-
Notifications
You must be signed in to change notification settings - Fork 2
/
plot.py
executable file
·482 lines (470 loc) · 27.3 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
#!/usr/bin/env python
import os
import sys
import time
import shutil
import argparse
import numpy as np
from mpi4py import MPI
import booz_xform as bx
from pathlib import Path
from math import ceil, sqrt
import matplotlib.pyplot as plt
from src.vmecPlot2 import main as vmecPlot2_main
from simsopt import load
from simsopt.mhd import QuasisymmetryRatioResidual
from simsopt.mhd import Vmec, Boozer, VirtualCasing
from simsopt.geo import QfmSurface, SurfaceRZFourier
from simsopt.geo import QfmResidual, Volume, curves_to_vtk
from simsopt.field import particles_to_vtk, compute_fieldlines
from src.qi_functions import QuasiIsodynamicResidual
from src.inputs import snorms, nphi_QI, nalpha_QI, nBj_QI, mpol_QI, ntor_QI, nphi_out_QI, arr_out_QI
import matplotlib
import warnings
import matplotlib.cbook
matplotlib.use('Agg')
warnings.filterwarnings("ignore",category=matplotlib.MatplotlibDeprecationWarning)
import logging
from coilpy import Coil
from simsopt.util import MpiPartition
parent_path = str(Path(__file__).parent.resolve())
mpi = MpiPartition()
comm = MPI.COMM_WORLD
logging.basicConfig()
logger = logging.getLogger('PlotSingleStage')
logger.setLevel(1)
def pprint(*args, **kwargs): print(*args, **kwargs) if comm.rank == 0 else 1
################## INPUT PARAMETERS ########################
parser = argparse.ArgumentParser()
# parser.add_argument("--results_folder",default='Paper_CNT_Stage123_Lengthbound3.8_ncoils4')
# parser.add_argument("--results_folder",default='Paper_CNT_Stage123_Lengthbound3.8_ncoils4_circular')
# parser.add_argument("--results_folder",default='QA_Stage123_Lengthbound5.5_ncoils3_nfp2')
# parser.add_argument("--results_folder",default='QA_Stage123_Lengthbound5.5_ncoils2_nfp3')
parser.add_argument("--results_folder",default='QI_Stage123_Lengthbound5.0_ncoils8_nfp1')
# parser.add_argument("--results_folder",default='QI_Stage123_Lengthbound4.5_ncoils3_nfp2')
# parser.add_argument("--results_folder",default='QH_Stage123_Lengthbound3.5_ncoils3_nfp4')
parser.add_argument("--coils_stage1", default='biot_savart_inner_loop_max_mode_3.json')
parser.add_argument("--create_QFM", dest="create_QFM", default=False, action="store_true")
parser.add_argument("--create_QFM_stage12", dest="create_QFM_stage12", default=False, action="store_true")
parser.add_argument("--create_Poincare", dest="create_Poincare", default=False, action="store_true")
parser.add_argument("--whole_torus", dest="whole_torus", default=True, action="store_true")
parser.add_argument("--plot_VMEC", dest="plot_VMEC", default=False, action="store_true")
parser.add_argument("--plot_VMEC_QFM", dest="plot_VMEC_QFM", default=False, action="store_true")
parser.add_argument("--volume_scale", type=float, default=1.0)
parser.add_argument("--nfieldlines", type=int, default=12)
parser.add_argument("--tmax_fl", type=int, default=5000)
parser.add_argument("--nphi_QFM", type=int, default=30)
parser.add_argument("--ntheta_QFM", type=int, default=40)
parser.add_argument("--mpol", type=int, default=12)
parser.add_argument("--ntor", type=int, default=12)
parser.add_argument("--nphi", type=int, default=256)
parser.add_argument("--ntheta", type=int, default=128)
parser.add_argument("--tol_qfm", type=float, default=1e-14)
parser.add_argument("--tol_poincare", type=float, default=1e-15)
parser.add_argument("--maxiter_qfm", type=int, default=1000)
parser.add_argument("--constraint_weight", type=float, default=1e+0)
parser.add_argument("--ntheta_VMEC", type=int, default=80)
parser.add_argument("--boozxform_nsurfaces", type=int, default=10)
parser.add_argument("--filename_final", default='input.final')
parser.add_argument("--filename_stage1", default='input.stage1')
parser.add_argument("--finite_beta", dest="finite_beta", default=False, action="store_true")
parser.add_argument("--vmec_verbose", dest="vmec_verbose", default=False, action="store_true")
args = parser.parse_args()
filename_vmec_final = 'wout_final.nc'
filename_bs_final = 'biot_savart_opt.json'
results_parent_folder = 'results'
coils_directory = 'coils'
quasisymmetry_target_surfaces = [0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ]
YY = args.results_folder.split("_")[0]
if YY == "QH" or YY == "QI":
quasisymmetry_helicity_n = -1
elif YY == "QA" or YY == "CNT" or YY == "Paper":
quasisymmetry_helicity_n = 0
################## FUNCTIONS ###########################
def coilpy_plot(curves, filename, height=0.1, width=0.1):
def wrap(data):
return np.concatenate([data, [data[0]]])
xx = [wrap(c.gamma()[:, 0]) for c in curves]
yy = [wrap(c.gamma()[:, 1]) for c in curves]
zz = [wrap(c.gamma()[:, 2]) for c in curves]
II = [1. for _ in curves]
names = [i for i in range(len(curves))]
coils = Coil(xx, yy, zz, II, names, names)
coils.toVTK(filename, line=False, height=height, width=width)
def trace_fieldlines(bfield, R0, Z0):
t1 = time.time()
phis = [(i/4)*(2*np.pi/nfp) for i in range(4)]
fieldlines_tys, fieldlines_phi_hits = compute_fieldlines(
bfield, R0, Z0, tmax=args.tmax_fl, tol=args.tol_poincare, comm=comm,
phis=phis, stopping_criteria=[])
t2 = time.time()
pprint(f"Time for fieldline tracing={t2-t1:.3f}s. Num steps={sum([len(l) for l in fieldlines_tys])//args.nfieldlines}", flush=True)
# if comm is None or comm.rank == 0:
# particles_to_vtk(fieldlines_tys, os.path.join(OUT_DIR,f'fieldlines_optimized_coils'))
return fieldlines_tys, fieldlines_phi_hits, phis
def find_ncoils(string):
parts = string.split("_")
for part in parts:
if part[:5] == "ncoils":
return int(part[5:])
def helical_detail_function(string):
YY = string.split("_")[0]
if YY == "QH" or YY == "QI":
return True
elif YY == "QA" or YY == "CNT":
return False
################## LOAD RESULTS ########################
ncoils = find_ncoils(args.results_folder)
helical_detail = helical_detail_function(args.results_folder)
#### Go to results folder ####
this_path = os.path.join(parent_path, results_parent_folder, args.results_folder)
OUT_DIR = os.path.join(this_path, "output")
if mpi.proc0_world: Path(OUT_DIR).mkdir(parents=True, exist_ok=True)
os.chdir(this_path)
#### Stage 1 for comparison ####
if args.whole_torus: vmec_stage1 = Vmec(args.filename_stage1, mpi=mpi, nphi=args.nphi, ntheta=args.ntheta, verbose=args.vmec_verbose)
else: vmec_stage1 = Vmec(args.filename_stage1, mpi=mpi, nphi=args.nphi, ntheta=args.ntheta, range_surface='half period', verbose=args.vmec_verbose)
vmec_stage1.indata.ns_array[:3] = [ 16, 51, 101]
vmec_stage1.indata.niter_array[:3] = [ 2000, 3000, 20000]
vmec_stage1.indata.ftol_array[:3] = [1e-14, 1e-14, 1e-14]
s_stage1 = vmec_stage1.boundary
if args.finite_beta: vc_stage1 = VirtualCasing.from_vmec(vmec_stage1, src_nphi=args.vc_src_nphi, src_ntheta=args.ntheta)
bs_stage1 = load(os.path.join(coils_directory,args.coils_stage1))
B_on_surface_stage1 = bs_stage1.set_points(s_stage1.gamma().reshape((-1, 3))).AbsB()
norm_stage1 = np.linalg.norm(s_stage1.normal().reshape((-1, 3)), axis=1)
# meanb_stage1 = np.mean(B_on_surface_stage1 * norm_stage1)/np.mean(norm_stage1)
absb_stage1 = bs_stage1.AbsB().reshape(s_stage1.gamma().shape[:2] + (1,))
Bbs_stage1 = bs_stage1.B().reshape((args.nphi, args.ntheta, 3))
if args.finite_beta:
if args.whole_torus: BdotN_surf_stage1 = np.sum(Bbs_stage1 * s_stage1.unitnormal(), axis=2) - vc_stage1.B_external_normal_extended
else: BdotN_surf_stage1 = np.sum(Bbs_stage1 * s_stage1.unitnormal(), axis=2) - vc_stage1.B_external_normal
else:
BdotN_surf_stage1 = np.sum(Bbs_stage1 * s_stage1.unitnormal(), axis=2)
#### Single stage results ####
if args.whole_torus: vmec_final = Vmec(filename_vmec_final, mpi=mpi, nphi=args.nphi, ntheta=args.ntheta, verbose=args.vmec_verbose)
else: vmec_final = Vmec(filename_vmec_final, mpi=mpi, nphi=args.nphi, ntheta=args.ntheta, range_surface='half period', verbose=args.vmec_verbose)
s_final = vmec_final.boundary
vc_src_nphi = int(args.nphi/2/vmec_final.wout.nfp) if args.whole_torus else args.nphi
if args.finite_beta: vc_final = VirtualCasing.from_vmec(vmec_final, src_nphi=vc_src_nphi, src_ntheta=args.ntheta)
bs_final = load(os.path.join(coils_directory,filename_bs_final))
B_on_surface_final = bs_final.set_points(s_final.gamma().reshape((-1, 3))).AbsB()
norm_final = np.linalg.norm(s_final.normal().reshape((-1, 3)), axis=1)
# meanb_final = np.mean(B_on_surface_final * norm_final)/np.mean(norm_final)
absb_final = bs_final.AbsB().reshape(s_final.gamma().shape[:2] + (1,))
Bbs_final = bs_final.B().reshape((args.nphi, args.ntheta, 3))
if args.finite_beta:
if args.whole_torus: BdotN_surf_final = np.sum(Bbs_final * s_final.unitnormal(), axis=2) - vc_final.B_external_normal_extended
else: BdotN_surf_final = np.sum(Bbs_final * s_final.unitnormal(), axis=2) - vc_final.B_external_normal
else:
BdotN_surf_final = np.sum(Bbs_final * s_final.unitnormal(), axis=2)
###### PLOTTING ######
pprint('Plotting stage 1 surface and coils')
pointData_stage1 = {"B·n": BdotN_surf_stage1[:, :, None]}
if args.whole_torus: coilpy_plot([c.curve for c in bs_stage1.coils], os.path.join(coils_directory,"coils_stage1Plot.vtu"), height=0.05, width=0.05)
else: coilpy_plot([c.curve for c in bs_stage1.coils[0:ncoils]], os.path.join(coils_directory,"coils_stage1Plot.vtu"), height=0.05, width=0.05)
s_stage1.to_vtk(os.path.join(coils_directory,"surf_stage1Plot"), extra_data=pointData_stage1)
# single stage
pprint('Plotting single stage surface and coils')
pointData_final = {"B·n": BdotN_surf_final[:, :, None]}
if args.whole_torus: coilpy_plot([c.curve for c in bs_final.coils], os.path.join(coils_directory,"coils_optPlot.vtu"), height=0.05, width=0.05)
else: coilpy_plot([c.curve for c in bs_final.coils[0:ncoils]], os.path.join(coils_directory,"coils_optPlot.vtu"), height=0.05, width=0.05)
s_final.to_vtk(os.path.join(coils_directory,"surf_optPlot"), extra_data=pointData_final)
# vmecplot2 of results
sys.path.insert(1, os.path.join(parent_path, '../single_stage/plotting'))
if args.plot_VMEC and os.path.isfile(os.path.join(this_path, filename_vmec_final)):
vmecPlot2_main(file=os.path.join(this_path, filename_vmec_final), name='VMEC_final', figures_folder=OUT_DIR)
##### CREATE QFM #####
vmec_ran_QFM = False
if args.create_QFM:
if os.path.isfile(os.path.join(this_path, f"wout_QFM.nc")):
vmec_QFM = Vmec(os.path.join(this_path, f"wout_QFM.nc"))
vmec_ran_QFM = True
else:
if not os.path.isfile(os.path.join(this_path, f"input.qfm")):
pprint('Finding QFM surface')
s = SurfaceRZFourier.from_wout(filename_vmec_final, nphi=args.nphi_QFM, ntheta=args.ntheta_QFM, range="half period")
s.change_resolution(args.mpol, args.ntor)
s_original_VMEC = SurfaceRZFourier.from_wout(filename_vmec_final, nphi=args.nphi_QFM, ntheta=args.ntheta_QFM, range="half period")
nfp = vmec_final.wout.nfp
s.to_vtk(os.path.join(OUT_DIR, 'QFM_original_VMEC'))
pprint('Obtaining QFM surface')
bs_final.set_points(s.gamma().reshape((-1, 3)))
curves = [coil.curve for coil in bs_final.coils]
curves_to_vtk(curves, os.path.join(OUT_DIR, "curves_QFM_test"))
pointData = {"B_N": np.sum(bs_final.B().reshape((args.nphi_QFM, args.ntheta_QFM, 3)) * s.unitnormal(), axis=2)[:, :, None]}
s.to_vtk(os.path.join(OUT_DIR, "surf_QFM_test"), extra_data=pointData)
# Optimize at fixed volume
qfm = QfmResidual(s, bs_final)
pprint(f"Initial qfm.J()={qfm.J()}")
vol = Volume(s)
vol_target = Volume(s).J()*args.volume_scale
qfm_surface = QfmSurface(bs_final, s, vol, vol_target)
t1=time.time()
pprint(f"Initial ||vol constraint||={0.5*(s.volume()-vol_target)**2:.8e}, ||residual||={np.linalg.norm(qfm.J()):.8e}")
res = qfm_surface.minimize_qfm_penalty_constraints_LBFGS(tol=args.tol_qfm, maxiter=args.maxiter_qfm, constraint_weight=args.constraint_weight)
pprint(f"||vol constraint||={0.5*(s.volume()-vol_target)**2:.8e}, ||residual||={np.linalg.norm(qfm.J()):.8e}")
res = qfm_surface.minimize_qfm_exact_constraints_SLSQP(tol=args.tol_qfm, maxiter=args.maxiter_qfm/10)
pprint(f"||vol constraint||={0.5*(s.volume()-vol_target)**2:.8e}, ||residual||={np.linalg.norm(qfm.J()):.8e}")
pprint(f"Found QFM surface in {time.time()-t1}s.")
s.to_vtk(os.path.join(OUT_DIR, 'QFM_found'))
s_gamma = s.gamma()
s_R = np.sqrt(s_gamma[:, :, 0]**2 + s_gamma[:, :, 1]**2)
s_Z = s_gamma[:, :, 2]
s_gamma_original = s_original_VMEC.gamma()
s_R_original = np.sqrt(s_gamma_original[:, :, 0]**2 + s_gamma_original[:, :, 1]**2)
s_Z_original = s_gamma_original[:, :, 2]
# Plot QFM surface
fig = plt.figure()
ax = fig.add_subplot(111,aspect='equal')
plt.plot(s_R[0,:],s_Z[0,:], label = 'QFM')
plt.plot(s_R_original[0,:],s_Z_original[0,:], label = 'VMEC')
plt.xlabel('R')
plt.ylabel('Z')
ax.axis('equal')
plt.legend()
plt.savefig(os.path.join(OUT_DIR, 'QFM_surface.pdf'), bbox_inches = 'tight', pad_inches = 0)
# Create QFM VMEC equilibrium
os.chdir(OUT_DIR)
vmec_QFM = Vmec(os.path.join(this_path,args.filename_final), verbose=args.vmec_verbose)
vmec_QFM.indata.mpol = args.mpol
vmec_QFM.indata.ntor = args.ntor
vmec_QFM.boundary = s
vmec_QFM.indata.ns_array[:3] = [ 16, 51, 101]
vmec_QFM.indata.niter_array[:3] = [ 2000, 3000, 20000]
vmec_QFM.indata.ftol_array[:3] = [1e-14, 1e-14, 1e-14]
vmec_QFM.indata.am[0:10] = [0]*10
vmec_QFM.write_input(os.path.join(this_path,f'input.qfm'))
else:
os.chdir(OUT_DIR)
vmec_QFM = Vmec(os.path.join(this_path,f'input.qfm'), verbose=True)#args.vmec_verbose)
try:
vmec_QFM.run()
vmec_ran_QFM = True
except Exception as e:
pprint('VMEC QFM did not converge')
pprint(e)
try:
shutil.move(os.path.join(OUT_DIR, f"wout_qfm_000_000000.nc"), os.path.join(this_path, f"wout_qfm.nc"))
os.remove(os.path.join(OUT_DIR, f'input.qfm_000_000000'))
except Exception as e:
print(e)
if YY == "QI":
qi = QuasiIsodynamicResidual(vmec_QFM,snorms=snorms, nphi=nphi_QI, nalpha=nalpha_QI, nBj=nBj_QI, mpol=mpol_QI, ntor=ntor_QI, nphi_out=nphi_out_QI, arr_out=arr_out_QI)
pprint(f"Quasi-isodynamicity of QFM fixed boundary solution single-stage: {np.sum(qi * qi)}")
with open(os.path.join(OUT_DIR, "output_QFM_qi.txt"), "w") as f:
f.write(f"Quasi-isodynamicity of QFM fixed boundary solution: {np.sum(qi * qi)}")
else:
qs = QuasisymmetryRatioResidual(vmec_QFM, quasisymmetry_target_surfaces, helicity_m=1, helicity_n=quasisymmetry_helicity_n)
pprint(f"Quasisymmetry of QFM fixed boundary solution single-stage: {qs.total()}")
with open(os.path.join(OUT_DIR, "output_QFM_qs.txt"), "w") as f:
f.write(f"Quasisymmetry of QFM fixed boundary solution: {qs.total()}")
if (vmec_ran_QFM or os.path.isfile(os.path.join(this_path, f"wout_QFM.nc"))) and args.plot_VMEC_QFM:
nfp = vmec_final.wout.nfp
nzeta=4
zeta = np.linspace(0,2*np.pi/nfp,num=nzeta,endpoint=False)
theta = np.linspace(0,2*np.pi,num=args.ntheta_VMEC)
iradii = np.linspace(0,vmec_final.wout.ns-1,num=args.nfieldlines).round()
iradii = [int(i) for i in iradii]
R_final = np.zeros((nzeta,args.nfieldlines,args.ntheta_VMEC))
Z_final = np.zeros((nzeta,args.nfieldlines,args.ntheta_VMEC))
phis = zeta
pprint("Obtaining VMEC final surfaces")
for itheta in range(args.ntheta_VMEC):
for izeta in range(nzeta):
for iradius in range(args.nfieldlines):
for imode, xnn in enumerate(vmec_final.wout.xn):
angle = vmec_final.wout.xm[imode]*theta[itheta] - xnn*zeta[izeta]
R_final[izeta,iradius,itheta] += vmec_final.wout.rmnc[imode, iradii[iradius]]*np.cos(angle)
Z_final[izeta,iradius,itheta] += vmec_final.wout.zmns[imode, iradii[iradius]]*np.sin(angle)
vmec_QFM = Vmec(os.path.join(this_path,f'wout_QFM.nc'), verbose=args.vmec_verbose)
nfp = vmec_QFM.wout.nfp
sys.path.insert(1, os.path.join(parent_path, '../single_stage/plotting'))
if vmec_ran_QFM or not os.path.isfile(os.path.join(OUT_DIR, "QFM_VMECparams.pdf")):
vmecPlot2_main(file=os.path.join(this_path, f"wout_QFM.nc"), name='QFM', figures_folder=OUT_DIR)
nzeta=4
zeta = np.linspace(0,2*np.pi/nfp,num=nzeta,endpoint=False)
theta = np.linspace(0,2*np.pi,num=args.ntheta_VMEC)
iradii = np.linspace(0,vmec_QFM.wout.ns-1,num=args.nfieldlines).round()
iradii = [int(i) for i in iradii]
R = np.zeros((nzeta,args.nfieldlines,args.ntheta_VMEC))
Z = np.zeros((nzeta,args.nfieldlines,args.ntheta_VMEC))
Raxis = np.zeros(nzeta)
Zaxis = np.zeros(nzeta)
phis = zeta
pprint("Obtaining VMEC QFM surfaces")
for itheta in range(args.ntheta_VMEC):
for izeta in range(nzeta):
for iradius in range(args.nfieldlines):
for imode, xnn in enumerate(vmec_QFM.wout.xn):
angle = vmec_QFM.wout.xm[imode]*theta[itheta] - xnn*zeta[izeta]
R[izeta,iradius,itheta] += vmec_QFM.wout.rmnc[imode, iradii[iradius]]*np.cos(angle)
Z[izeta,iradius,itheta] += vmec_QFM.wout.zmns[imode, iradii[iradius]]*np.sin(angle)
for izeta in range(nzeta):
for n in range(vmec_QFM.wout.ntor+1):
angle = -n*nfp*zeta[izeta]
Raxis[izeta] += vmec_QFM.wout.raxis_cc[n]*np.cos(angle)
Zaxis[izeta] += vmec_QFM.wout.zaxis_cs[n]*np.sin(angle)
if vmec_ran_QFM or not os.path.isfile(os.path.join(OUT_DIR,"boozmn_QFM.nc")):
pprint('Creating Boozer class for vmec_final')
b1 = Boozer(vmec_QFM, mpol=64, ntor=64)
pprint('Defining surfaces where to compute Boozer coordinates')
booz_surfaces = np.linspace(0,1,args.boozxform_nsurfaces,endpoint=False)
pprint(f' booz_surfaces={booz_surfaces}')
b1.register(booz_surfaces)
pprint('Running BOOZ_XFORM')
b1.run()
b1.bx.write_boozmn(os.path.join(OUT_DIR,"boozmn_QFM.nc"))
pprint("Plot BOOZ_XFORM")
fig = plt.figure(); bx.surfplot(b1.bx, js=1, fill=False, ncontours=35)
plt.savefig(os.path.join(OUT_DIR, "Boozxform_surfplot_1_QFM.pdf"), bbox_inches = 'tight', pad_inches = 0); plt.close()
fig = plt.figure(); bx.surfplot(b1.bx, js=int(args.boozxform_nsurfaces/2), fill=False, ncontours=35)
plt.savefig(os.path.join(OUT_DIR, "Boozxform_surfplot_2_QFM.pdf"), bbox_inches = 'tight', pad_inches = 0); plt.close()
fig = plt.figure(); bx.surfplot(b1.bx, js=args.boozxform_nsurfaces-1, fill=False, ncontours=35)
plt.savefig(os.path.join(OUT_DIR, "Boozxform_surfplot_3_QFM.pdf"), bbox_inches = 'tight', pad_inches = 0); plt.close()
fig = plt.figure(); bx.symplot(b1.bx, helical_detail = helical_detail, sqrts=True)
plt.savefig(os.path.join(OUT_DIR, "Boozxform_symplot_QFM.pdf"), bbox_inches = 'tight', pad_inches = 0); plt.close()
fig = plt.figure(); bx.modeplot(b1.bx, sqrts=True); plt.xlabel(r'$s=\psi/\psi_b$')
plt.savefig(os.path.join(OUT_DIR, "Boozxform_modeplot_QFM.pdf"), bbox_inches = 'tight', pad_inches = 0); plt.close()
if args.create_Poincare:
if vmec_ran_QFM or os.path.isfile(os.path.join(this_path, f"wout_QFM.nc")):
R0 = R[0,:,0]
Z0 = Z[0,:,0]
else:
pprint('R0 and Z0 not found.')
exit()
pprint('Beginning field line tracing')
fieldlines_tys, fieldlines_phi_hits, phis = trace_fieldlines(bs_final, R0, Z0)
pprint('Creating Poincare plot R, Z')
r = []
z = []
for izeta in range(len(phis)):
r_2D = []
z_2D = []
for iradius in range(len(fieldlines_phi_hits)):
lost = fieldlines_phi_hits[iradius][-1, 1] < 0
data_this_phi = fieldlines_phi_hits[iradius][np.where(fieldlines_phi_hits[iradius][:, 1] == izeta)[0], :]
if data_this_phi.size == 0:
pprint(f'No Poincare data for iradius={iradius} and izeta={izeta}')
continue
r_2D.append(np.sqrt(data_this_phi[:, 2]**2+data_this_phi[:, 3]**2))
z_2D.append(data_this_phi[:, 4])
r.append(r_2D)
z.append(z_2D)
r = np.array(r, dtype=object)
z = np.array(z, dtype=object)
pprint('Plotting Poincare plot')
nrowcol = ceil(sqrt(len(phis)))
fig, axs = plt.subplots(nrowcol, nrowcol, figsize=(8, 8))
for i in range(len(phis)):
row = i//nrowcol
col = i % nrowcol
axs[row, col].set_title(f"$\\phi={phis[i]/np.pi:.2f}\\pi$", loc='right', y=0.0, fontsize=10)
axs[row, col].set_xlabel("$R$", fontsize=14)
axs[row, col].set_ylabel("$Z$", fontsize=14)
axs[row, col].set_aspect('equal')
axs[row, col].tick_params(direction="in")
for j in range(args.nfieldlines):
if j== 0 and i == 0:
legend1 = 'Poincare'
legend2 = 'QFM'
legend3 = 'Single-Stage'
else:
legend1 = legend2 = legend3 = '_nolegend_'
if vmec_ran_QFM or os.path.isfile(os.path.join(this_path, f"wout_QFM.nc")):
axs[row, col].plot(R[i,j,:], Z[i,j,:], '-', linewidth=1.2, c='r', label = legend2)
axs[row, col].plot(R_final[i,j,:], Z_final[i,j,:], '-', linewidth=1.2, c='k', label = legend3)
try: axs[row, col].scatter(r[i][j], z[i][j], marker='o', s=1.3, linewidths=1.3, c='b', label = legend1)
except Exception as e: pprint(e, i, j)
# if j == 0: axs[row, col].legend(loc="upper right")
# plt.legend(bbox_to_anchor=(0.1, 0.9 ))
leg = fig.legend(loc='upper center', bbox_to_anchor=(0.5, 1.05), ncol=4, fontsize=12)
plt.tight_layout()
plt.savefig(os.path.join(OUT_DIR, f'poincare_QFM_fieldline_all.pdf'), bbox_inches = 'tight', pad_inches = 0)
##### CREATE QFM STAGE 1+2 #####
vmec_ran_QFM_stage12 = False
if args.create_QFM_stage12:
if os.path.isfile(os.path.join(this_path, f"wout_QFM_stage12.nc")):
vmec_QFM = Vmec(os.path.join(this_path, f"wout_QFM_stage12.nc"))
vmec_ran_QFM_stage12 = True
else:
if not os.path.isfile(os.path.join(this_path, f"input.qfm_stage12")):
pprint('Finding QFM surface for stage 1+2')
s = SurfaceRZFourier.from_vmec_input(args.filename_stage1, nphi=args.nphi_QFM, ntheta=args.ntheta_QFM, range="half period")
s.change_resolution(args.mpol, args.ntor)
s_original_VMEC = SurfaceRZFourier.from_vmec_input(args.filename_stage1, nphi=args.nphi_QFM, ntheta=args.ntheta_QFM, range="half period")
nfp = vmec_final.wout.nfp
s.to_vtk(os.path.join(OUT_DIR, 'QFM_stage12_original_VMEC'))
pprint('Obtaining QFM surface for stage 1+2')
bs_stage1.set_points(s.gamma().reshape((-1, 3)))
curves = [coil.curve for coil in bs_stage1.coils]
curves_to_vtk(curves, os.path.join(OUT_DIR, "curves_QFM_test_stage12"))
pointData = {"B_N": np.sum(bs_stage1.B().reshape((args.nphi_QFM, args.ntheta_QFM, 3)) * s.unitnormal(), axis=2)[:, :, None]}
s.to_vtk(os.path.join(OUT_DIR, "surf_QFM_test_stage12"), extra_data=pointData)
# Optimize at fixed volume
qfm = QfmResidual(s, bs_stage1)
pprint(f"Initial qfm.J()={qfm.J()}")
vol = Volume(s)
vol_target = Volume(s).J()*args.volume_scale
qfm_surface = QfmSurface(bs_stage1, s, vol, vol_target)
t1=time.time()
pprint(f"Initial ||vol constraint||={0.5*(s.volume()-vol_target)**2:.8e}, ||residual||={np.linalg.norm(qfm.J()):.8e}")
res = qfm_surface.minimize_qfm_penalty_constraints_LBFGS(tol=args.tol_qfm, maxiter=args.maxiter_qfm, constraint_weight=args.constraint_weight)
pprint(f"||vol constraint||={0.5*(s.volume()-vol_target)**2:.8e}, ||residual||={np.linalg.norm(qfm.J()):.8e}")
res = qfm_surface.minimize_qfm_exact_constraints_SLSQP(tol=args.tol_qfm, maxiter=args.maxiter_qfm/10)
pprint(f"||vol constraint||={0.5*(s.volume()-vol_target)**2:.8e}, ||residual||={np.linalg.norm(qfm.J()):.8e}")
pprint(f"Found QFM surface in {time.time()-t1}s.")
s.to_vtk(os.path.join(OUT_DIR, 'QFM_found_stage12'))
s_gamma = s.gamma()
s_R = np.sqrt(s_gamma[:, :, 0]**2 + s_gamma[:, :, 1]**2)
s_Z = s_gamma[:, :, 2]
s_gamma_original = s_original_VMEC.gamma()
s_R_original = np.sqrt(s_gamma_original[:, :, 0]**2 + s_gamma_original[:, :, 1]**2)
s_Z_original = s_gamma_original[:, :, 2]
# Plot QFM surface
fig = plt.figure()
ax = fig.add_subplot(111,aspect='equal')
plt.plot(s_R[0,:],s_Z[0,:], label = 'QFM')
plt.plot(s_R_original[0,:],s_Z_original[0,:], label = 'VMEC')
plt.xlabel('R')
plt.ylabel('Z')
ax.axis('equal')
plt.legend()
plt.savefig(os.path.join(OUT_DIR, 'QFM_surface_stage12.pdf'), bbox_inches = 'tight', pad_inches = 0)
# Create QFM VMEC equilibrium
os.chdir(OUT_DIR)
vmec_QFM = Vmec(os.path.join(this_path,args.filename_final), verbose=True)
vmec_QFM.indata.mpol = args.mpol
vmec_QFM.indata.ntor = args.ntor
vmec_QFM.boundary = s
vmec_QFM.indata.ns_array[:3] = [ 16, 51, 101]
vmec_QFM.indata.niter_array[:3] = [ 2000, 3000, 20000]
vmec_QFM.indata.ftol_array[:3] = [1e-14, 1e-14, 1e-14]
vmec_QFM.indata.am[0:10] = [0]*10
vmec_QFM.write_input(os.path.join(this_path,f'input.qfm_stage12'))
else:
os.chdir(OUT_DIR)
vmec_QFM = Vmec(os.path.join(this_path,f'input.qfm_stage12'), verbose=True)#args.vmec_verbose)
vmec_QFM.indata.ns_array[:3] = [ 16, 51, 101]
vmec_QFM.indata.niter_array[:3] = [20000, 30000, 50000]
vmec_QFM.indata.ftol_array[:3] = [1e-14, 1e-14, 1e-14]
try:
vmec_QFM.run()
vmec_ran_QFM = True
except Exception as e:
pprint('VMEC QFM did not converge')
pprint(e)
try:
shutil.move(os.path.join(OUT_DIR, f"wout_qfm_stage12_000_000000.nc"), os.path.join(this_path, f"wout_qfm_stage12.nc"))
os.remove(os.path.join(OUT_DIR, f'input.qfm_stage12_000_000000'))
except Exception as e:
pprint(e)
if YY == "QI":
qi = QuasiIsodynamicResidual(vmec_QFM,snorms=snorms, nphi=nphi_QI, nalpha=nalpha_QI, nBj=nBj_QI, mpol=mpol_QI, ntor=ntor_QI, nphi_out=nphi_out_QI, arr_out=arr_out_QI)
pprint(f"Quasi-isodynamicity of QFM fixed boundary solution stage 1+2: {np.sum(qi * qi)}")
with open(os.path.join(OUT_DIR, "output_QFM_qi_stage12.txt"), "w") as f:
f.write(f"Quasi-isodynamicity of QFM fixed boundary solution stage 1+2: {np.sum(qi * qi)}")
else:
qs = QuasisymmetryRatioResidual(vmec_QFM, quasisymmetry_target_surfaces, helicity_m=1, helicity_n=quasisymmetry_helicity_n)
pprint(f"Quasisymmetry of QFM fixed boundary solution stage 1+2: {qs.total()}")
with open(os.path.join(OUT_DIR, "output_QFM_qs_stage12.txt"), "w") as f:
f.write(f"Quasisymmetry of QFM fixed boundary solution stage 1+2: {qs.total()}")