forked from johannesgerer/jburkardt-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
triangle_felippa_rule.html
302 lines (261 loc) · 8.78 KB
/
triangle_felippa_rule.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
<html>
<head>
<title>
TRIANGLE_FELIPPA_RULE - Felippa's Quadrature Rules for Triangles
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
TRIANGLE_FELIPPA_RULE <br> Felippa's Quadrature Rules for Triangles
</h1>
<hr>
<p>
<b>TRIANGLE_FELIPPA_RULE</b>
is a C++ library which
generates the points and weights of Felippa's quadrature rules
over the interior of a triangle in 2D.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>TRIANGLE_FELIPPA_RULE</b> is available in
<a href = "../../c_src/triangle_felippa_rule/triangle_felippa_rule.html">a C version</a> and
<a href = "../../cpp_src/triangle_felippa_rule/triangle_felippa_rule.html">a C++ version</a> and
<a href = "../../f_src/triangle_felippa_rule/triangle_felippa_rule.html">a FORTRAN90 version</a> and
<a href = "../../f77_src/triangle_felippa_rule/triangle_felippa_rule.html">a FORTRAN77 version</a> and
<a href = "../../m_src/triangle_felippa_rule/triangle_felippa_rule.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../cpp_src/cube_felippa_rule/cube_felippa_rule.html">
CUBE_FELIPPA_RULE</a>,
a C++ library which
returns the points and weights of a Felippa quadrature rule
over the interior of a cube in 3D.
</p>
<p>
<a href = "../../cpp_src/pyramid_felippa_rule/pyramid_felippa_rule.html">
PYRAMID_FELIPPA_RULE</a>,
a C++ library which
returns Felippa's quadratures rules for approximating integrals
over the interior of a pyramid in 3D.
</p>
<p>
<a href = "../../cpp_src/square_felippa_rule/square_felippa_rule.html">
SQUARE_FELIPPA_RULE</a>,
a C++ library which
returns the points and weights of a Felippa quadrature rule
over the interior of a square in 2D.
</p>
<p>
<a href = "../../cpp_src/tetrahedron_felippa_rule/tetrahedron_felippa_rule.html">
TETRAHEDRON_FELIPPA_RULE</a>,
a C++ library which
returns Felippa's quadratures rules for approximating integrals
over the interior of a tetrahedron in 3D.
</p>
<p>
<a href = "../../cpp_src/triangle_fekete_rule/triangle_fekete_rule.html">
TRIANGLE_FEKETE_RULE</a>,
a C++ library which
defines Fekete rules for interpolation or quadrature
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/triangle_dunavant_rule/triangle_dunavant_rule.html">
TRIANGLE_DUNAVANT_RULE</a>,
a C++ library which
sets up a Dunavant quadrature rule
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/triangle_exactness/triangle_exactness.html">
TRIANGLE_EXACTNESS</a>,
a C++ program which
investigates the polynomial exactness of a quadrature rule
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/triangle_fekete_rule/triangle_fekete_rule.html">
TRIANGLE_FEKETE_RULE</a>,
a C++ library which
defines Fekete rules for interpolation or quadrature
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/triangle_lyness_rule/triangle_lyness_rule.html">
TRIANGLE_LYNESS_RULE</a>,
a C++ library which
returns Lyness-Jespersen quadrature rules
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/triangle_monte_carlo/triangle_monte_carlo.html">
TRIANGLE_MONTE_CARLO</a>,
a C++ program which
uses the Monte Carlo method to estimate integrals
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/triangle_ncc_rule/triangle_ncc_rule.html">
TRIANGLE_NCC_RULE</a>,
a C++ library which
defines Newton-Cotes Closed (NCC) quadrature rules
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/triangle_nco_rule/triangle_nco_rule.html">
TRIANGLE_NCO_RULE</a>,
a C++ library which
defines Newton-Cotes Open (NCO) quadrature rules
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/triangle_svg/triangle_svg.html">
TRIANGLE_SVG</a>,
a C++ library which
uses Scalable Vector Graphics (SVG) to plot a triangle and
any number of points, to illustrate quadrature rules and
sampling techniques.
</p>
<p>
<a href = "../../cpp_src/triangle_symq_rule/triangle_symq_rule.html">
TRIANGLE_SYMQ_RULE</a>,
a C++ library which
returns efficient symmetric quadrature rules,
with exactness up to total degree 50,
over the interior of an arbitrary triangle in 2D,
by Hong Xiao and Zydrunas Gimbutas.
</p>
<p>
<a href = "../../cpp_src/triangle_wandzura_rule/triangle_wandzura_rule.html">
TRIANGLE_WANDZURA_RULE</a>,
a C++ library which
sets up a quadrature rule of exactness 5, 10, 15, 20, 25 or 30
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/wedge_felippa_rule/wedge_felippa_rule.html">
WEDGE_FELIPPA_RULE</a>,
a C++ library which
returns quadratures rules for approximating integrals
over the interior of the unit wedge in 3D.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Carlos Felippa,<br>
A compendium of FEM integration formulas for symbolic work,<br>
Engineering Computation,<br>
Volume 21, Number 8, 2004, pages 867-890.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "triangle_felippa_rule.cpp">triangle_felippa_rule.cpp</a>, the source code.
</li>
<li>
<a href = "triangle_felippa_rule.hpp">triangle_felippa_rule.hpp</a>, the source code.
</li>
<li>
<a href = "triangle_felippa_rule.sh">triangle_felippa_rule.sh</a>,
BASH commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "triangle_felippa_rule_prb.cpp">triangle_felippa_rule_prb.cpp</a>,
a sample calling program.
</li>
<li>
<a href = "triangle_felippa_rule_prb.sh">triangle_felippa_rule_prb.sh</a>,
BASH commands to compile and run the sample program.
</li>
<li>
<a href = "triangle_felippa_rule_prb_output.txt">triangle_felippa_rule_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>COMP_NEXT</b> computes the compositions of the integer N into K parts.
</li>
<li>
<b>MONOMIAL_VALUE</b> evaluates a monomial.
</li>
<li>
<b>SUBCOMP_NEXT</b> computes the next subcomposition of N into K parts.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
<li>
<b>TRIANGLE_UNIT_MONOMIAL</b> integrates a monomial over the unit triangle.
</li>
<li>
<b>TRIANGLE_UNIT_O01</b> returns a 1 point quadrature rule for the unit triangle.
</li>
<li>
<b>TRIANGLE_UNIT_O03</b> returns a 3 point quadrature rule for the unit triangle.
</li>
<li>
<b>TRIANGLE_UNIT_O03B</b> returns a 3 point quadrature rule for the unit triangle.
</li>
<li>
<b>TRIANGLE_UNIT_O06</b> returns a 6 point quadrature rule for the unit triangle.
</li>
<li>
<b>TRIANGLE_UNIT_O06B</b> returns a 6 point quadrature rule for the unit triangle.
</li>
<li>
<b>TRIANGLE_UNIT_O07</b> returns a 7 point quadrature rule for the unit triangle.
</li>
<li>
<b>TRIANGLE_UNIT_O12</b> returns a 12 point quadrature rule for the unit triangle.
</li>
<li>
<b>TRIANGLE_UNIT_VOLUME:</b> volume of a unit triangle.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../cpp_src.html">
the C++ source codes</a>.
</p>
<hr>
<i>
Last revised on 25 August 2014.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>