-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsegmentation.py
233 lines (203 loc) · 9.63 KB
/
segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from __future__ import division
from unet.unet_modular.unet_base import *
from unet.unet_modular.utilities import *
from unet.unet_modular.progbar import *
from data_loader import train_data_loader, valid_data_loader
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import math
import scipy as sp
from sklearn import metrics
import logging
# from datetime import datetime
import time
import csv
from pastalog import Log
seed = 123
rng = np.random.RandomState(seed)
combine_label = True
layers = 3
inputch = 1
filters = 64
if combine_label:
outputs = 3
else:
outputs = 4
act = 'relu'
ltype = 'normal'
lr = 1e-4
nb_epoch = 40
nb_samples_per_epoch = 1000
nb_val_samples = 100
patience = 20
optimiser = 'adam'
path = '/data/overalap-chromosomes/models/weights'
train_batch_size = 10
valid_batch_size = 10
# predicted_path = '/data2/processed/luna_segmentation/predicted'
save_path = '/data/overalap-chromosomes/demo/'
def sum_indices(arr, index_list):
#s = 0
#for i in index_list:
# s += arr[i]
return sum([arr[i] for i in index_list])
def vis_detections(X_valid,Y_valid,Y_pred,save_image_path):
fig = plt.figure()
a=fig.add_subplot(1,3,1)
plt.imshow(X_valid)
a.set_title('Original Scan')
a=fig.add_subplot(1,3,2)
imgplot = plt.imshow(Y_valid)
a.set_title('True')
a=fig.add_subplot(1,3,3)
plt.imshow(Y_pred)
a.set_title('Predicted')
plt.savefig(save_image_path)
plt.close()
# Function returns the 3 required dice scores given the groundtruths and predictions numpy arrays
def get_dice_score(groundtruths, predictions):
elements1, counts1 = np.unique(groundtruths, return_counts = True)
elements2, counts2 = np.unique(predictions, return_counts = True)
#assert(elements2 == elements1).all()
unique_counts_groundtruths = np.array([0,0,0,0,0])
unique_counts_predictions = np.array([0,0,0,0,0])
for i in xrange(len(elements1)):
unique_counts_groundtruths[elements1[i]] = counts1[i]
for i in xrange(len(elements2)):
unique_counts_predictions[elements2[i]] = counts2[i]
#intersection_counts1 = [(np.where(groundtruths == i) == np.where(predictions == i)).sum() for i in xrange(5)]
intersection_counts = np.array([0,0,0,0,0])
for i in xrange(0, len(groundtruths)):
if(groundtruths[i] == predictions[i]):
intersection_counts[groundtruths[i]] += 1
ct_arr = np.array([1,2,3,4])
dice_score = 2*sum_indices(intersection_counts, ct_arr)/ (sum_indices(unique_counts_groundtruths, ct_arr)+sum_indices(unique_counts_predictions, ct_arr))
return dice_score
def main_training(log_tuple, validation_set=0, threshold = 0.5, layers = 3, lr = 1e-2, nb_epoch = 5, nb_samples_per_epoch = 100 ,
nb_val_samples = 20, patience = 20,path = 'models/weights'):
best_val_loss = np.inf
not_done_looping = True
nb_perf_not_improved = 0
demo_dict = {}
log_train,log_valid = log_tuple
for epoch in range(nb_epoch):
print ("Epoch: {}/{}".format(epoch+1, nb_epoch))
if not_done_looping:
progbar = Progbar(target=nb_samples_per_epoch)
seen = 0
count_train_samples = 0
decay = math.pow(0.5, epoch/50)
lr = lr*decay
set_lr(lr)
mean_accuracy = 0
mean_val_loss = 0
mean_dice_score = 0
mean_precision = 0
mean_recall = 0
count_valid_samples = 0
no_of_patches_seen =0
mean_train_loss= 0
mean_train_recall =0
mean_train_precision =0
mean_train_dice_score =0
for X_train, Y_train, weights in train_data_loader(train_batch_size, combine_label):
if count_train_samples == nb_samples_per_epoch:
break
if seen < nb_samples_per_epoch:
log_values=[]
xs = X_train.shape[2]
ys = Y_train.shape[3]
Y_train = Y_train.reshape((train_batch_size*xs*ys,))
weights = weights.reshape((train_batch_size*xs*ys,))
train_loss = train_fn(X_train.astype('float32'),Y_train.astype('int32'),weights.astype('float32'))
Y_pred = predict_fn(X_train.astype('float32'))
Y_pred_class = np.argmax(Y_pred, axis =1)
dice_score = get_dice_score(Y_train,Y_pred_class)
mean_train_loss+= train_loss
mean_train_dice_score+= dice_score
count_train_samples += X_train.shape[0]
seen+= X_train.shape[0]
log_values.append(('train_loss',train_loss))
if seen < nb_samples_per_epoch:
progbar.update(seen,log_values)
log_values.append(('train_loss',train_loss))
progbar.update(seen,log_values, force=True)
mean_train_loss = mean_train_loss/(nb_samples_per_epoch/train_batch_size)
mean_train_dice_score = mean_train_dice_score/(nb_samples_per_epoch/train_batch_size)
log_train.post('train_loss', mean_train_loss, epoch)
log_train.post("mean_train_dice_score",mean_train_dice_score, epoch )
if epoch % 5 == 0:
validation_start = time.time()
count_valid_samples = 0
for X_valid,Y_valid in valid_data_loader(nb_val_samples, valid_batch_size, combine_label):
xs = X_valid.shape[2]
ys = Y_valid.shape[3]
Y_valid = Y_valid.reshape((valid_batch_size*xs*ys,))
Y_pred = test_predict_fn(X_valid.astype('float32'))
val_loss = loss(Y_pred.astype('float32'),
Y_valid.astype('int32'),
np.ones((Y_valid.shape[0],)).astype('float32')).eval()
Y_pred_class = np.argmax(Y_pred, axis =1)
dice_score = get_dice_score(Y_valid,Y_pred_class)
Y_pred = Y_pred_class.reshape(valid_batch_size,1,xs,ys)
Y_valid = Y_valid.reshape(valid_batch_size,1,xs,ys)
save_image_path = os.path.join(save_path, str(epoch), '{}.png'.format(count_valid_samples))
if not os.path.exists(os.path.join(save_path, str(epoch))):
os.makedirs(os.path.join(save_path, str(epoch)))
vis_detections(X_valid[5][0],Y_valid[5][0],Y_pred[5][0],save_image_path)
mean_val_loss+= val_loss
mean_dice_score+= dice_score
count_valid_samples += 1
mean_val_loss= mean_val_loss/(nb_val_samples/valid_batch_size)
mean_dice_score = mean_dice_score/(nb_val_samples/valid_batch_size)
print (mean_val_loss, mean_dice_score)
log_valid.post("val_loss",mean_val_loss, epoch )
log_valid.post("mean_val_dice_score",mean_dice_score, epoch )
print ("mean_val_loss: {} , mean_dice_score: {}".format(mean_val_loss , mean_dice_score))
validation_end = time.time()
validation_time = validation_end - validation_start
print ('validation time : %ds' % validation_time)
if mean_val_loss < best_val_loss:
best_val_loss = mean_val_loss
best_epoch = epoch
nb_perf_not_improved = 0
dpath = os.path.join(path,"Unet_vald_set_{}_val_loss_{}_epoch_{}".format(validation_set, best_val_loss,best_epoch))
save_params(dpath)
else :
nb_perf_not_improved+=1
if nb_perf_not_improved > patience:
print ("Exiting training as performance not improving for {} loops".format(patience))
not_done_looping = False
return best_val_loss, best_epoch
cfg = gen_config(layers,inputch,filters,outputs,act,ltype,optimiser)
train_fn, test_predict_fn, predict_fn, save_params, load_params, output_shape, set_lr = get_functions(cfg)
print ("Starting Training")
with open('logs/log_training_2DUnet_lr_{}_optimiser_{}.log'.format(lr,optimiser), 'w') as f:
sys.stdout = f
print ("------- Checking for lr = {} ---------- ".format(lr))
log_train = Log('http://localhost:4152', '2DUnet_train')
log_valid = Log('http://localhost:4152', '2DUnet_valid')
log_tuple = (log_train,log_valid)
best_val_loss, best_epoch = main_training(layers = layers,lr = lr, nb_epoch = nb_epoch, nb_samples_per_epoch = nb_samples_per_epoch ,
nb_val_samples = nb_val_samples, patience = patience,path = path, log_tuple = log_tuple)
print ("---------------------------------------------------")
sys.stdout = sys.__stdout__
# model_path = os.path.join(path,"Unet_vald_set_{}_val_loss_{}_epoch_{}.npz".format(validation_set,best_val_loss,best_epoch))
# best_model = load_params(model_path)
# folder = 'subset'+str(validation_set)
# for X,seriesuid in test_data_generator(validation_set =validation_set):
# for i in range(X.shape[0]):
# X_test = X[i]
# X_test = X_test[np.newaxis, np.newaxis,...]
# xs = X_test.shape[2]
# ys = X_test.shape[3]
# Y_pred = test_predict_fn(X_test.astype('float32'))
# Y_pred = (Y_pred [:,1]> threshold ).astype('int')
# Y_pred = Y_pred.reshape((1,xs,ys))
# if i==0 :
# Y_pred_final = Y_pred
# else:
# Y_pred_final = np.append(Y_pred_final, Y_pred, axis = 0)
#
# np.save(os.path.join(predicted_path, folder, 'Y_segmentation_{}.npy'.format(seriesuid)), Y_pred_final)