Skip to content

rstudio/vetiver-python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

857298d · May 1, 2024
Apr 18, 2024
Apr 18, 2024
Jul 19, 2022
Dec 6, 2022
Apr 18, 2024
Jul 3, 2023
Feb 7, 2023
Mar 13, 2023
Mar 13, 2023
Mar 15, 2023
Jul 13, 2022
Mar 29, 2023
May 1, 2024
Oct 19, 2022
Apr 18, 2024
Jan 3, 2024
Jul 13, 2022
Dec 9, 2021

Repository files navigation

vetiver

Lifecycle: experimental codecov

Vetiver, the oil of tranquility, is used as a stabilizing ingredient in perfumery to preserve more volatile fragrances.

The goal of vetiver is to provide fluent tooling to version, share, deploy, and monitor a trained model. Functions handle both recording and checking the model's input data prototype, and predicting from a remote API endpoint. The vetiver package is extensible, with generics that can support many kinds of models, and available for both Python and R. To learn more about vetiver, see:

You can use vetiver with:

Installation

You can install the released version of vetiver from PyPI:

python -m pip install vetiver

And the development version from GitHub with:

python -m pip install git+https://github.com/rstudio/vetiver-python

Example

A VetiverModel() object collects the information needed to store, version, and deploy a trained model.

from vetiver import mock, VetiverModel

X, y = mock.get_mock_data()
model = mock.get_mock_model().fit(X, y)

v = VetiverModel(model, model_name='mock_model', prototype_data=X)

You can version and share your VetiverModel() by choosing a pins "board" for it, including a local folder, Connect, Amazon S3, and more.

from pins import board_temp
from vetiver import vetiver_pin_write

model_board = board_temp(versioned = True, allow_pickle_read = True)
vetiver_pin_write(model_board, v)

You can deploy your pinned VetiverModel() using VetiverAPI(), an extension of FastAPI.

from vetiver import VetiverAPI
app = VetiverAPI(v, check_prototype = True)

To start a server using this object, use app.run(port = 8080) or your port of choice.

Contributing

This project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

  • For questions and discussions about deploying models, statistical modeling, and machine learning, please post on Posit Community.

  • If you think you have encountered a bug, please submit an issue.