-
Notifications
You must be signed in to change notification settings - Fork 1
/
ann.py
65 lines (51 loc) · 2.11 KB
/
ann.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Artificial Neural Network
# PART 1 -- DATA PREPROCESSING
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3: 13].values
y = dataset.iloc[:, 13].values
# Encoding Categorical Data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X1 = LabelEncoder()
X[:, 1] = labelencoder_X1.fit_transform(X[:, 1])
labelencoder_X2 = LabelEncoder()
X[:, 2] = labelencoder_X2.fit_transform(X[:, 2])
onehotencoder = OneHotEncoder(categorical_features = [1])
X = onehotencoder.fit_transform(X).toarray()
X = X[:, 1:]
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
# PART 2 -- MAKING ARTIFICIAL NEURAL NETWORK
# importing the keras libraries and packages
import keras
from keras.models import Sequential
from keras.layers import Dense
# intialising the ANN
classifier = Sequential()
# Adding the Input layer and the First Hidden Layer
classifier.add(Dense(output_dim = 6, init = 'uniform', activation = 'relu', input_dim = 11))
# Adding the Second Hidden Layer
classifier.add(Dense(output_dim = 6, init = 'uniform', activation = 'relu'))
# Adding the Output Layer
classifier.add(Dense(output_dim = 1, init = 'uniform', activation = 'sigmoid'))
# compiling the ANN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# Fitting the ANN to Training set
classifier.fit(X_train, y_train, batch_size = 10, nb_epoch = 100)
# PART 3 -- MAKING PREDICTIONS AND EVALUATING THE MODEL
#predict the test set results
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5)
#making the confusion matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)