forked from skypilot-org/skypilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtime_estimators.py
149 lines (121 loc) · 5.47 KB
/
time_estimators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import sky
from sky import sky_logging
logger = sky_logging.init_logger(__name__)
def resnet50_estimate_runtime(resources):
"""A simple runtime model for Resnet50."""
# 3.8 G Multiply-Adds, 2 FLOPs per MADD, 3 for fwd+bwd.
flops_for_one_image = 3.8 * (10**9) * 2 * 3
def _v100(num_v100s):
# Adds communication overheads per step (in seconds).
communication_slack = 0.0
if num_v100s == 4:
communication_slack = 0.15
elif num_v100s == 8:
communication_slack = 0.30
max_per_device_batch_size = 256
effective_batch_size = max_per_device_batch_size * num_v100s
# 112590 steps, 1024 BS = 90 epochs.
total_steps = 112590 * (1024.0 / effective_batch_size)
flops_for_one_batch = flops_for_one_image * max_per_device_batch_size
# 27 TFLOPs, harmonic mean b/t 15TFLOPs (single-precision) & 120 TFLOPs
# (16 bit).
utilized_flops = 27 * (10**12)
# print('****** trying 1/3 util for v100')
utilized_flops = 120 * (10**12) / 3
estimated_step_time_seconds = flops_for_one_batch / utilized_flops \
+ communication_slack
estimated_run_time_seconds = estimated_step_time_seconds * total_steps
return estimated_run_time_seconds
if isinstance(resources.cloud, sky.AWS):
instance = resources.instance_type
if instance == 'p3.2xlarge':
num_v100s = 1
elif instance == 'p3.8xlarge':
num_v100s = 4
elif instance == 'p3.16xlarge':
num_v100s = 8
else:
assert False, 'Not supported: {}'.format(resources)
return _v100(num_v100s)
elif isinstance(resources.cloud, sky.GCP):
accelerators = resources.accelerators
if accelerators is None:
assert False, 'not supported'
assert len(accelerators) == 1, resources
for acc, acc_count in accelerators.items():
break
if acc == 'V100':
assert acc_count in [1, 2, 4, 8], resources
return _v100(acc_count)
assert acc == 'tpu-v3-8', resources
tpu_v3_8_flops = 420 * (10**12)
known_resnet50_utilization = 0.445 # From actual profiling.
# GPU - fixed to 1/3 util
# TPU
# - 1/4 util: doesn't work
# - 1/3 util: works
# - 1/2 util: works
# print('*** trying hand written util for TPU')
known_resnet50_utilization = 1 / 3
max_per_device_batch_size = 1024
total_steps = 112590 # 112590 steps, 1024 BS = 90 epochs.
flops_for_one_batch = flops_for_one_image * max_per_device_batch_size
utilized_flops = tpu_v3_8_flops * known_resnet50_utilization
estimated_step_time_seconds = flops_for_one_batch / utilized_flops
estimated_run_time_seconds = estimated_step_time_seconds * total_steps
logger.debug(' tpu-v3-8 estimated_step_time_seconds %f',
estimated_step_time_seconds)
return estimated_run_time_seconds
else:
assert False, 'not supported cloud in prototype: {}'.format(
resources.cloud)
def resnet50_infer_estimate_runtime(resources):
# 3.8 G Multiply-Adds, 2 FLOPs per MADD.
flops_for_one_image = 3.8 * (10**9) * 2
num_images = 0.1 * 1e6 # TODO: vary this.
num_images = 1e6 # TODO: vary this.
num_images = 70 * 1e6 # TODO: vary this.
instance = resources.instance_type
# assert instance in ['p3.2xlarge', 'inf1.2xlarge', 'nvidia-t4'], instance
if instance == 'p3.2xlarge':
# 120 TFLOPS TensorCore.
logger.debug('****** trying 1/3 util for v100')
utilized_flops = 120 * (10**12) / 3
# # Max bs to keep p99 < 15ms.
# max_per_device_batch_size = 8
# max_per_device_batch_size = 8*1e3
# max_per_device_batch_size = 1
# num_v100s = 1
# effective_batch_size = max_per_device_batch_size * num_v100s
# # 112590 steps, 1024 BS = 90 epochs.
# total_steps = num_images // effective_batch_size
# flops_for_one_batch = flops_for_one_image * max_per_device_batch_size
# estimated_step_time_seconds = flops_for_one_batch / utilized_flops
# estimated_run_time_seconds = estimated_step_time_seconds * total_steps
# TODO: this ignores offline vs. online. It's a huge batch.
estimated_run_time_seconds = \
flops_for_one_image * num_images / utilized_flops
elif instance == 'inf1.2xlarge':
# Inferentia: 1 chip = 128T[F?]OPS
# Each AWS Inferentia chip supports up to 128 TOPS (trillions of
# operations per second) of performance [assume 16, as it casts to
# bfloat16 by default).
# TODO: also assume 1/3 utilization
utilized_flops = 128 * (10**12) / 3
# TODO: this ignores offline vs. online. It's a huge batch.
estimated_run_time_seconds = \
flops_for_one_image * num_images / utilized_flops
elif resources.accelerators is not None:
accs = resources.accelerators
for acc, acc_count in accs.items():
break
assert acc == 'T4' and acc_count == 1, resources
# T4 GPU: 65 TFLOPS fp16
utilized_flops = 65 * (10**12) / 3
estimated_run_time_seconds = \
flops_for_one_image * num_images / utilized_flops
else:
assert False, resources
# print('** num images {} total flops {}'.format(
# num_images, flops_for_one_image * num_images))
return estimated_run_time_seconds