forked from johannesgerer/jburkardt-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fem2d_bvp_linear.html
194 lines (165 loc) · 5.8 KB
/
fem2d_bvp_linear.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
<html>
<head>
<title>
FEM2D_BVP_LINEAR - Finite Element Method, 2D, Boundary Value Problem, Piecewise Linear Elements
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
FEM2D_BVP_LINEAR <br> Finite Element Method, 2D, Boundary Value Problem, Piecewise Linear Elements
</h1>
<hr>
<p>
<b>FEM2D_BVP_LINEAR</b>
is a C++ program which
applies the finite element method, with piecewise linear elements,
to a 2D boundary value problem over a rectangle.
</p>
<p>
The boundary value problem (BVP) that is to be solved has the form:
<pre>
- d/dx ( a(x,y) * du/dx ) - d/dy ( a(x,y) * du/dy ) + c(x,y) * u(x,y) = f(x,y)
</pre>
This equation holds in the interior of some rectangle R.
The functions a(x,y), c(x,y), and f(x,y) are given.
</p>
<p>
Zero boundary conditions are imposed on the boundary of R.
</p>
<p>
To compute a finite element approximation, the X and Y extents of R
are gridded with NX and NY equally spaced values, respectively.
This defines NX*NY nodes, and divides R into (NX-1)*(NY-1) rectangular
elements. At the K-th node, (X(I),Y(J)), a piecewise linear basis
function PHI(K)(X,Y) is defined. The solution will be represented as
a linear combination of these basis functions. An integral form
of the BVP is written, in which the differential equation is
multiplied by each basis function, and integration by parts is
used to simplify the integrand.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>FEM2D_BVP_LINEAR</b> is available in
<a href = "../../c_src/fem2d_bvp_linear/fem2d_bvp_linear.html">a C version</a> and
<a href = "../../cpp_src/fem2d_bvp_linear/fem2d_bvp_linear.html">a C++ version</a> and
<a href = "../../f77_src/fem2d_bvp_linear/fem2d_bvp_linear.html">a FORTRAN77 version</a> and
<a href = "../../f_src/fem2d_bvp_linear/fem2d_bvp_linear.html">a FORTRAN90 version</a> and
<a href = "../../m_src/fem2d_bvp_linear/fem2d_bvp_linear.html">a MATLAB version</a> and
<a href = "../../py_src/fem2d_bvp_linear/fem2d_bvp_linear.html">a Python version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../cpp_src/fem1d_bvp_linear/fem1d_bvp_linear.html">
FEM1D_BVP_LINEAR</a>,
a C++ program which
applies the finite element method (FEM), with piecewise linear
elements, to a two point boundary value problem (BVP) in one
spatial dimension, and compares the computed and exact solutions
with the L2 and seminorm errors.
</p>
<p>
<a href = "../../cpp_src/fem2d_bvp_quadratic/fem2d_bvp_quadratic.html">
FEM2D_BVP_QUADRATIC</a>,
a C++ program which
applies the finite element method (FEM), with piecewise quadratic elements,
to a 2D boundary value problem (BVP) in a rectangle,
and compares the computed and exact solutions
with the L2 and seminorm errors.
</p>
<p>
<a href = "../../cpp_src/fem2d_bvp_serene/fem2d_bvp_serene.html">
FEM2D_BVP_SERENE</a>,
a C++ program which
applies the finite element method (FEM), with serendipity elements,
to a 2D boundary value problem (BVP) in a rectangle,
and compares the computed and exact solutions
with the L2 and seminorm errors.
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "fem2d_bvp_linear.cpp">fem2d_bvp_linear.cpp</a>, the source code.
</li>
<li>
<a href = "fem2d_bvp_linear.hpp">fem2d_bvp_linear.hpp</a>, the include file.
</li>
<li>
<a href = "fem2d_bvp_linear.sh">fem2d_bvp_linear.sh</a>,
BASH commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "fem2d_bvp_linear_prb.cpp">fem2d_bvp_linear_prb.cpp</a>,
a sample calling program.
</li>
<li>
<a href = "fem2d_bvp_linear_prb.sh">fem2d_bvp_linear_prb.sh</a>,
BASH commands to compile and run the sample program.
</li>
<li>
<a href = "fem2d_bvp_linear_prb_output.txt">fem2d_bvp_linear_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>FEM2D_BVP_LINEAR</b> solves boundary value problem on a rectangle.
</li>
<li>
<b>FEM2D_H1S_ERROR_LINEAR:</b> seminorm error of a finite element solution.
</li>
<li>
<b>FEM2D_L1_ERROR</b> estimates the l1 error norm of a finite element solution.
</li>
<li>
<b>FEM2D_L2_ERROR_LINEAR:</b> L2 error norm of a finite element solution.
</li>
<li>
<b>R8MAT_SOLVE2</b> computes the solution of an N by N linear system.
</li>
<li>
<b>R8VEC_EVEN</b> returns an R8VEC of evenly spaced values.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../cpp_src.html">
the C++ source codes</a>.
</p>
<hr>
<i>
Last revised on 20 June 2014.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>