forked from johannesgerer/jburkardt-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pwl_interp_2d_scattered.html
263 lines (227 loc) · 7.65 KB
/
pwl_interp_2d_scattered.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
<html>
<head>
<title>
PWL_INTERP_2D_SCATTERED - Piecewise Linear Interpolant to 2D Scattered Data
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
PWL_INTERP_2D_SCATTERED <br> Piecewise Linear Interpolant to 2D Scattered Data
</h1>
<hr>
<p>
<b>PWL_INTERP_2D_SCATTERED</b>
is a C++ library which
produces a piecewise linear interpolant to 2D scattered data,
that is, data that is not guaranteed to lie on a regular grid.
</p>
<p>
This program computes a Delaunay triangulation of the data points,
and then constructs an interpolant triangle by triangle. Over a given
triangle, the interpolant is the linear function which matches the
data already given at the vertices of the triangle.
</p>
<p>
<b>PWL_INTERP_2D</b> requires the R8LIB library. The test code
requires the TEST_INTERP_2D library.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this
web page are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>PWL_INTERP_2D_SCATTERED</b> is available in
<a href = "../../c_src/pwl_interp_2d_scattered/pwl_interp_2d_scattered.html">a C version</a> and
<a href = "../../cpp_src/pwl_interp_2d_scattered/pwl_interp_2d_scattered.html">a C++ version</a> and
<a href = "../../f77_src/pwl_interp_2d_scattered/pwl_interp_2d_scattered.html">a FORTRAN77 version</a> and
<a href = "../../f_src/pwl_interp_2d_scattered/pwl_interp_2d_scattered.html">a FORTRAN90 version</a> and
<a href = "../../m_src/pwl_interp_2d_scattered/pwl_interp_2d_scattered.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../cpp_src/lagrange_interp_2d/lagrange_interp_2d.html">
LAGRANGE_INTERP_2D</a>,
a C++ library which
defines and evaluates the Lagrange polynomial p(x,y)
which interpolates a set of data depending on a 2D argument
that was evaluated on a product grid,
so that p(x(i),y(j)) = z(i,j).
</p>
<p>
<a href = "../../cpp_src/pwl_interp_2d/pwl_interp_2d.html">
PWL_INTERP_2D</a>,
a C++ library which
evaluates a piecewise linear interpolant to data defined on
a regular 2D grid.
</p>
<p>
<a href = "../../cpp_src/rbf_interp_2d/rbf_interp_2d.html">
RBF_INTERP_2D</a>,
a C++ library which
defines and evaluates radial basis function (RBF) interpolants to
scattered 2D data.
</p>
<p>
<a href = "../../cpp_src/shepard_interp_2d/shepard_interp_2d.html">
SHEPARD_INTERP_2D</a>,
a C++ library which
defines and evaluates Shepard interpolants to scattered 2D data,
based on inverse distance weighting.
</p>
<p>
<a href = "../../cpp_src/test_interp_2d/test_interp_2d.html">
TEST_INTERP_2D</a>,
a C++ library which
defines test problems for interpolation of regular or scattered data z(x,y),
depending on a 2D argument.
</p>
<p>
<a href = "../../cpp_src/triangulation/triangulation.html">
TRIANGULATION</a>,
a C++ library which
performs various operations on order 3 (linear) or order 6 (quadratic) triangulations.
</p>
<p>
<a href = "../../m_src/triangulation_order3_contour/triangulation_order3_contour.html">
TRIANGULATION_ORDER3_CONTOUR</a>,
a MATLAB program which
makes contour plot of scattered data, or of data defined on an order 3 triangulation.
</p>
<p>
<a href = "../../cpp_src/vandermonde_interp_2d/vandermonde_interp_2d.html">
VANDERMONDE_INTERP_2D</a>,
a C++ library which
finds a polynomial interpolant to data z(x,y) of a 2D argument
by setting up and solving a linear system for the polynomial coefficients,
involving the Vandermonde matrix.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
William Press, Brian Flannery, Saul Teukolsky, William Vetterling,<br>
Numerical Recipes in FORTRAN: The Art of Scientific Computing,<br>
Third Edition,<br>
Cambridge University Press, 2007,<br>
ISBN13: 978-0-521-88068-8,<br>
LC: QA297.N866.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "pwl_interp_2d_scattered.cpp">pwl_interp_2d_scattered.cpp</a>, the source code.
</li>
<li>
<a href = "pwl_interp_2d_scattered.hpp">pwl_interp_2d_scattered.hpp</a>, the include file.
</li>
<li>
<a href = "pwl_interp_2d_scattered.sh">pwl_interp_2d_scattered.sh</a>,
BASH commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "pwl_interp_2d_scattered_prb.cpp">pwl_interp_2d_scattered_prb.cpp</a>,
a sample calling program.
</li>
<li>
<a href = "pwl_interp_2d_scattered_prb.sh">pwl_interp_2d_scattered_prb.sh</a>,
BASH commands to compile and run the sample program.
</li>
<li>
<a href = "pwl_interp_2d_scattered_prb_output.txt">pwl_interp_2d_scattered_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>DIAEDG</b> chooses a diagonal edge.
</li>
<li>
<b>I4_SIGN</b> evaluates the sign of an I4.
</li>
<li>
<b>I4MAT_TRANSPOSE_PRINT</b> prints an I4MAT, transposed.
</li>
<li>
<b>I4MAT_TRANSPOSE_PRINT_SOME</b> prints some of the transpose of an I4MAT.
</li>
<li>
<b>I4VEC_HEAP_D</b> reorders an I4VEC into a descending heap.
</li>
<li>
<b>I4VEC_MIN</b> computes the minimum element of an I4VEC.
</li>
<li>
<b>I4VEC_SORT_HEAP_A</b> ascending sorts an I4VEC using heap sort.
</li>
<li>
<b>I4VEC_SORTED_UNIQUE</b> gets the unique elements in a sorted I4VEC.
</li>
<li>
<b>LRLINE</b> determines if a point is left of, right or, or on a directed line.
</li>
<li>
<b>PERM_CHECK2</b> checks that a vector represents a permutation.
</li>
<li>
<b>PERM_INVERSE</b> inverts a permutation "in place".
</li>
<li>
<b>PWL_INTERP_2D_SCATTERED_VALUE</b> evaluates a 2d interpolant of scattered data
</li>
<li>
<b>R8TRIS2</b> constructs a Delaunay triangulation of 2D vertices.
</li>
<li>
<b>SWAPEC</b> swaps diagonal edges until all triangles are Delaunay.
</li>
<li>
<b>TRIANGULATION_ORDER3_PRINT</b> prints information about a triangulation.
</li>
<li>
<b>TRIANGULATION_SEARCH_DELAUNAY</b> searches a Delaunay triangulation for a point.
</li>
<li>
<b>VBEDG</b> determines which boundary edges are visible to a point.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../cpp_src.html">
the C++ source codes</a>.
</p>
<hr>
<i>
Last revised on 24 October 2012.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>