_dsj_elim c1 c2 c3).
(*uvq_intro*)
elim (uvq_intro_inv H0).
intros.
elim H1.
clear H1.
intros.
rewrite H1.
apply ND_uvq_intro.
replace (length G') with (length (lift_cxt 0 G')).
unfold lift_cxt in |- *.
simpl in |- *.
rewrite map_app.
simpl in |- *.
apply H.
replace (lift_frm 0 B :: lift_frm 0 A :: map (lift_frm 0) G) with
(map (lift_frm 0) (B :: A :: G)).
cut (ND (map (lift_frm 0) G' ++ map (lift_frm 0) (B :: A :: G)) p x).
intro c.
exact c.
rewrite <- map_app.
exact H2.
reflexivity.
unfold lift_cxt in |- *.
symmetry in |- *.
apply length_map.
(*uvq_elim*)
elim (uvq_elim_inv H0).
intros.
elim H1.
clear H1.
intros.
rewrite H1.
apply ND_uvq_elim.
apply H.
exact H2.
(*exq_intro*)
elim (exq_intro_inv H0).
intros.
rewrite H1.
apply ND_exq_intro.
apply H.
exact H2.
(*exq_elim*)
elim (exq_elim_inv H1).
intros r H2; elim H2; clear H2; intros H2 H3.
assert (c1 := H G G' A B (exq r) H2).
assert
(c2 :
ND (r :: lift_cxt 0 (G' ++ A :: B :: G))
(map_prf_hyp exch (S (length G')) p0) (lift_frm 0 C)).
replace (length G') with (length (lift_cxt 0 G')).
unfold lift_cxt in |- *.
rewrite map_app.
apply
(H0 (lift_cxt 0 G) (r :: lift_cxt 0 G') (lift_frm 0 A)
(lift_frm 0 B) (lift_frm 0 C)).
simpl in |- *.
cut
(ND (r :: lift_cxt 0 G' ++ map (lift_frm 0) (B :: A :: G)) p0 (lift_frm 0 C)).
exact (fun c => c).
unfold lift_cxt in |- *.
rewrite <- map_app.
exact H3.
unfold lift_cxt in |- *.
symmetry in |- *.
apply length_map.
apply ND_exq_elim with (1:=c1) (2:=c2).
Qed.
End ND_exchange_rule.