forked from Vision-CAIR/MiniGPT4-video
-
Notifications
You must be signed in to change notification settings - Fork 0
/
minigpt4_video_inference.py
183 lines (174 loc) · 7.41 KB
/
minigpt4_video_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
import webvtt
import os
import cv2
from minigpt4.common.eval_utils import prepare_texts, init_model
from minigpt4.conversation.conversation import CONV_VISION
from torchvision import transforms
import json
from tqdm import tqdm
import soundfile as sf
import argparse
import moviepy.editor as mp
import gradio as gr
from pytubefix import YouTube
import shutil
from PIL import Image
from moviepy.editor import VideoFileClip
import torch
import random
import numpy as np
import torch.backends.cudnn as cudnn
import time
def prepare_input(vis_processor,video_path,subtitle_path,instruction):
cap = cv2.VideoCapture(video_path)
if subtitle_path is not None:
# Load the VTT subtitle file
vtt_file = webvtt.read(subtitle_path)
print("subtitle loaded successfully")
clip = VideoFileClip(video_path)
total_num_frames = int(clip.duration * clip.fps)
# print("Video duration = ",clip.duration)
clip.close()
else :
# calculate the total number of frames in the video using opencv
total_num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
max_images_length = 45
max_sub_len = 400
images = []
frame_count = 0
sampling_interval = int(total_num_frames / max_images_length)
if sampling_interval == 0:
sampling_interval = 1
img_placeholder = ""
subtitle_text_in_interval = ""
history_subtitles = {}
raw_frames=[]
number_of_words=0
transform=transforms.Compose([
transforms.ToPILImage(),
])
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Find the corresponding subtitle for the frame and combine the interval subtitles into one subtitle
# we choose 1 frame for every 2 seconds,so we need to combine the subtitles in the interval of 2 seconds
if subtitle_path is not None:
for subtitle in vtt_file:
sub=subtitle.text.replace('\n',' ')
if (subtitle.start_in_seconds <= (frame_count / int(clip.fps)) <= subtitle.end_in_seconds) and sub not in subtitle_text_in_interval:
if not history_subtitles.get(sub,False):
subtitle_text_in_interval+=sub+" "
history_subtitles[sub]=True
break
if frame_count % sampling_interval == 0:
raw_frames.append(Image.fromarray(cv2.cvtColor(frame.copy(), cv2.COLOR_BGR2RGB)))
frame = transform(frame[:,:,::-1]) # convert to RGB
frame = vis_processor(frame)
images.append(frame)
img_placeholder += '<Img><ImageHere>'
if subtitle_path is not None and subtitle_text_in_interval != "" and number_of_words< max_sub_len:
img_placeholder+=f'<Cap>{subtitle_text_in_interval}'
number_of_words+=len(subtitle_text_in_interval.split(' '))
subtitle_text_in_interval = ""
frame_count += 1
if len(images) >= max_images_length:
break
cap.release()
cv2.destroyAllWindows()
if len(images) == 0:
# skip the video if no frame is extracted
return None,None
images = torch.stack(images)
instruction = img_placeholder + '\n' + instruction
return images,instruction
def extract_audio(video_path, audio_path):
video_clip = mp.VideoFileClip(video_path)
audio_clip = video_clip.audio
audio_clip.write_audiofile(audio_path, codec="libmp3lame", bitrate="320k")
def generate_subtitles(video_path):
video_id=video_path.split('/')[-1].split('.')[0]
audio_path = f"workspace/inference_subtitles/mp3/{video_id}"+'.mp3'
os.makedirs("workspace/inference_subtitles/mp3",exist_ok=True)
if existed_subtitles.get(video_id,False):
return f"workspace/inference_subtitles/{video_id}"+'.vtt'
try:
extract_audio(video_path,audio_path)
print("successfully extracted")
os.system(f"whisper {audio_path} --language English --model large --output_format vtt --output_dir workspace/inference_subtitles")
# remove the audio file
os.system(f"rm {audio_path}")
print("subtitle successfully generated")
return f"workspace/inference_subtitles/{video_id}"+'.vtt'
except Exception as e:
print("error",e)
print("error",video_path)
return None
def run (video_path,instruction,model,vis_processor,gen_subtitles=True):
if gen_subtitles:
subtitle_path=generate_subtitles(video_path)
else :
subtitle_path=None
prepared_images,prepared_instruction=prepare_input(vis_processor,video_path,subtitle_path,instruction)
if prepared_images is None:
return "Video cann't be open ,check the video path again"
length=len(prepared_images)
prepared_images=prepared_images.unsqueeze(0)
conv = CONV_VISION.copy()
conv.system = ""
# if you want to make conversation comment the 2 lines above and make the conv is global variable
conv.append_message(conv.roles[0], prepared_instruction)
conv.append_message(conv.roles[1], None)
prompt = [conv.get_prompt()]
answers = model.generate(prepared_images, prompt, max_new_tokens=args.max_new_tokens, do_sample=True, lengths=[length],num_beams=1)
return answers[0]
def get_arguments():
parser = argparse.ArgumentParser(description="Inference parameters")
parser.add_argument("--cfg-path", help="path to configuration file.",default="test_configs/llama2_test_config.yaml")
parser.add_argument("--ckpt", type=str,default='checkpoints/video_llama_checkpoint_last.pth', help="path to checkpoint")
parser.add_argument("--add_subtitles",action= 'store_true',help="whether to add subtitles")
parser.add_argument("--question", type=str, help="question to ask")
parser.add_argument("--video_path", type=str, help="Path to the video file")
parser.add_argument("--max_new_tokens", type=int, default=512, help="max number of generated tokens")
parser.add_argument("--lora_r", type=int, default=64, help="lora rank of the model")
parser.add_argument("--lora_alpha", type=int, default=16, help="lora alpha")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
return parser.parse_args()
args=get_arguments()
def setup_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
import yaml
with open('test_configs/llama2_test_config.yaml') as file:
config = yaml.load(file, Loader=yaml.FullLoader)
seed=config['run']['seed']
print("seed",seed)
model, vis_processor = init_model(args)
conv = CONV_VISION.copy()
conv.system = ""
inference_subtitles_folder="inference_subtitles"
os.makedirs(inference_subtitles_folder,exist_ok=True)
existed_subtitles={}
for sub in os.listdir(inference_subtitles_folder):
existed_subtitles[sub.split('.')[0]]=True
if __name__ == "__main__":
video_path=args.video_path
instruction=args.question
add_subtitles=args.add_subtitles
setup_seeds(seed)
t1=time.time()
pred=run(video_path,instruction,model,vis_processor,gen_subtitles=add_subtitles)
print(pred)
print("time taken : ",time.time()-t1)
print("Number of output words : ",len(pred.split(' ')))