-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSLstar_bpar_SLstar.v
255 lines (224 loc) · 8.23 KB
/
SLstar_bpar_SLstar.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
(* Contribution to the Coq Library V6.3 (July 1999) *)
(****************************************************************************)
(* The Calculus of Inductive Constructions *)
(* *)
(* Projet Coq *)
(* *)
(* INRIA ENS-CNRS *)
(* Rocquencourt Lyon *)
(* *)
(* Coq V5.10 *)
(* Nov 25th 1994 *)
(* *)
(****************************************************************************)
(* SLstar_bpar_SLstar.v *)
(****************************************************************************)
(*****************************************************************************)
(* Projet Coq - Calculus of Inductive Constructions V5.8 *)
(*****************************************************************************)
(* *)
(* Meta-theory of the explicit substitution calculus lambda-env *)
(* Amokrane Saibi *)
(* *)
(* September 1993 *)
(* *)
(*****************************************************************************)
(* relation SL* o B|| o SL* *)
Require Import TS.
Require Import sur_les_relations.
Require Import sigma_lift.
Require Import lambda_sigma_lift.
Require Import betapar.
Definition e_slstar_bp_slstar (b : wsort) :=
explicit_comp_rel _ (e_relSLstar b)
(explicit_comp_rel _ (e_beta_par b) (e_relSLstar b)).
Notation slstar_bp_slstar := (e_slstar_bp_slstar _) (only parsing).
(* <Warning> : Syntax is discontinued *)
Hint Unfold e_slstar_bp_slstar.
Goal
forall a a' b b' : terms,
e_beta_par _ b b' ->
e_slstar_bp_slstar _ a a' -> e_slstar_bp_slstar _ (app a b) (app a' b').
simple induction 2; intros.
red in |- *; apply comp_2rel with (app y b).
auto.
elim H2; intros.
apply comp_2rel with (app y0 b'); auto.
Save slbpsl_context_app_l.
Hint Resolve slbpsl_context_app_l.
Goal
forall a a' b b' : terms,
e_beta_par _ a a' ->
e_slstar_bp_slstar _ b b' -> e_slstar_bp_slstar _ (app a b) (app a' b').
simple induction 2; intros.
red in |- *; apply comp_2rel with (app a y).
auto.
elim H2; intros.
apply comp_2rel with (app a' y0); auto.
Save slbpsl_context_app_r.
Hint Resolve slbpsl_context_app_r.
Goal
forall a b a' b' : terms,
e_beta_par _ b b' ->
e_slstar_bp_slstar _ a a' ->
e_slstar_bp_slstar _ (app (lambda a) b) (env a' (cons b' id)).
simple induction 2; intros.
red in |- *; apply comp_2rel with (app (lambda y) b).
auto.
elim H2; intros.
apply comp_2rel with (env y0 (cons b' id)); auto.
Save slbpsl_context_beta_l.
Hint Resolve slbpsl_context_beta_l.
Goal
forall a b a' b' : terms,
e_beta_par _ a a' ->
e_slstar_bp_slstar _ b b' ->
e_slstar_bp_slstar _ (app (lambda a) b) (env a' (cons b' id)).
simple induction 2; intros.
red in |- *; apply comp_2rel with (app (lambda a) y).
auto.
elim H2; intros.
apply comp_2rel with (env a' (cons y0 id)); auto.
Save slbpsl_context_beta_r.
Hint Resolve slbpsl_context_beta_r.
Goal
forall a a' : terms,
e_slstar_bp_slstar _ a a' -> e_slstar_bp_slstar _ (lambda a) (lambda a').
simple induction 1; intros.
red in |- *; apply comp_2rel with (lambda y).
auto.
elim H1; intros.
apply comp_2rel with (lambda y0); auto.
Save slbpsl_context_lambda.
Hint Resolve slbpsl_context_lambda.
Goal
forall (a a' : terms) (s s' : sub_explicits),
e_beta_par _ s s' ->
e_slstar_bp_slstar _ a a' -> e_slstar_bp_slstar _ (env a s) (env a' s').
simple induction 2; intros.
red in |- *; apply comp_2rel with (env y s).
auto.
elim H2; intros.
apply comp_2rel with (env y0 s'); auto.
Save slbpsl_context_env_t.
Hint Resolve slbpsl_context_env_t.
Goal
forall (a a' : terms) (s s' : sub_explicits),
e_beta_par _ a a' ->
e_slstar_bp_slstar _ s s' -> e_slstar_bp_slstar _ (env a s) (env a' s').
simple induction 2; intros.
red in |- *; apply comp_2rel with (env a y).
auto.
elim H2; intros.
apply comp_2rel with (env a' y0); auto.
Save slbpsl_context_env_s.
Hint Resolve slbpsl_context_env_s.
Goal
forall (a a' : terms) (s s' : sub_explicits),
e_beta_par _ s s' ->
e_slstar_bp_slstar _ a a' -> e_slstar_bp_slstar _ (cons a s) (cons a' s').
simple induction 2; intros.
red in |- *; apply comp_2rel with (cons y s).
auto.
elim H2; intros.
apply comp_2rel with (cons y0 s'); auto.
Save slbpsl_context_cons_t.
Hint Resolve slbpsl_context_cons_t.
Goal
forall (a a' : terms) (s s' : sub_explicits),
e_beta_par _ a a' ->
e_slstar_bp_slstar _ s s' -> e_slstar_bp_slstar _ (cons a s) (cons a' s').
simple induction 2; intros.
red in |- *; apply comp_2rel with (cons a y).
auto.
elim H2; intros.
apply comp_2rel with (cons a' y0); auto.
Save slbpsl_context_cons_s.
Hint Resolve slbpsl_context_cons_s.
Goal
forall s s' t t' : sub_explicits,
e_beta_par _ t t' ->
e_slstar_bp_slstar _ s s' -> e_slstar_bp_slstar _ (comp s t) (comp s' t').
simple induction 2; intros.
red in |- *; apply comp_2rel with (comp y t).
auto.
elim H2; intros.
apply comp_2rel with (comp y0 t'); auto.
Save slbpsl_context_comp_l.
Hint Resolve slbpsl_context_comp_l.
Goal
forall s s' t t' : sub_explicits,
e_beta_par _ s s' ->
e_slstar_bp_slstar _ t t' -> e_slstar_bp_slstar _ (comp s t) (comp s' t').
simple induction 2; intros.
red in |- *; apply comp_2rel with (comp s y).
auto.
elim H2; intros.
apply comp_2rel with (comp s' y0); auto.
Save slbpsl_context_comp_r.
Hint Resolve slbpsl_context_comp_r.
Goal
forall s s' : sub_explicits,
e_slstar_bp_slstar _ s s' -> e_slstar_bp_slstar _ (lift s) (lift s').
simple induction 1; intros.
red in |- *; apply comp_2rel with (lift y).
auto.
elim H1; intros.
apply comp_2rel with (lift y0); auto.
Save slbpsl_context_lift.
Hint Resolve slbpsl_context_lift.
Goal
forall (b : wsort) (M N : TS b), e_beta_par _ M N -> e_slstar_bp_slstar _ M N.
intros; red in |- *; apply comp_2rel with M.
red in |- *; auto.
apply comp_2rel with N; auto.
Save betapar_slbpsl.
Hint Resolve betapar_slbpsl.
Goal forall (b : wsort) (M : TS b), e_slstar_bp_slstar _ M M.
auto.
Save refl_slbpsl.
Hint Resolve refl_slbpsl.
(* LSL inclus dans SL*B||SL* *)
Goal forall b : wsort, explicit_inclus _ (e_relLSL b) (e_slstar_bp_slstar b).
red in |- *; simple induction 1; auto.
simple induction 1; auto.
(* regle beta *)
simple induction 1; auto.
intros b1 M0 N0 H1; red in |- *; apply comp_2rel with N0.
auto.
apply comp_2rel with N0; auto.
Save relLSL_inclus_slbpsl.
Hint Resolve relLSL_inclus_slbpsl.
(* SL*B||SL* inclus dans LSL* *)
Goal forall b : wsort, explicit_inclus _ (e_beta_par b) (e_relLSLstar b).
red in |- *; simple induction 1; intros; auto.
(* beta_bpar *)
red in |- *; apply star_trans1 with (env M (cons N id)).
auto.
change (e_relLSLstar _ (env M (cons N id)) (env M' (cons N' id))) in |- *;
auto.
Save betapar_inclus_relSLstar.
Hint Resolve betapar_inclus_relSLstar.
Goal forall b : wsort, explicit_inclus _ (e_relSL b) (e_relLSL b).
red in |- *; simple induction 1; auto.
Save relSL_inclus_relLSL.
Hint Resolve relSL_inclus_relLSL.
Goal
forall b : wsort, explicit_inclus _ (e_slstar_bp_slstar b) (e_relLSLstar b).
unfold e_slstar_bp_slstar in |- *; intro b.
apply inclus_comp.
(* SL* incl LSL* *)
change
(explicit_inclus _ (explicit_star _ (e_relSL b))
(explicit_star _ (e_relLSL b))) in |- *; auto.
apply inclus_comp.
(* B|| incl LSL* *)
auto.
(* SL* incl LSL* *)
change
(explicit_inclus _ (explicit_star _ (e_relSL b))
(explicit_star _ (e_relLSL b))) in |- *; auto.
intros; red in |- *; apply star_trans with y; assumption.
intros; red in |- *; apply star_trans with y; assumption.
Save slbpsl_inclus_relLSLstar.
Hint Resolve slbpsl_inclus_relLSLstar.