-
Notifications
You must be signed in to change notification settings - Fork 8
/
bert_classification.py
935 lines (780 loc) · 36.7 KB
/
bert_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
from pytorch_pretrained_bert.tokenization import BertTokenizer, WordpieceTokenizer
from pytorch_pretrained_bert.modeling import BertForPreTraining,BertPreTrainedModel, BertModel, BertConfig, BertForMaskedLM, BertForSequenceClassification
from pathlib import Path
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
import re
from torch import Tensor
import torch.nn.functional as F
#from fastai.text import Tokenizer, Vocab
import pandas as pd
import collections
import os
import pdb
from tqdm import tqdm, trange
import sys
import random
import numpy as np
import csv
from sklearn.model_selection import train_test_split
module_path = os.path.abspath(os.path.join('..'))
if module_path not in sys.path:
sys.path.append(module_path)
from sklearn.metrics import roc_curve, auc
from sklearn.preprocessing import LabelBinarizer, label_binarize
import argparse
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from pytorch_pretrained_bert.optimization import BertAdam
from tqdm.auto import tqdm
import logging
parser = argparse.ArgumentParser(description='BERT Fine-Training')
parser.add_argument(
'--fine_tune', '-ft', action='store_true', help='Fine-Tune on dataset')
parser.add_argument(
'--resume', '-r', action='store_true', help='resume from checkpoint')
parser.add_argument(
'--eval', '-e', action='store_true', help='Run eval on checkpoint')
parser.add_argument(
'--predict', '-p', action='store_true', help='Run predictions on checkpoint')
arg = parser.parse_args()
if not os.path.exists('Data'):
os.makedirs('Data')
if not os.path.exists('Data/output'):
os.makedirs('Data/output')
#Read dataset
df3 = pd.read_csv('Data/cleaned.csv')
#Splitting data into train, test and val
X=df3.sample(frac=0.5,random_state=200)
test=df3.drop(X.index)
train=X.sample(frac=0.6,random_state=200)
val=X.drop(train.index)
print("Train Shape", train.shape)
print("Val Shape", val.shape)
print("Test Shape", test.shape)
train.to_csv('Data/train.csv',encoding='utf-8', index=False)
val.to_csv('Data/val.csv',encoding='utf-8', index=False)
test.to_csv('Data/test.csv',encoding='utf-8', index=False)
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
DATA_PATH=Path('Data/')
DATA_PATH.mkdir(exist_ok=True)
CLAS_DATA_PATH=DATA_PATH/'output'
CLAS_DATA_PATH.mkdir(exist_ok=True)
model_state_dict = None
#Set this according to your dataset
input_col = 2 # 0 based index column input to the model
output_col = 1 # 0 based index column label to the model
BERT_PRETRAINED_PATH = Path('uncased_L-12_H-768_A-12')
"""## Model Parameters"""
args = {
"train_size": -1,
"val_size": -1,
"full_data_dir": DATA_PATH,
"data_dir": DATA_PATH,
"task_name": "news_cat_label",
"no_cuda": False,
"bert_model": "bert-base-uncased",
"output_dir": CLAS_DATA_PATH,
"max_seq_length": 50,
"do_train": True,
"do_eval": True,
"do_lower_case": True,
"train_batch_size": 32,
"eval_batch_size": 8,
"learning_rate": 3e-5,
"num_train_epochs": 4.0,
"warmup_proportion": 0.1,
"no_cuda": False,
"local_rank": -1,
"seed": 42,
"gradient_accumulation_steps": 1,
"optimize_on_cpu": False,
"fp16": False,
"loss_scale": 128
}
output_model_file = os.path.join(args['output_dir'], "ckpt.t7")
"""### Model Class"""
class BertForSequenceClassification(BertPreTrainedModel):
"""BERT model for classification.
This module is composed of the BERT model with a linear layer on top of
the pooled output.
Params:
`config`: a BertConfig class instance with the configuration to build a new model.
`num_labels`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_labels].
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, num_labels].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
num_labels = 2
model = BertForSequenceClassification(config, num_labels)
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_labels):
super(BertForSequenceClassification, self).__init__(config)
self.num_labels = num_labels
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, num_labels)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
_, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return loss
else:
return logits
def freeze_bert_encoder(self):
for param in self.bert.parameters():
print(param)
param.requires_grad = False
def unfreeze_bert_encoder(self):
for param in self.bert.parameters():
param.requires_grad = True
"""## Data representation class"""
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, labels=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
labels: (Optional) [string]. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.labels = labels
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_ids):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_ids = label_ids
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir, data_file_name, size=-1):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
class LabelTextProcessor(DataProcessor):
def __init__(self, data_dir):
self.data_dir = data_dir
self.labels = None
def get_train_examples(self, data_dir, size=-1):
filename = 'train.csv'
logger.info("LOOKING AT {}".format(os.path.join(data_dir, filename)))
if size == -1:
data_df = pd.read_csv(os.path.join(data_dir, filename),engine=None)
return self._create_examples(data_df, "train")
else:
data_df = pd.read_csv(os.path.join(data_dir, filename))
return self._create_examples(data_df.sample(size), "train")
def get_dev_examples(self, data_dir, size=-1):
"""See base class."""
filename = 'val.csv'
if size == -1:
data_df = pd.read_csv(os.path.join(data_dir, filename))
return self._create_examples(data_df, "dev")
else:
data_df = pd.read_csv(os.path.join(data_dir, filename))
return self._create_examples(data_df.sample(size), "dev")
def get_test_examples(self, data_dir, data_file_name, size=-1):
data_df = pd.read_csv(os.path.join(data_dir, data_file_name))
if size == -1:
return self._create_examples(data_df, "test")
else:
return self._create_examples(data_df.sample(size), "test")
def get_labels(self):
"""See base class."""
return ['ARTS', 'ARTS & CULTURE', 'BLACK VOICES', 'BUSINESS', 'COLLEGE', 'COMEDY', 'CRIME', 'CULTURE & ARTS', 'DIVORCE', 'EDUCATION', 'ENTERTAINMENT', 'ENVIRONMENT', 'FIFTY', 'FOOD & DRINK', 'GOOD NEWS', 'GREEN', 'HEALTHY LIVING', 'HOME & LIVING', 'IMPACT', 'LATINO VOICES', 'MEDIA', 'MONEY', 'PARENTING', 'PARENTS', 'POLITICS', 'QUEER VOICES', 'RELIGION', 'SCIENCE', 'SPORTS', 'STYLE', 'STYLE & BEAUTY', 'TASTE', 'TECH', 'TRAVEL', 'WEDDINGS', 'WEIRD NEWS', 'WELLNESS', 'WOMEN', 'WORLD NEWS', 'WORLDPOST']
#return ["0", "1"]
def _create_examples(self, df, set_type, labels_available=True):
"""Creates examples for the training and dev sets."""
examples = []
for (i, row) in enumerate(df.values):
guid = "%s-%s" % (set_type, i)
text_a = row[input_col]
if labels_available:
labels = row[output_col]
#print('hiiiii',labels)
else:
labels = []
print("No Label Found")
examples.append(
InputExample(guid=guid, text_a=text_a, labels=labels))
return examples
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer):
"""Loads a data file into a list of `InputBatch`s."""
label_map = {label : i for i, label in enumerate(label_list)}
features = []
for (ex_index, example) in enumerate(examples):
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[:(max_seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambigiously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
segment_ids = [0] * len(tokens)
if tokens_b:
tokens += tokens_b + ["[SEP]"]
segment_ids += [1] * (len(tokens_b) + 1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
labels_ids = label_map[example.labels]
if ex_index < 0:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("tokens: %s" % " ".join(
[str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("label: %s (id = %s)" % (example.labels, labels_ids))
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_ids=labels_ids))
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
"""## Metric functions"""
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def accuracy_thresh(y_pred:Tensor, y_true:Tensor, thresh:float=0.5, sigmoid:bool=True):
"Compute accuracy when `y_pred` and `y_true` are the same size."
if sigmoid: y_pred = y_pred.sigmoid()
# return ((y_pred>thresh)==y_true.byte()).float().mean().item()
return np.mean(((y_pred>thresh)==y_true.byte()).float().cpu().numpy(), axis=1).sum()
def fbeta(y_pred:Tensor, y_true:Tensor, thresh:float=0.2, beta:float=2, eps:float=1e-9, sigmoid:bool=True):
"Computes the f_beta between `preds` and `targets`"
beta2 = beta ** 2
if sigmoid: y_pred = y_pred.sigmoid()
y_pred = (y_pred>thresh).float()
y_true = y_true.float()
TP = (y_pred*y_true).sum(dim=1)
prec = TP/(y_pred.sum(dim=1)+eps)
rec = TP/(y_true.sum(dim=1)+eps)
res = (prec*rec)/(prec*beta2+rec+eps)*(1+beta2)
return res.mean().item()
"""## Training warmup"""
def warmup_linear(x, warmup=0.002):
if x < warmup:
return x/warmup
return 1.0 - x
processors = {
"news_cat_label": LabelTextProcessor
}
# Setup GPU parameters
if args["local_rank"] == -1 or args["no_cuda"]:
device = torch.device("cuda" if torch.cuda.is_available() and not args["no_cuda"] else "cpu")
n_gpu = torch.cuda.device_count()
# n_gpu = 1
else:
torch.cuda.set_device(args['local_rank'])
device = torch.device("cuda", args['local_rank'])
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args['local_rank'] != -1), args['fp16']))
args['train_batch_size'] = int(args['train_batch_size'] / args['gradient_accumulation_steps'])
random.seed(args['seed'])
np.random.seed(args['seed'])
torch.manual_seed(args['seed'])
if n_gpu > 0:
torch.cuda.manual_seed_all(args['seed'])
task_name = args['task_name'].lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name](args['data_dir'])
label_list = processor.get_labels()
num_labels = len(label_list)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=args['do_lower_case'])
train_examples = None
num_train_steps = None
if args['do_train']:
train_examples = processor.get_train_examples(args['full_data_dir'], size=args['train_size'])
num_train_steps = int(
len(train_examples) / args['train_batch_size'] / args['gradient_accumulation_steps'] * args['num_train_epochs'])
"""## Prepare model"""
def get_model():
if model_state_dict:
model = BertForSequenceClassification.from_pretrained(args['bert_model'], num_labels = num_labels, state_dict=model_state_dict)
else:
model = BertForSequenceClassification.from_pretrained(args['bert_model'], num_labels = num_labels)
return model
model = get_model()
model.to(device)
if args['local_rank'] != -1:
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
model = DDP(model)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
from torch.optim.lr_scheduler import _LRScheduler, Optimizer
class CyclicLR(object):
"""Sets the learning rate of each parameter group according to
cyclical learning rate policy (CLR). The policy cycles the learning
rate between two boundaries with a constant frequency, as detailed in
the paper `Cyclical Learning Rates for Training Neural Networks`_.
The distance between the two boundaries can be scaled on a per-iteration
or per-cycle basis.
Cyclical learning rate policy changes the learning rate after every batch.
`batch_step` should be called after a batch has been used for training.
To resume training, save `last_batch_iteration` and use it to instantiate `CycleLR`.
This class has three built-in policies, as put forth in the paper:
"triangular":
A basic triangular cycle w/ no amplitude scaling.
"triangular2":
A basic triangular cycle that scales initial amplitude by half each cycle.
"exp_range":
A cycle that scales initial amplitude by gamma**(cycle iterations) at each
cycle iteration.
This implementation was adapted from the github repo: `bckenstler/CLR`_
Args:
optimizer (Optimizer): Wrapped optimizer.
base_lr (float or list): Initial learning rate which is the
lower boundary in the cycle for eachparam groups.
Default: 0.001
max_lr (float or list): Upper boundaries in the cycle for
each parameter group. Functionally,
it defines the cycle amplitude (max_lr - base_lr).
The lr at any cycle is the sum of base_lr
and some scaling of the amplitude; therefore
max_lr may not actually be reached depending on
scaling function. Default: 0.006
step_size (int): Number of training iterations per
half cycle. Authors suggest setting step_size
2-8 x training iterations in epoch. Default: 2000
mode (str): One of {triangular, triangular2, exp_range}.
Values correspond to policies detailed above.
If scale_fn is not None, this argument is ignored.
Default: 'triangular'
gamma (float): Constant in 'exp_range' scaling function:
gamma**(cycle iterations)
Default: 1.0
scale_fn (function): Custom scaling policy defined by a single
argument lambda function, where
0 <= scale_fn(x) <= 1 for all x >= 0.
mode paramater is ignored
Default: None
scale_mode (str): {'cycle', 'iterations'}.
Defines whether scale_fn is evaluated on
cycle number or cycle iterations (training
iterations since start of cycle).
Default: 'cycle'
last_batch_iteration (int): The index of the last batch. Default: -1
Example:
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
>>> scheduler = torch.optim.CyclicLR(optimizer)
>>> data_loader = torch.utils.data.DataLoader(...)
>>> for epoch in range(10):
>>> for batch in data_loader:
>>> scheduler.batch_step()
>>> train_batch(...)
.. _Cyclical Learning Rates for Training Neural Networks: https://arxiv.org/abs/1506.01186
.. _bckenstler/CLR: https://github.com/bckenstler/CLR
"""
def __init__(self, optimizer, base_lr=1e-3, max_lr=6e-3,
step_size=2000, mode='triangular', gamma=1.,
scale_fn=None, scale_mode='cycle', last_batch_iteration=-1):
self.optimizer = optimizer
if isinstance(base_lr, list) or isinstance(base_lr, tuple):
if len(base_lr) != len(optimizer.param_groups):
raise ValueError("expected {} base_lr, got {}".format(
len(optimizer.param_groups), len(base_lr)))
self.base_lrs = list(base_lr)
else:
self.base_lrs = [base_lr] * len(optimizer.param_groups)
if isinstance(max_lr, list) or isinstance(max_lr, tuple):
if len(max_lr) != len(optimizer.param_groups):
raise ValueError("expected {} max_lr, got {}".format(
len(optimizer.param_groups), len(max_lr)))
self.max_lrs = list(max_lr)
else:
self.max_lrs = [max_lr] * len(optimizer.param_groups)
self.step_size = step_size
if mode not in ['triangular', 'triangular2', 'exp_range'] \
and scale_fn is None:
raise ValueError('mode is invalid and scale_fn is None')
self.mode = mode
self.gamma = gamma
if scale_fn is None:
if self.mode == 'triangular':
self.scale_fn = self._triangular_scale_fn
self.scale_mode = 'cycle'
elif self.mode == 'triangular2':
self.scale_fn = self._triangular2_scale_fn
self.scale_mode = 'cycle'
elif self.mode == 'exp_range':
self.scale_fn = self._exp_range_scale_fn
self.scale_mode = 'iterations'
else:
self.scale_fn = scale_fn
self.scale_mode = scale_mode
self.batch_step(last_batch_iteration + 1)
self.last_batch_iteration = last_batch_iteration
def batch_step(self, batch_iteration=None):
if batch_iteration is None:
batch_iteration = self.last_batch_iteration + 1
self.last_batch_iteration = batch_iteration
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
param_group['lr'] = lr
def _triangular_scale_fn(self, x):
return 1.
def _triangular2_scale_fn(self, x):
return 1 / (2. ** (x - 1))
def _exp_range_scale_fn(self, x):
return self.gamma**(x)
def get_lr(self):
step_size = float(self.step_size)
cycle = np.floor(1 + self.last_batch_iteration / (2 * step_size))
x = np.abs(self.last_batch_iteration / step_size - 2 * cycle + 1)
lrs = []
param_lrs = zip(self.optimizer.param_groups, self.base_lrs, self.max_lrs)
for param_group, base_lr, max_lr in param_lrs:
base_height = (max_lr - base_lr) * np.maximum(0, (1 - x))
if self.scale_mode == 'cycle':
lr = base_lr + base_height * self.scale_fn(cycle)
else:
lr = base_lr + base_height * self.scale_fn(self.last_batch_iteration)
lrs.append(lr)
return lrs
"""## Prepare optimizer"""
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
t_total = num_train_steps
if args['local_rank'] != -1:
t_total = t_total // torch.distributed.get_world_size()
if args['fp16']:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args['learning_rate'],
bias_correction=False,
max_grad_norm=1.0)
if args['loss_scale'] == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args['loss_scale'])
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args['learning_rate'],
warmup=args['warmup_proportion'],
t_total=t_total)
scheduler = CyclicLR(optimizer, base_lr=2e-5, max_lr=5e-5, step_size=2500, last_batch_iteration=0)
"""## Multi-Class ROC"""
def multiclass_roc_auc_score(y_test, y_pred, average="macro"):
lb = LabelBinarizer()
lb.fit(y_test)
y_test = lb.transform(y_test)
y_pred = lb.transform(y_pred)
return roc_auc_score(y_test, y_pred, average=average)
"""## **EVAL Function**"""
eval_examples = processor.get_dev_examples(args['data_dir'], size=args['val_size'])
def eval():
args['output_dir'].mkdir(exist_ok=True)
eval_features = convert_examples_to_features(
eval_examples, label_list, args['max_seq_length'], tokenizer)
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args['eval_batch_size'])
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_ids for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args['eval_batch_size'])
all_logits = None
all_labels = None
model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
logits = model(input_ids, segment_ids, input_mask)
logit = logits
a_label = label_ids
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
tmp_eval_accuracy = accuracy(logits, label_ids)
if all_logits is None:
all_logits = logit.detach().cpu().numpy()
else:
all_logits = np.concatenate((all_logits, logit.detach().cpu().numpy()), axis=0)
if all_labels is None:
all_labels = a_label.detach().cpu().numpy()
else:
all_labels = np.concatenate((all_labels, a_label.detach().cpu().numpy()), axis=0)
eval_loss += tmp_eval_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0)
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
# ROC-AUC calcualation
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
all_labels = label_binarize(all_labels, classes=np.arange(num_labels))
for i in range(num_labels):
fpr[i], tpr[i], _ = roc_curve(all_labels[:, i], all_logits[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(all_labels.ravel(), all_logits.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
loss = tr_loss/nb_tr_steps if tr_loss else None
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy,
'global_step': global_step,
'loss': loss,
'roc_auc': roc_auc
}
output_eval_file = os.path.join(args['output_dir'], "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
"""### Load training data"""
train_features = convert_examples_to_features(
train_examples, label_list, args['max_seq_length'], tokenizer)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args['train_batch_size'])
logger.info(" Num steps = %d", num_train_steps)
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_ids for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
if args['local_rank'] == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args['train_batch_size'])
"""### Train Model"""
tr_loss = 0
nb_tr_steps = 0
global_step = 0
def fit(num_epocs=args['num_train_epochs']):
global_step = 0
if arg.resume:
print('==> Resuming from checkpoint..')
checkpoint = torch.load(output_model_file)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
model.train()
for i_ in trange(int(num_epocs), desc="Epoch"):
# Load a trained model that you have fine-tuned
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
loss = model(input_ids, segment_ids, input_mask, label_ids)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args['gradient_accumulation_steps'] > 1:
loss = loss / args['gradient_accumulation_steps']
if args['fp16']:
optimizer.backward(loss)
else:
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if (step + 1) % args['gradient_accumulation_steps'] == 0:
#scheduler.batch_step()
# modify learning rate with special warm up BERT uses
lr_this_step = args['learning_rate'] * warmup_linear(global_step/t_total, args['warmup_proportion'])
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
logger.info('Loss after epoc {}'.format(tr_loss / nb_tr_steps))
logger.info('Eval after epoc {}'.format(i_+1))
result = eval()
# Save a trained model
save_checkpoint = {
'epoch': i_ + 1,
'max_length': args['max_seq_length'],
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
}
torch.save(save_checkpoint, output_model_file)
# Freeze BERT layers for 1 epoch
# model.freeze_bert_encoder()
# model.unfreeze_bert_encoder()
"""### Model Evaluation"""
# Load a trained model that you have fine-tuned
# model_state_dict = torch.load(output_model_file)
# model = BertForSequenceClassification.from_pretrained(args['bert_model'], num_labels = num_labels, state_dict=model_state_dict)
# model.to(device)
# eval()
def predict(model, path, test_filename='test1.csv'):
predict_processor = LabelTextProcessor(path)
test_examples = predict_processor.get_test_examples(path, test_filename, size=-1)
# Hold input data for returning it
input_data = [{ 'id': input_example.guid, 'comment_text': input_example.text_a } for input_example in test_examples]
pred_file = os.path.join(args['data_dir'], test_filename)
df = pd.read_csv(pred_file)
test_features = convert_examples_to_features(
test_examples, label_list, args['max_seq_length'], tokenizer)
logger.info("***** Running pathrediction *****")
logger.info(" Num examples = %d", len(test_examples))
logger.info(" Batch size = %d", args['eval_batch_size'])
all_input_ids = torch.tensor([f.input_ids for f in test_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in test_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in test_features], dtype=torch.long)
test_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids)
# Run prediction for full data
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args['eval_batch_size'])
all_outputs = None
model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for step, batch in enumerate(tqdm(test_dataloader, desc="Prediction Iteration")):
input_ids, input_mask, segment_ids = batch
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
with torch.no_grad():
logits = model(input_ids, segment_ids, input_mask)
logits = F.softmax(logits, -1)
outputs = np.argmax(logits.detach().cpu().numpy(), axis=1)
print(outputs)
if all_outputs is None:
all_outputs = outputs
else:
all_outputs = np.concatenate((all_outputs, outputs), axis=0)
nb_eval_examples += input_ids.size(0)
nb_eval_steps += 1
df["Predictions"] = all_outputs
return df
def main():
if arg.fine_tune:
fit()
if arg.eval:
checkpoint = torch.load(output_model_file)
model.load_state_dict(checkpoint['state_dict'])
eval()
if arg.predict:
checkpoint = torch.load(output_model_file)
model.load_state_dict(checkpoint['state_dict'])
result = predict(model, DATA_PATH)
result.to_csv(DATA_PATH/'results.csv', index=None)
if __name__ == '__main__':
main()