This directory contains symlinks to data locations.
Download the images in [Visual Genome] (http://visualgenome.org/api/v0/api_home.html).
Optionally, if you want to build the COCO-format json dataset annotations yourself, you also need to download the Version 1.4 annotations (only image_data.json
and objects.json
are needed in this case).
Then symlink the Visual Genome dataset:
ln -s /path/to/vg $DETECTRON/lib/datasets/data/vg
We assume that your local Visual Genome dataset copy at /path/to/vg
has the following directory structure:
vg
|_ images
| |_ VG_100K
| | |_ 2.jpg
| | |_ ...
| |_ VG_100K_2
|_ annotations
|_ image_data.json
|_ objects.json
|_ ...
Symlink the COCO dataset:
ln -s /path/to/coco $DETECTRON/lib/datasets/data/coco
We assume that your local COCO dataset copy at /path/to/coco
has the following directory structure:
coco
|_ coco_train2014
| |_ <im-1-name>.jpg
| |_ ...
| |_ <im-N-name>.jpg
|_ coco_val2014
|_ ...
|_ annotations
|_ instances_train2014.json
|_ ...
If that is not the case, you may need to do something similar to:
mkdir -p $DETECTRON/lib/datasets/data/coco
ln -s /path/to/coco_train2014 $DETECTRON/lib/datasets/data/coco/
ln -s /path/to/coco_val2014 $DETECTRON/lib/datasets/data/coco/
ln -s /path/to/json/annotations $DETECTRON/lib/datasets/data/coco/annotations
Our custom minival
and valminusminival
annotations are available for download here.
Please note that minival
is exactly equivalent to the recently defined 2017 val
set.
Similarly, the union of valminusminival
and the 2014 train
is exactly equivalent to the 2017 train
set. To complete installation of the COCO dataset, you will need to copy the minival
and valminusminival
json annotation files to the coco/annotations
directory referenced above.
We assume that your symlinked lib/datasets/data/VOC<year>
directory has the following structure:
VOC<year>
|_ JPEGImages
| |_ <im-1-name>.jpg
| |_ ...
| |_ <im-N-name>.jpg
|_ annotations
| |_ voc_<year>_trainval.json
| |_ ...
|_ VOCdevkit<year>
Create symlinks for VOC<year>
:
mkdir -p $DETECTRON/lib/datasets/data/VOC<year>
ln -s /path/to/VOC<year>/JPEGImages $DETECTRON/lib/datasets/data/VOC<year>/JPEGImages
ln -s /path/to/VOC<year>/json/annotations $DETECTRON/lib/datasets/data/VOC<year>/annotations
ln -s /path/to/VOC<year>/devkit $DETECTRON/lib/datasets/data/VOC<year>/VOCdevkit<year>
We expect PASCAL VOC annotations converted to COCO json format, which are available for download here.
We assume that your symlinked lib/datasets/data/cityscapes
directory has the following structure:
cityscapes
|_ images
| |_ <im-1-name>.jpg
| |_ ...
| |_ <im-N-name>.jpg
|_ annotations
| |_ instanceonly_gtFile_train.json
| |_ ...
|_ raw
|_ gtFine
|_ ...
|_ README.md
Create symlinks for cityscapes
:
mkdir -p $DETECTRON/lib/datasets/data/cityscapes
ln -s /path/to/cityscapes/images $DETECTRON/lib/datasets/data/cityscapes/images
ln -s /path/to/cityscapes/json/annotations $DETECTRON/lib/datasets/data/cityscapes/annotations
ln -s /path/to/cityscapes/root $DETECTRON/lib/datasets/data/cityscapes/raw
We expect Cityscapes annotations converted to COCO json format, which we will make available for download soon.