-
Notifications
You must be signed in to change notification settings - Fork 0
/
crf.py
249 lines (203 loc) · 10 KB
/
crf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import tensorflow as tf
from keras import backend as K
from keras.engine import Layer, InputSpec
try:
from tensorflow.contrib.crf import crf_decode
except ImportError:
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops, gen_array_ops, math_ops, rnn, rnn_cell
class CrfDecodeForwardRnnCell(rnn_cell.RNNCell):
"""Computes the forward decoding in a linear-chain CRF.
"""
def __init__(self, transition_params):
"""Initialize the CrfDecodeForwardRnnCell.
Args:
transition_params: A [num_tags, num_tags] matrix of binary
potentials. This matrix is expanded into a
[1, num_tags, num_tags] in preparation for the broadcast
summation occurring within the cell.
"""
self._transition_params = array_ops.expand_dims(transition_params, 0)
self._num_tags = transition_params.get_shape()[0].value
@property
def state_size(self):
return self._num_tags
@property
def output_size(self):
return self._num_tags
def __call__(self, inputs, state, scope=None):
"""Build the CrfDecodeForwardRnnCell.
Args:
inputs: A [batch_size, num_tags] matrix of unary potentials.
state: A [batch_size, num_tags] matrix containing the previous step's
score values.
scope: Unused variable scope of this cell.
Returns:
backpointers: [batch_size, num_tags], containing backpointers.
new_state: [batch_size, num_tags], containing new score values.
"""
# For simplicity, in shape comments, denote:
# 'batch_size' by 'B', 'max_seq_len' by 'T' , 'num_tags' by 'O' (output).
state = array_ops.expand_dims(state, 2) # [B, O, 1]
# This addition op broadcasts self._transitions_params along the zeroth
# dimension and state along the second dimension.
# [B, O, 1] + [1, O, O] -> [B, O, O]
transition_scores = state + self._transition_params # [B, O, O]
new_state = inputs + math_ops.reduce_max(transition_scores, [1]) # [B, O]
backpointers = math_ops.argmax(transition_scores, 1)
backpointers = math_ops.cast(backpointers, dtype=dtypes.int32) # [B, O]
return backpointers, new_state
class CrfDecodeBackwardRnnCell(rnn_cell.RNNCell):
"""Computes backward decoding in a linear-chain CRF.
"""
def __init__(self, num_tags):
"""Initialize the CrfDecodeBackwardRnnCell.
Args:
num_tags
"""
self._num_tags = num_tags
@property
def state_size(self):
return 1
@property
def output_size(self):
return 1
def __call__(self, inputs, state, scope=None):
"""Build the CrfDecodeBackwardRnnCell.
Args:
inputs: [batch_size, num_tags], backpointer of next step (in time order).
state: [batch_size, 1], next position's tag index.
scope: Unused variable scope of this cell.
Returns:
new_tags, new_tags: A pair of [batch_size, num_tags]
tensors containing the new tag indices.
"""
state = array_ops.squeeze(state, axis=[1]) # [B]
batch_size = array_ops.shape(inputs)[0]
b_indices = math_ops.range(batch_size) # [B]
indices = array_ops.stack([b_indices, state], axis=1) # [B, 2]
new_tags = array_ops.expand_dims(
gen_array_ops.gather_nd(inputs, indices), # [B]
axis=-1) # [B, 1]
return new_tags, new_tags
def crf_decode(potentials, transition_params, sequence_length):
"""Decode the highest scoring sequence of tags in TensorFlow.
This is a function for tensor.
Args:
potentials: A [batch_size, max_seq_len, num_tags] tensor, matrix of
unary potentials.
transition_params: A [num_tags, num_tags] tensor, matrix of
binary potentials.
sequence_length: A [batch_size] tensor, containing sequence lengths.
Returns:
decode_tags: A [batch_size, max_seq_len] tensor, with dtype tf.int32.
Contains the highest scoring tag indicies.
best_score: A [batch_size] tensor, containing the score of decode_tags.
"""
# For simplicity, in shape comments, denote:
# 'batch_size' by 'B', 'max_seq_len' by 'T' , 'num_tags' by 'O' (output).
num_tags = potentials.get_shape()[2].value
# Computes forward decoding. Get last score and backpointers.
crf_fwd_cell = CrfDecodeForwardRnnCell(transition_params)
initial_state = array_ops.slice(potentials, [0, 0, 0], [-1, 1, -1])
initial_state = array_ops.squeeze(initial_state, axis=[1]) # [B, O]
inputs = array_ops.slice(potentials, [0, 1, 0], [-1, -1, -1]) # [B, T-1, O]
backpointers, last_score = rnn.dynamic_rnn(
crf_fwd_cell,
inputs=inputs,
sequence_length=sequence_length - 1,
initial_state=initial_state,
time_major=False,
dtype=dtypes.int32) # [B, T - 1, O], [B, O]
backpointers = gen_array_ops.reverse_sequence(backpointers, sequence_length - 1, seq_dim=1) # [B, T-1, O]
# Computes backward decoding. Extract tag indices from backpointers.
crf_bwd_cell = CrfDecodeBackwardRnnCell(num_tags)
initial_state = math_ops.cast(math_ops.argmax(last_score, axis=1), dtype=dtypes.int32) # [B]
initial_state = array_ops.expand_dims(initial_state, axis=-1) # [B, 1]
decode_tags, _ = rnn.dynamic_rnn(
crf_bwd_cell,
inputs=backpointers,
sequence_length=sequence_length - 1,
initial_state=initial_state,
time_major=False,
dtype=dtypes.int32) # [B, T - 1, 1]
decode_tags = array_ops.squeeze(decode_tags, axis=[2]) # [B, T - 1]
decode_tags = array_ops.concat([initial_state, decode_tags], axis=1) # [B, T]
decode_tags = gen_array_ops.reverse_sequence(decode_tags, sequence_length, seq_dim=1) # [B, T]
best_score = math_ops.reduce_max(last_score, axis=1) # [B]
return decode_tags, best_score
class CRFLayer(Layer):
def __init__(self, transition_params=None, **kwargs):
super(CRFLayer, self).__init__(**kwargs)
self.transition_params = transition_params
self.input_spec = [InputSpec(ndim=3), InputSpec(ndim=2)]
self.supports_masking = True
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape[0]) == 3
return input_shape[0]
def build(self, input_shape):
"""Creates the layer weights.
Args:
input_shape (list(tuple, tuple)): [(batch_size, n_steps, n_classes), (batch_size, 1)]
"""
assert len(input_shape) == 2
assert len(input_shape[0]) == 3
assert len(input_shape[1]) == 2
n_steps = input_shape[0][1]
n_classes = input_shape[0][2]
assert n_steps is None or n_steps >= 2
self.transition_params = self.add_weight(shape=(n_classes, n_classes),
initializer='uniform',
name='transition')
self.input_spec = [InputSpec(dtype=K.floatx(), shape=(None, n_steps, n_classes)),
InputSpec(dtype='int32', shape=(None, 1))]
self.built = True
def viterbi_decode(self, potentials, sequence_length):
"""Decode the highest scoring sequence of tags in TensorFlow.
This is a function for tensor.
Args:
potentials: A [batch_size, max_seq_len, num_tags] tensor, matrix of unary potentials.
sequence_length: A [batch_size] tensor, containing sequence lengths.
Returns:
decode_tags: A [batch_size, max_seq_len] tensor, with dtype tf.int32.
Contains the highest scoring tag indicies.
"""
decode_tags, best_score = crf_decode(potentials, self.transition_params, sequence_length)
return decode_tags
def call(self, inputs, mask=None, **kwargs):
inputs, sequence_lengths = inputs
self.sequence_lengths = K.flatten(sequence_lengths)
y_pred = self.viterbi_decode(inputs, self.sequence_lengths)
nb_classes = self.input_spec[0].shape[2]
y_pred_one_hot = K.one_hot(y_pred, nb_classes)
return K.in_train_phase(inputs, y_pred_one_hot)
def loss(self, y_true, y_pred):
"""Computes the log-likelihood of tag sequences in a CRF.
Args:
y_true : A (batch_size, n_steps, n_classes) tensor.
y_pred : A (batch_size, n_steps, n_classes) tensor.
Returns:
loss: A scalar containing the log-likelihood of the given sequence of tag indices.
"""
y_true = K.cast(K.argmax(y_true, axis=-1), dtype='int32')
log_likelihood, self.transition_params = tf.contrib.crf.crf_log_likelihood(
y_pred, y_true, self.sequence_lengths, self.transition_params)
loss = tf.reduce_mean(-log_likelihood)
return loss
def get_config(self):
config = {
'transition_params': K.eval(self.transition_params),
}
base_config = super(CRFLayer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def create_custom_objects():
"""Returns the custom objects, needed for loading a persisted model."""
instanceHolder = {'instance': None}
class ClassWrapper(CRFLayer):
def __init__(self, *args, **kwargs):
instanceHolder['instance'] = self
super(ClassWrapper, self).__init__(*args, **kwargs)
def loss(*args):
method = getattr(instanceHolder['instance'], 'loss')
return method(*args)
return {'CRFLayer': ClassWrapper, 'loss': loss}