-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_unpair.py
343 lines (288 loc) · 14.7 KB
/
train_unpair.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import argparse
import os
import time
from shutil import copyfile
import numpy as np
import torch
import torch.optim as optim
from torchvision.utils import make_grid, save_image
from datasets import UnpairDataset, denorm
from models import FUnIEUpGenerator, FUnIEUpDiscriminator
from torch.utils.tensorboard import SummaryWriter
from utils import AverageMeter, ProgressMeter
class Trainer(object):
def __init__(self, train_loader, valid_loader, lr, epochs, gen_dstd2ehcd_resume, gen_ehcd2dstd_resume, dis_dstd_resume, dis_ehcd_resume, save_path, is_cuda):
self.train_loader = train_loader
self.valid_loader = valid_loader
self.start_epoch = 0
self.epochs = epochs
self.save_path = save_path
os.makedirs(f"{self.save_path}/viz", exist_ok=True)
self.writer = SummaryWriter(log_dir=self.save_path)
self.is_cuda = is_cuda
self.print_freq = 20
self.best_gen_loss = 1e6
self.gen_dstd2ehcd = FUnIEUpGenerator()
self.gen_ehcd2dstd = FUnIEUpGenerator()
self.dis_dstd = FUnIEUpDiscriminator()
self.dis_ehcd = FUnIEUpDiscriminator()
if gen_dstd2ehcd_resume and gen_ehcd2dstd_resume and dis_dstd_resume and dis_ehcd_resume:
self.load(gen_dstd2ehcd_resume, gen_ehcd2dstd_resume,
dis_dstd_resume, dis_ehcd_resume)
if self.is_cuda:
self.gen_dstd2ehcd.cuda()
self.gen_ehcd2dstd.cuda()
self.dis_dstd.cuda()
self.dis_ehcd.cuda()
self.mse = torch.nn.MSELoss()
self.mae = torch.nn.L1Loss()
dis_params = list(self.dis_dstd.parameters()) + \
list(self.dis_ehcd.parameters())
gen_params = list(self.gen_dstd2ehcd.parameters()) + \
list(self.gen_ehcd2dstd.parameters())
self.dis_optimizer = optim.Adam(
filter(lambda p: p.requires_grad, dis_params), lr)
self.gen_optimizer = optim.Adam(
filter(lambda p: p.requires_grad, gen_params), lr)
def train(self):
for e in range(self.start_epoch, self.epochs):
self.epoch = e
_, _ = self.train_epoch()
valid_gen_loss, _ = self.validate()
# Save models
self.save(valid_gen_loss)
self.writer.close()
def train_epoch(self):
self.gen_dstd2ehcd.train()
self.gen_ehcd2dstd.train()
self.dis_dstd.train()
self.dis_ehcd.train()
batch_time = AverageMeter("Time", "3.3f")
gen_losses = AverageMeter("Generator Loss")
dis_losses = AverageMeter("Discriminator Loss")
progress = ProgressMeter(len(self.train_loader), [
batch_time, gen_losses, dis_losses], prefix="Train: ")
end = time.time()
for batch_idx, (dstd_images, ehcd_images) in enumerate(self.train_loader):
bs = dstd_images.size(0)
valid = torch.ones((bs, 16, 16))
fake = torch.zeros((bs, 16, 16))
if self.is_cuda:
dstd_images = dstd_images.cuda()
ehcd_images = ehcd_images.cuda()
valid = valid.cuda()
fake = fake.cuda()
# Train the discriminator using real samples
valid_dstd = self.dis_dstd(dstd_images)
valid_ehcd = self.dis_ehcd(ehcd_images)
d_loss_real = self.mse(valid, valid_dstd) + self.mse(valid, valid_ehcd)
self.dis_optimizer.zero_grad()
d_loss_real.backward()
self.dis_optimizer.step()
# Train the discriminator using fake samples
valid_dstd = self.dis_dstd(self.gen_ehcd2dstd(ehcd_images))
valid_ehcd = self.dis_ehcd(self.gen_dstd2ehcd(dstd_images))
d_loss_fake = self.mse(fake, valid_dstd) + self.mse(fake, valid_ehcd)
self.dis_optimizer.zero_grad()
d_loss_fake.backward()
self.dis_optimizer.step()
# Train the generator using dstd->ehcd->dstd cycle
fake_ehcd = self.gen_dstd2ehcd(dstd_images)
valid_ehcd = self.dis_ehcd(fake_ehcd)
recn_dstd = self.gen_ehcd2dstd(fake_ehcd)
g_loss_dstd = self.mae(valid, valid_ehcd) + \
10 * self.mae(dstd_images, recn_dstd)
self.gen_optimizer.zero_grad()
g_loss_dstd.backward()
self.gen_optimizer.step()
# Train the generator using ehcd->dstd->ehcd cycle
fake_dstd = self.gen_ehcd2dstd(ehcd_images)
valid_dstd = self.dis_dstd(fake_dstd)
recn_ehcd = self.gen_dstd2ehcd(fake_dstd)
g_loss_ehcd = self.mae(valid, valid_dstd) + \
10 * self.mae(ehcd_images, recn_ehcd)
self.gen_optimizer.zero_grad()
g_loss_ehcd.backward()
self.gen_optimizer.step()
# Total loss
d_loss = d_loss_real + d_loss_fake
g_loss = g_loss_dstd + g_loss_ehcd
# Update
dis_losses.update(d_loss.item(), bs)
gen_losses.update(g_loss.item(), bs)
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % self.print_freq == 0:
progress.display(batch_idx)
# Write stats to tensorboard
self.writer.add_scalar("Generator Loss/Train",
gen_losses.avg, self.epoch)
self.writer.add_scalar("Discriminator Loss/Train",
dis_losses.avg, self.epoch)
return gen_losses.avg, dis_losses.avg
def validate(self):
self.gen_dstd2ehcd.eval()
self.gen_ehcd2dstd.eval()
self.dis_dstd.eval()
self.dis_ehcd.eval()
batch_time = AverageMeter("Time", "3.3f")
gen_losses = AverageMeter("Generator Loss")
dis_losses = AverageMeter("Discriminator Loss")
progress = ProgressMeter(len(self.valid_loader), [
batch_time, gen_losses, dis_losses], prefix="Valid: ")
with torch.no_grad():
end = time.time()
for batch_idx, (dstd_images, ehcd_images) in enumerate(self.valid_loader):
bs = dstd_images.size(0)
valid = torch.ones((bs, 16, 16))
fake = torch.zeros((bs, 16, 16))
if self.is_cuda:
dstd_images = dstd_images.cuda()
ehcd_images = ehcd_images.cuda()
valid = valid.cuda()
fake = fake.cuda()
# Train the discriminator using real samples
valid_dstd = self.dis_dstd(dstd_images)
valid_ehcd = self.dis_ehcd(ehcd_images)
d_loss_real = self.mse(valid, valid_dstd) + \
self.mse(valid, valid_ehcd)
# Train the discriminator using fake samples
fake_dstd = self.gen_ehcd2dstd(ehcd_images)
fake_ehcd = self.gen_dstd2ehcd(dstd_images)
valid_dstd = self.dis_dstd(fake_dstd)
valid_ehcd = self.dis_ehcd(fake_ehcd)
d_loss_fake = self.mse(fake, valid_dstd) + \
self.mse(fake, valid_ehcd)
# Train the generator using dstd->ehcd->dstd cycle
valid_ehcd = self.dis_ehcd(fake_ehcd)
recn_dstd = self.gen_ehcd2dstd(fake_ehcd)
g_loss_dstd = self.mse(valid, valid_ehcd) + \
self.mse(dstd_images, recn_dstd)
# Train the generator using ehcd->dstd->ehcd cycle
valid_dstd = self.dis_dstd(fake_dstd)
recn_ehcd = self.gen_dstd2ehcd(fake_dstd)
g_loss_ehcd = self.mse(valid, valid_dstd) + \
self.mse(ehcd_images, recn_ehcd)
# Total loss
d_loss = d_loss_real + d_loss_fake
g_loss = g_loss_dstd + g_loss_ehcd
# Update
dis_losses.update(d_loss.item(), bs)
gen_losses.update(g_loss.item(), bs)
batch_time.update(time.time() - end)
end = time.time()
# Vis
if batch_idx == 0:
fake_ehcd_grid = denorm(
make_grid(fake_ehcd.data)).div_(255.)
fake_dstd_grid = denorm(
make_grid(fake_dstd.data)).div_(255.)
recn_ehcd_grid = denorm(
make_grid(recn_ehcd.data)).div_(255.)
recn_dstd_grid = denorm(
make_grid(recn_dstd.data)).div_(255.)
save_image(
fake_ehcd_grid, f"{self.save_path}/viz/fake_ehcd_{self.epoch}.png")
save_image(
fake_dstd_grid, f"{self.save_path}/viz/fake_dstd_{self.epoch}.png")
save_image(
recn_ehcd_grid, f"{self.save_path}/viz/recn_ehcd_{self.epoch}.png")
save_image(
recn_dstd_grid, f"{self.save_path}/viz/recn_dstd_{self.epoch}.png")
self.writer.add_image(
"Viz/Fake Distort", fake_ehcd_grid, self.epoch)
self.writer.add_image(
"Viz/Fake Enhance", fake_dstd_grid, self.epoch)
self.writer.add_image(
"Viz/Recn Distort", recn_ehcd_grid, self.epoch)
self.writer.add_image(
"Viz/Recn Enhance", recn_dstd_grid, self.epoch)
if batch_idx % self.print_freq == 0:
progress.display(batch_idx)
# Write stats to tensorboard
self.writer.add_scalar("Generator Loss/Validation",
gen_losses.avg, self.epoch)
self.writer.add_scalar("Discriminator Loss/Validation",
dis_losses.avg, self.epoch)
return gen_losses.avg, dis_losses.avg
def save_model(self, model_type, model, model_content, is_best):
model_path = f"{self.save_path}/{self.epoch}_{model_type}.pth.tar"
model_content["state_dict"] = model.state_dict()
torch.save(model_content, model_path)
print(f">>> Save '{model_type}' model to {model_path}")
if is_best:
best_path = f"{self.save_path}/best_{model_type}.pth.tar"
copyfile(model_path, best_path)
def load_model(self, model_type, model, model_path, device):
ckpt = torch.load(model_path, map_location=device)
epoch = ckpt["epoch"]
model.load_state_dict(ckpt["state_dict"])
print(
f">>> Load '{model_type}' model at epoch {epoch} from {model_path}")
return epoch, ckpt["best_loss"]
def save(self, loss):
# Check if the current model is the best
is_best = loss < self.best_gen_loss
self.best_gen_loss = min(self.best_gen_loss, loss)
# Prepare model info to be saved
model_content = {"best_loss": loss, "epoch": self.epoch}
# Save generator and discriminator
self.save_model("gen_dstd2ehcd", self.gen_dstd2ehcd, model_content, is_best)
self.save_model("gen_ehcd2dstd", self.gen_ehcd2dstd, model_content, is_best)
self.save_model("dis_dstd", self.dis_dstd, model_content, is_best)
self.save_model("dis_ehcd", self.dis_ehcd, model_content, is_best)
def load(self, gen_dstd2ehcd_resume, gen_ehcd2dstd_resume, dis_dstd_resume, dis_ehcd_resume):
device = "cuda:0" if self.is_cuda else "cpu"
gen_dstd2ehcd_epoch, best_loss = self.load_model(
"gen_dstd2ehcd", self.gen_dstd2ehcd, gen_dstd2ehcd_resume, device)
gen_ehcd2dstd_epoch, _ = self.load_model(
"gen_ehcd2dstd", self.gen_ehcd2dstd, gen_ehcd2dstd_resume, device)
dis_dstd_epoch, _ = self.load_model(
"dis_dstd", self.dis_dstd, dis_dstd_resume, device)
dis_dst_epoch, _ = self.load_model(
"dis_ehcd", self.dis_ehcd, dis_ehcd_resume, device)
assert gen_dstd2ehcd_epoch == gen_ehcd2dstd_epoch == dis_dstd_epoch == dis_dst_epoch
self.start_epoch = gen_dstd2ehcd_epoch + 1
if __name__ == "__main__":
# Set seed
np.random.seed(77)
torch.manual_seed(77)
is_cuda = torch.cuda.is_available()
if is_cuda:
torch.cuda.manual_seed(77)
parser = argparse.ArgumentParser(description="PyTorch FUnIE-GAN Training")
parser.add_argument("-d", "--data", default="", type=str, metavar="PATH",
help="path to data (default: none)")
parser.add_argument("-j", "--workers", default=4, type=int, metavar="N",
help="number of data loading workers (default: 4)")
parser.add_argument("--epochs", default=90, type=int, metavar="N",
help="number of total epochs to run")
parser.add_argument("-b", "--batch-size", default=256, type=int,
metavar="N",
help="mini-batch size (default: 256), this is the total "
"batch size of all GPUs on the current node when "
"using Data Parallel or Distributed Data Parallel")
parser.add_argument("--lr", "--learning-rate", default=0.1, type=float,
metavar="LR", help="initial learning rate")
parser.add_argument("--gen-dstd2ehcd-resume", default="", type=str, metavar="PATH",
help="path to latest dstd2ehcd generator checkpoint (default: none)")
parser.add_argument("--gen-ehcd2dstd-resume", default="", type=str, metavar="PATH",
help="path to latest ehcd2dstd generator checkpoint (default: none)")
parser.add_argument("--dis-dstd-resume", default="", type=str, metavar="PATH",
help="path to latest dstd discriminator checkpoint (default: none)")
parser.add_argument("--dis-ehcd-resume", default="", type=str, metavar="PATH",
help="path to latest ehcd discriminator checkpoint (default: none)")
parser.add_argument("--save-path", default="", type=str, metavar="PATH",
help="path to save results (default: none)")
args = parser.parse_args()
# Build data loaders
train_set = UnpairDataset(args.data, (256, 256), "train")
valid_set = UnpairDataset(args.data, (256, 256), "valid")
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers)
valid_loader = torch.utils.data.DataLoader(
valid_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
# Create trainer
trainer = Trainer(train_loader, valid_loader, args.lr, args.epochs, args.gen_dstd2ehcd_resume,
args.gen_ehcd2dstd_resume, args.dis_dstd_resume, args.dis_ehcd_resume, args.save_path, is_cuda)
trainer.train()